Módulo de comando y servicio Apollo
El módulo de comando y servicio Apollo (CSM) fue uno de los dos componentes principales de la nave espacial Apollo de los Estados Unidos, utilizada para el programa Apollo, que llevó a los astronautas a la superficie. Luna entre 1969 y 1972. El CSM funcionó como una nave nodriza, que llevó a la órbita lunar a una tripulación de tres astronautas y a la segunda nave espacial Apolo, el Módulo Lunar Apolo, y trajo a los astronautas de regreso a la Tierra. Constaba de dos partes: el módulo de mando cónico, una cabina que albergaba a la tripulación y llevaba el equipo necesario para el reingreso atmosférico y el aterrizaje; y el módulo de servicio cilíndrico que proporcionaba propulsión, energía eléctrica y almacenamiento para diversos consumibles necesarios durante una misión. Una conexión umbilical transfirió energía y consumibles entre los dos módulos. Justo antes del reingreso del módulo de comando en el regreso a casa, se cortó la conexión umbilical y se desprendió el módulo de servicio y se le permitió quemarse en la atmósfera.
El CSM fue desarrollado y construido para la NASA por North American Aviation a partir de noviembre de 1961. Inicialmente fue diseñado para aterrizar en la Luna encima de una etapa de aterrizaje de cohetes y regresar a los tres astronautas en una misión de ascenso directo, que no usaría un módulo lunar separado y, por lo tanto, no tenía disposiciones para acoplarse con otra nave espacial. Esto, además de otros cambios de diseño necesarios, llevó a la decisión de diseñar dos versiones del CSM: el Bloque I se iba a utilizar para misiones sin tripulación y un vuelo en órbita terrestre con una sola tripulación (Apolo 1), mientras que el Bloque II, más avanzado, se diseñó para utilizar con el módulo lunar. El vuelo del Apolo 1 fue cancelado después de que un incendio en la cabina mató a la tripulación y destruyó su módulo de comando durante una prueba de ensayo de lanzamiento. Las correcciones de los problemas que causaron el incendio se aplicaron a la nave espacial del Bloque II, que se utilizó para todos los vuelos espaciales tripulados.
Se lanzaron al espacio diecinueve CSM. De ellos, nueve llevaron humanos a la Luna entre 1968 y 1972, y otros dos realizaron vuelos de prueba con tripulación en órbita terrestre baja, todo como parte del programa Apolo. Antes de estos, otros cuatro CSM habían volado como pruebas Apolo sin tripulación, de los cuales dos eran vuelos suborbitales y otros dos eran vuelos orbitales. Tras la conclusión del programa Apolo y durante 1973-1974, tres CSM transportaron astronautas a la estación espacial orbital Skylab. Finalmente, en 1975, el último CSM volado se acopló a la nave soviética Soyuz 19 como parte del Proyecto de prueba internacional Apollo-Soyuz.
Antes de Apolo
Los conceptos de una nave espacial tripulada avanzada comenzaron antes de que se anunciara el objetivo de alunizaje. El vehículo de tres personas iba a estar destinado principalmente a uso orbital alrededor de la Tierra. Incluiría un gran módulo orbital auxiliar presurizado donde la tripulación viviría y trabajaría durante semanas seguidas. Realizarían actividades tipo estación espacial en el módulo, mientras que versiones posteriores usarían el módulo para transportar carga a estaciones espaciales. La nave espacial debía dar servicio al Proyecto Olympus (LORL), una estación espacial giratoria plegable lanzada en un solo Saturno V. Las versiones posteriores se usarían en vuelos circunlunares y serían la base para una nave espacial lunar de ascenso directo, así como para vuelos interplanetarios. misiones. A finales de 1960, la NASA pidió a la industria estadounidense que propusiera diseños para el vehículo. El 25 de mayo de 1961, el presidente John F. Kennedy anunció el objetivo de alunizaje antes de 1970, lo que inmediatamente dejó obsoletos los planes de la Estación Olympus de la NASA.
Historial de desarrollo
Cuando la NASA otorgó el contrato inicial del Apolo a North American Aviation el 28 de noviembre de 1961, todavía se suponía que el alunizaje se lograría mediante un ascenso directo en lugar de un encuentro en la órbita lunar. Por lo tanto, el diseño se desarrolló sin medios para acoplar el módulo de comando a un módulo de excursión lunar (LEM). Pero el cambio al punto de encuentro en la órbita lunar, además de varios obstáculos técnicos encontrados en algunos subsistemas (como el control ambiental), pronto dejaron claro que sería necesario un rediseño sustancial. En 1963, la NASA decidió que la forma más eficaz de mantener el programa en marcha era continuar con el desarrollo en dos versiones:
- Bloque I continuaría el diseño preliminar, que se utilizaría únicamente para los vuelos de prueba de baja órbita terrestre.
- Bloque II sería la versión capaz de lunar, incluyendo una escotilla de atraque e incorporando la reducción de peso y las lecciones aprendidas en el bloque I. El diseño detallado de la capacidad de atraque dependía del diseño del LEM, que fue contratado a Grumman Aircraft Engineering.
En enero de 1964, North American comenzó a presentar los detalles del diseño del Bloque II a la NASA. Las naves espaciales del Bloque I se utilizaron para todos los vuelos de prueba sin tripulación de Saturn 1B y Saturn V. Inicialmente se planearon dos vuelos tripulados, pero se redujo a uno a finales de 1966. Esta misión, designada AS-204 pero llamada Apolo 1 por su tripulación de vuelo, estaba prevista para su lanzamiento el 21 de febrero de 1967. Durante un ensayo general para el lanzamiento El 27 de enero, los tres astronautas (Gus Grissom, Ed White y Roger Chaffee) murieron en un incendio en la cabina, lo que reveló graves deficiencias de diseño, construcción y mantenimiento en el Bloque I, muchas de las cuales se habían trasladado a los módulos de comando del Bloque II. construido en su momento.
Después de una investigación exhaustiva por parte de la Junta de Revisión del Apolo 204, se decidió terminar la fase tripulada del Bloque I y redefinir el Bloque II para incorporar las recomendaciones de la junta de revisión. El Bloque II incorporó un diseño de escudo térmico CM revisado, que se probó en los vuelos no tripulados del Apolo 4 y el Apolo 6, por lo que la primera nave espacial del Bloque II voló en la primera misión tripulada, el Apolo 7.
Los dos bloques eran esencialmente similares en dimensiones generales, pero varias mejoras de diseño dieron como resultado una reducción de peso en el Bloque II. Además, los tanques de propulsor del módulo de servicio del Bloque I eran ligeramente más grandes que los del Bloque II. La nave espacial Apolo 1 pesaba aproximadamente 45.000 libras (20.000 kg), mientras que el Bloque II Apollo 7 pesaba 36.400 libras (16.500 kg). (Estas dos naves orbitales terrestres eran más livianas que la nave que luego fue a la Luna, ya que llevaban propulsor en un solo juego de tanques y no llevaban la antena de banda S de alta ganancia). En las especificaciones que figuran a continuación, a menos que Notando lo contrario, todos los pesos indicados son para la nave espacial del Bloque II.
El costo total del CSM para el desarrollo y las unidades producidas fue de $36,9 mil millones en dólares de 2016, ajustado de un total nominal de $3,7 mil millones utilizando los índices de inflación New Start de la NASA.
Módulo de comando (CM)
El módulo de comando era un cono truncado (frustum) con un diámetro de 12 pies 10 pulgadas (3,91 m) de ancho en la base y una altura de 11 pies 5 pulgadas (3,48 m), incluida la sonda de atraque y la popa en forma de plato. escudo térmico. El compartimento delantero contenía dos propulsores del sistema de control de reacción, el túnel de atraque y el sistema de aterrizaje en la Tierra. El recipiente a presión interior albergaba el alojamiento de la tripulación, los compartimentos para equipos, los controles y pantallas, y muchos sistemas de la nave espacial. El compartimiento de popa contenía 10 motores de control de reacción y sus tanques de propulsor relacionados, tanques de agua dulce y los cables umbilicales CSM.
Construcción
El módulo de comando fue construido en la fábrica de North American en Downey, California, y constaba de dos estructuras básicas unidas: la estructura interna (cáscara de presión) y la estructura externa.
La estructura interior era una construcción tipo sándwich de aluminio que constaba de una piel interior de aluminio soldada, un núcleo de panal de aluminio adherido con adhesivo y una lámina frontal exterior. El grosor del panal varió desde aproximadamente 1,5 pulgadas (3,8 cm) en la base hasta aproximadamente 0,25 pulgadas (0,64 cm) en el túnel de acceso delantero. Esta estructura interior era el compartimento presurizado de la tripulación.
La estructura exterior estaba hecha de acero inoxidable soldado en forma de panal soldado entre láminas frontales de aleación de acero. Su grosor variaba de 0,5 pulgadas a 2,5 pulgadas. Parte del área entre las capas interior y exterior se rellenó con una capa de aislamiento de fibra de vidrio como protección adicional contra el calor.
Protección térmica (escudo térmico)

Un escudo térmico ablativo en el exterior del CM protegió la cápsula del calor de reentrada, que es suficiente para fundir la mayoría de los metales. Este escudo térmico estaba compuesto de resina fenólica de formaldehído. Durante el reingreso, este material se carbonizó y se fundió, absorbiendo y llevándose el intenso calor en el proceso. El escudo térmico tiene varias cubiertas exteriores: un sello de poros, una barrera contra la humedad (una capa reflectante blanca) y una capa térmica Mylar plateada que parece papel de aluminio.
El espesor del escudo térmico variaba desde 2 pulgadas (5,1 cm) en la parte trasera (la base de la cápsula, que miraba hacia adelante durante el reingreso) hasta 0,5 pulgadas (1,3 cm) en el compartimiento de la tripulación y las partes delanteras. El peso total del escudo era de unas 3.000 libras (1.400 kg).
Compartimento delantero
El compartimento delantero de 1 pie 11 pulgadas (0,58 m) de altura era el área fuera de la cubierta de presión interna en la nariz de la cápsula, ubicada alrededor del túnel de acoplamiento delantero y cubierta por el escudo térmico delantero. El compartimento estaba dividido en cuatro segmentos de 90 grados que contenían el equipo de aterrizaje en la Tierra (todos los paracaídas, antenas de recuperación y luz de baliza, y eslinga de recuperación en el mar), dos propulsores de control de reacción y el mecanismo de liberación del escudo térmico delantero.
A aproximadamente 25.000 pies (7.600 m) durante el reingreso, el escudo térmico delantero fue desechado para exponer el equipo de aterrizaje en la Tierra y permitir el despliegue de los paracaídas.
Compartimento de popa
El compartimento de popa, de 0,51 m (1 pie y 8 pulgadas) de altura, estaba ubicado alrededor de la periferia del módulo de comando en su parte más ancha, justo delante (arriba) del escudo térmico de popa. El compartimento estaba dividido en 24 bahías que contenían 10 motores de control de reacción; los tanques de combustible, oxidante y helio para el subsistema de control de reacción CM; tanques de agua; las nervaduras aplastables del sistema de atenuación de impactos; y una serie de instrumentos. El umbilical CM-SM, el punto por donde pasaban el cableado y las tuberías de un módulo a otro, también se encontraba en el compartimento de popa. Los paneles del escudo térmico que cubrían el compartimiento de popa eran desmontables para el mantenimiento del equipo antes del vuelo.
Sistema de aterrizaje en la Tierra


Los componentes del ELS estaban alojados alrededor del túnel de atraque delantero. El compartimento delantero estaba separado del central por un mamparo y estaba dividido en cuatro cuñas de 90 grados. El ELS constaba de dos paracaídas con morteros, tres paracaídas principales, tres paracaídas piloto para desplegar los principales, tres bolsas de inflado para enderezar la cápsula si fuera necesario, un cable de recuperación en el mar, un marcador de tinte y un umbilical de nadador.
El centro de masa del módulo de comando estaba desplazado aproximadamente un pie del centro de presión (a lo largo del eje de simetría). Esto proporcionó un momento de rotación durante la reentrada, inclinando la cápsula y proporcionando algo de sustentación (una relación de sustentación a resistencia de aproximadamente 0,368). Luego, la cápsula se dirigió girándola mediante propulsores; cuando no se requería dirección, la cápsula giraba lentamente y los efectos de elevación se anulaban. Este sistema redujo en gran medida la fuerza G experimentada por los astronautas, permitió una cantidad razonable de control direccional y permitió apuntar al punto de aterrizaje de la cápsula en unas pocas millas.
A 7.300 m (24.000 pies), el escudo térmico delantero se desechó utilizando cuatro resortes de compresión de gas presurizado. Luego se desplegaron los paracaídas, lo que redujo la velocidad de la nave espacial a 125 millas por hora (201 kilómetros por hora). A 3.300 m (10.700 pies), se abandonaron los drogues y se desplegaron los paracaídas del piloto, que sacaron los principales. Esto redujo la velocidad del CM a 22 millas por hora (35 kilómetros por hora) para el aterrizaje. La parte de la cápsula que entró en contacto por primera vez con la superficie del agua contenía cuatro nervaduras aplastables para mitigar aún más la fuerza del impacto. El módulo de comando podría lanzarse en paracaídas de manera segura a un aterrizaje en el océano con solo dos paracaídas desplegados (como ocurrió en el Apolo 15), siendo el tercer paracaídas una medida de seguridad.
Sistema de control de reacción
El sistema de control de actitud del módulo de comando constaba de doce propulsores de control de actitud de 93 libras de fuerza (410 N), diez de los cuales estaban ubicados en el compartimento de popa, más dos en el compartimento delantero. Estos fueron suministrados por cuatro tanques que almacenaban 270 libras (120 kg) de combustible monometilhidrazina y oxidante de tetróxido de nitrógeno, y presurizados por 1,1 libras (0,50 kg) de helio almacenado a 4150 libras por pulgada cuadrada (28,6 MPa) en dos tanques.
Escotillas
La escotilla de atraque delantera estaba montada en la parte superior del túnel de atraque. Tenía 76 cm (30 pulgadas) de diámetro y pesaba 36 kg (80 libras), y estaba construido a partir de dos anillos mecanizados que estaban soldados a un panel alveolar soldado. El lado exterior se cubrió con 13 mm (0,5 pulgadas) de aislamiento y una capa de papel de aluminio. Estaba cerrado en seis lugares y accionado mediante una manija de bomba. La escotilla contenía una válvula en su centro, utilizada para igualar la presión entre el túnel y el CM para que se pudiera quitar la escotilla.
La escotilla unificada para la tripulación (UCH) medía 29 pulgadas (74 cm) de alto, 34 pulgadas (86 cm) de ancho y pesaba 225 libras (102 kg). Fue operado por una manija de bomba, que accionaba un mecanismo de trinquete para abrir o cerrar quince pestillos simultáneamente.
Conjunto de acoplamiento
La misión Apolo requirió que el LM se acoplara con el CSM al regresar de la Luna, y también en la maniobra de transposición, atraque y extracción al inicio de la costa translunar. El mecanismo de acoplamiento era un sistema no andrógino, consistente en una sonda situada en la nariz del CSM, que se conectaba al drogue, un cono truncado situado en el módulo lunar.. La sonda se extendió como un gato de tijera para capturar el embudo en el contacto inicial, lo que se conoce como acoplamiento suave. Luego se retrajo la sonda para juntar los vehículos y establecer una conexión firme, conocida como "acoplamiento duro". La NASA especificó que el mecanismo tenía las siguientes funciones:
- Permitir que los dos vehículos se conecten, y atenuar el exceso de movimiento y energía causada por el docking
- Alinear y centrar los dos vehículos y reunirlos para capturar
- Proporcionar una conexión estructural rígida entre ambos vehículos, y ser capaz de eliminación y reinstalación por un solo tripulante
- Proporcionar un medio de separación remota de ambos vehículos para el regreso a la Tierra, utilizando acoplamientos pirotécnicos en la circunferencia del cuello de acoplamiento CSM
- Proporcionar circuitos de energía y lógica redundantes para todos los componentes eléctricos y pirotécnicos.
Acoplamiento
El cabezal de la sonda ubicado en el CSM era autocentrante y estaba montado en un cardán en el pistón de la sonda. Cuando el cabezal de la sonda se enganchó en la apertura del zócalo del embudo, tres pestillos accionados por resorte se presionaron y engancharon. Estos pestillos permitieron que se instalara el llamado 'muelle blando' estado y permitió que los movimientos de cabeceo y guiñada en los dos vehículos disminuyeran. El exceso de movimiento en los vehículos durante el 'dique duro' El proceso podría causar daños al anillo de acoplamiento y ejercer tensión en el túnel superior. Un eslabón del gatillo de bloqueo presionado en cada pestillo permitió que un carrete con resorte se moviera hacia adelante, manteniendo el eslabón de palanca en una posición bloqueada sobre el centro. En el extremo superior del túnel del módulo lunar, el embudo, que estaba construido con un núcleo de panal de aluminio de 1 pulgada de espesor, unido por delante y por detrás a láminas frontales de aluminio, era el extremo receptor de los pestillos de captura del cabezal de la sonda.
Retracción
Después de la captura y estabilización inicial de los vehículos, la sonda fue capaz de ejercer una fuerza de cierre de 1000 libras de fuerza (4,4 kN) para juntar los vehículos. Esta fuerza fue generada por la presión del gas que actúa sobre el pistón central dentro del cilindro de la sonda. La retracción del pistón comprimió la sonda y los sellos de interfaz y accionó los 12 pestillos de anillo automáticos que estaban ubicados radialmente alrededor de la superficie interna del anillo de acoplamiento CSM. Un astronauta volvía a amartillar manualmente los pestillos en el túnel de acoplamiento después de cada evento de acoplamiento forzoso (las misiones lunares requerían dos acoplamientos).
Separación
Un pestillo de extensión automático unido al cuerpo del cilindro de la sonda enganchó y retuvo el pistón central de la sonda en la posición retraída. Antes de la separación del vehículo en la órbita lunar, se realizaba el armado manual de los doce pestillos de anillo. A continuación, la fuerza de separación de la presión interna en la zona del túnel se transmitía desde los pestillos anulares a la sonda y al embudo. Al desacoplar, la liberación de los pestillos de captura se logró energizando eléctricamente solenoides giratorios de CC montados en tándem ubicados en el pistón central. En una condición de temperatura degradada, una operación de liberación de un solo motor se realizó manualmente en el módulo lunar presionando el carrete de bloqueo a través de un orificio abierto en los cabezales de la sonda, mientras que la liberación del CSM se realizó girando una manija de liberación en la parte posterior de la sonda. para girar el eje de torsión del motor manualmente. Cuando los módulos de comando y lunares se separaron por última vez, la sonda y el anillo de acoplamiento delantero se separaron pirotécnicamente, dejando todo el equipo de acoplamiento unido al módulo lunar. En caso de un aborto durante el lanzamiento desde la Tierra, el mismo sistema habría desechado explosivamente el anillo de acoplamiento y la sonda del CM al separarse de la cubierta protectora del impulso.
Disposición interior de la cabina


El recipiente central de presión del módulo de comandos era su único compartimiento habitable. Tenía un volumen interior de 210 pies cúbicos (5.9 m3) y albergaron los principales paneles de control, asientos de tripulación, sistemas de guía y navegación, taquillas de alimentos y equipo, el sistema de gestión de residuos y el túnel de acoplamiento.
Dominando la sección delantera de la cabina estaba el panel de visualización principal en forma de media luna que medía casi 7 pies (2,1 m) de ancho y 3 pies (0,91 m) de alto. Estaba organizado en tres paneles, cada uno de los cuales enfatizaba los deberes de cada miembro de la tripulación. El panel del comandante de la misión (lado izquierdo) incluía los indicadores de velocidad, actitud y altitud, los controles de vuelo primarios y el FDAI (indicador de actitud del director de vuelo) principal.
El piloto CM sirvió como navegante, por lo que su panel de control (centro) incluía los controles computarizados de Guiado y Navegación, el panel indicador de precaución y advertencia, el cronómetro de eventos, los controles del Sistema de Propulsión de Servicio y RCS, y los controles del sistema de control ambiental..
El piloto del LM se desempeñó como ingeniero de sistemas, por lo que su panel de control (lado derecho) incluía los indicadores y controles de la celda de combustible, los controles eléctricos y de batería, y los controles de comunicaciones.
Flanqueando los lados del panel principal había conjuntos de paneles de control más pequeños. En el lado izquierdo había un panel de disyuntores, controles de audio y controles de energía SCS. A la derecha había disyuntores adicionales y un panel de control de audio redundante, junto con los interruptores de control ambiental. En total, los paneles del módulo de comando incluían 24 instrumentos, 566 interruptores, 40 indicadores de eventos y 71 luces.
Los tres sofás para la tripulación se construyeron con tubos de acero huecos y se cubrieron con una tela pesada e ignífuga conocida como Armalon. Los paneles para las piernas de los dos sofás exteriores se podían plegar en una variedad de posiciones, mientras que el panel para las caderas del sofá central se podía desconectar y colocar en el mamparo de popa. En los reposabrazos del sofá izquierdo se instaló un controlador manual de rotación y otro de traslación. El controlador de traducción era utilizado por el miembro de la tripulación que realizaba la maniobra de transposición, atraque y extracción con el LM, normalmente el piloto CM. Los sofás central y derecho tenían controladores de rotación duplicados. Los sofás estaban sostenidos por ocho puntales amortiguadores, diseñados para aliviar el impacto del aterrizaje en el agua o, en caso de un aterrizaje de emergencia, en tierra firme.
El espacio contiguo de la cabina se organizó en seis compartimentos para equipos:
- La bahía de equipo inferior, que albergaba el ordenador de Guidance y Navegación, sextante, telescopio y Unidad de Medición Inercial; varias balizas de comunicaciones; tiendas médicas; un centro de audio; el amplificador de potencia de banda S; etc. También había un controlador de mano de rotación adicional montado en la pared de la bahía, por lo que el piloto/navegador CM podía girar la nave espacial según fuera necesario mientras estaba de pie y mirando a través del telescopio para encontrar estrellas para tomar mediciones de navegación con el sextant. Esta bahía proporcionó una cantidad significativa de espacio para que los astronautas se mudaran, a diferencia de las condiciones de calambre que existían en la nave espacial anterior Mercury y Gemini.
- La bahía de equipo delantera izquierda, que contenía cuatro compartimientos de almacenamiento de alimentos, el intercambiador de calor de cabina, el conector de traje de presión, el suministro de agua potable y los oculares del telescopio G PulN.
- The right-hand forward equipment bay, which housed two survival kit containers, a data card kit, data data books and files, and other mission documentation.
- La bahía de equipos intermedios de la mano izquierda, alberga el tanque de oleaje, el sistema de suministro de agua, los suministros de alimentos, los controles de válvula de alivio de presión de la cabina y el paquete ECS.
- La bahía de equipos intermedios de mano derecha, que contenía los kits de instrumentos biológicos, el sistema de gestión de desechos, alimentos y suministros sanitarios, y un compartimento de almacenamiento de desechos.
- La bahía de almacenamiento de popa, detrás de los sofás de la tripulación. Esto alojó el equipo de cámara de 70 mm, las prendas del astronauta, conjuntos de herramientas, bolsas de almacenamiento, extintor de incendios, absorbedores de CO2, sogas de somnolencia, kits de mantenimiento de espacios, equipo de cámara de 16 mm y el contenedor de muestra lunar de contingencia.
El CM tenía cinco ventanas. Las dos ventanas laterales medían 23 cm (9 pulgadas) cuadradas junto a los sofás izquierdo y derecho. Dos ventanas de encuentro triangulares orientadas hacia adelante, que miden 8 por 9 pulgadas (20 por 23 cm), se utilizan para ayudar en el encuentro y el acoplamiento con el LM. La ventana de la escotilla circular tenía 23 cm (9 pulgadas) de diámetro y estaba ubicada directamente sobre el sofá central. Cada conjunto de ventana constaba de tres gruesos paneles de vidrio. Los dos paneles interiores, que estaban hechos de aluminosilicato, formaban parte del recipiente a presión del módulo. El panel exterior de sílice fundida sirvió como escudo contra desechos y como parte del escudo térmico. Cada panel tenía un revestimiento antirreflectante y un revestimiento reflectante azul-rojo en la superficie interior.
Especificaciones

- Crew: 3
- Volumen de cabina de tripulación: 210 cu pies (5.9 m3) espacio habitable, presurizado 366 cu ft (10.4 m3)
- Longitud: 11,4 pies (3,5 m)
- Diámetro: 12,8 pies (3,9 m)
- Masa: 12.250 libras (5.560 kg)
- Masa de estructura: 3.450 lb (1.560 kg)
- Masa de escudo de calor: 1.869 lb (848 kg)
- Masa del motor RCS: 12 × 73.3 lb (33,2 kg)
- Masa de equipo de recuperación: 540 lb (240 kg)
- Masa de equipo de navegación: 1.113 lb (505 kg)
- Masa de equipo de telemetría: 440 lb (200 kg)
- Masa de equipo eléctrico: 1.540 lb (700 kg)
- Masa de sistemas de comunicaciones: 220 lb (100 kg)
- Crew sofas and provisions mass: 1,210 lb (550 kg)
- Masa del sistema de control ambiental: 440 lb (200 kg)
- Masa de imprevistos: 440 lb (200 kg)
- RCS: doce propulsores de 93 lbf (410 N), disparando en pares
- Propulsores RCS: MMH/N
2O
4 - Masa propelente RCS: 270 lb (120 kg)
- Capacidad de agua potable: 33 lb (15 kg)
- Capacidad de agua residual: 58 lb (26 kg)
- CO2 scrubber: lithium hydroxide
- absorbente de olores: carbón activado
- Baterias de sistema eléctrico: tres baterías de plata-zinc de 40 horas de amperio; dos baterías pirotécnicas de 0,75 amperios
- Paracaídas: dos paracaídas piloto de trama cónica de 16,5 pies (5.0 m); tres paracaídas piloto de trama de anillos de 7,2 pies (2,2 m); tres paracaídas principales de salvavidas de 83,5 pies (25,5 m)
Fuentes:
Módulo de servicio (SM)
Construcción
El módulo de servicio era una estructura cilíndrica sin presión con un diámetro de 12 pies 10 pulgadas (3,91 m) y 14 pies 10 pulgadas (4,52 m) de largo. La boquilla del motor de propulsión de servicio y el escudo térmico aumentaron la altura total a 24 pies y 7 pulgadas (7,49 m). El interior era una estructura simple que constaba de una sección de túnel central de 1,1 m (44 pulgadas) de diámetro, rodeada por seis sectores en forma de tarta. Los sectores estaban rematados por un mamparo delantero y carenado, separados por seis vigas radiales, cubiertos en el exterior por cuatro paneles alveolares, y sostenidos por un mamparo de popa y escudo térmico del motor. No todos los sectores tenían ángulos iguales de 60°, sino que variaban según el tamaño requerido.
- El sector 1 (50°) no se utilizó originalmente, por lo que se llenó de lastre para mantener el centro de gravedad de la SM.
- En las últimas tres misiones de aterrizaje lunar (clase I-J), llevó el módulo de instrumentos científicos (SIM) con una potente cámara de longitud focal Itek 24 pulgadas (610 mm) desarrollada originalmente para el avión de reconocimiento Lockheed U-2 y SR-71. La cámara fotografió a la Luna; si el S-IVB no hubiera podido disparar causando que el CSM no dejara la órbita terrestre, los astronautas la habrían usado para fotografiar la Tierra. SIM también tenía otros sensores y una subsatélite.
- El sector 2 (70°) contenía el sistema de propulsión de servicio (SPS) tanque de sumidero oxidante, llamado así porque alimentaba directamente el motor y se mantenía continuamente lleno por un tanque de almacenamiento separado, hasta que éste estaba vacío. El tanque de sumidero era un cilindro con extremos hemisféricos, 153,8 pulgadas (3,91 m) de alto, 51 pulgadas (1,3 m) de diámetro, y contenía 13,923 libras (6,315 kg) de óxido. Su volumen total fue de 161,48 cu ft (4.573 m3)
- El sector 3 (60°) contenía el tanque de almacenamiento de óxido SPS, que era la misma forma que el tanque de sumidero pero ligeramente más pequeño a 154,47 pulgadas (3.924 m) de alto y 44 pulgadas (1.1 m) de diámetro, y tenía 11.284 libras (5.118 kg) de óxido. Su volumen total fue de 128,52 cu ft (3,639 m3)
- El sector 4 (50°) contenía las células de combustible del sistema eléctrico (EPS) con sus reactivos de hidrógeno y oxígeno.
- El sector 5 (70°) contenía el tanque de sumidero de combustible SPS. Este era el mismo tamaño que el tanque de sumidero oxidante y tenía 8.708 libras (3.950 kg) de combustible.
- El sector 6 (60°) contenía el tanque de almacenamiento de combustible SPS, también del mismo tamaño que el tanque de almacenamiento de oxidación. Mantuvo 7.058 libras (3.201 kg) de combustible.
El carenado delantero medía 58 cm (1 pie y 11 pulgadas) de largo y albergaba la computadora del sistema de control de reacción (RCS), el bloque de distribución de energía, el controlador ECS, el controlador de separación y los componentes para la antena de alta ganancia, e incluía ocho EPS. radiadores y el brazo de conexión umbilical que contiene las principales conexiones eléctricas y sanitarias al CM. El carenado contenía externamente un foco retráctil orientado hacia adelante; un reflector de EVA para ayudar al piloto del módulo de comando en la recuperación de la película SIM; y una baliza de encuentro intermitente visible desde 54 millas náuticas (100 km) de distancia como ayuda a la navegación para el encuentro con el LM.
El SM se conectó al CM mediante tres bridas de tensión y seis almohadillas de compresión. Las ataduras de tensión eran correas de acero inoxidable atornilladas al escudo térmico de popa del CM. Permaneció conectado al módulo de comando durante la mayor parte de la misión, hasta que fue desechado justo antes de reingresar a la atmósfera de la Tierra. En el momento del descarte, las conexiones umbilicales de CM se cortaron utilizando un conjunto de guillotina activado por pirotecnia. Después del lanzamiento, los propulsores de traslación de popa del SM se dispararon automáticamente de forma continua para distanciarlo del CM, hasta que se agotó el combustible RCS o la energía de la celda de combustible. Los propulsores de balanceo también se dispararon durante cinco segundos para asegurarse de que siguiera una trayectoria diferente a la del CM y una ruptura más rápida en el reingreso.
Sistema de propulsión de servicio


El motor del sistema de propulsión de servicio (SPS) fue diseñado originalmente para levantar el CSM de la superficie de la Luna en el modo de misión de ascenso directo. El motor seleccionado fue el AJ10-137, que utilizó Aerozine 50 como combustible y tetróxido de nitrógeno (N2O4) como oxidante para producir 20.500 lbf (91 kN) de empuje. En abril de 1962 se firmó un contrato para que la compañía Aerojet-General comenzara a desarrollar el motor, lo que dio como resultado un nivel de empuje el doble de lo necesario para cumplir el modo de misión de encuentro en órbita lunar (LOR) elegido oficialmente en julio de ese año. En realidad, el motor se utilizó para correcciones a mitad de camino entre la Tierra y la Luna, y para colocar la nave espacial dentro y fuera de la órbita lunar. También sirvió como retrocohete para realizar la quema de desorbitación para vuelos orbitales terrestres.
Los propulsores se alimentaban al motor con 39,2 pies cúbicos (1,11 m3) de helio gaseoso a 3600 libras por pulgada cuadrada (25 MPa), transportados en dos cilindros de 40 pulgadas (1,0 m) tanques esféricos de diámetro.
La boquilla de escape midió 152,82 pulgadas (3.882 m) de largo y 98,48 pulgadas (2.501 m) de ancho en la base. Fue montado en dos gimbals para mantener el vector de empuje alineado con el centro de masa de la nave espacial durante los disparos SPS. La cámara de combustión y los tanques de presión se alojaron en el túnel central.
Sistema de control de reacción

Se instalaron cuatro grupos de cuatro propulsores del sistema de control de reacción (RCS) (conocidos como "quads") alrededor de la sección superior del SM cada 90°. La disposición de dieciséis propulsores proporcionaba control de rotación y traslación en los tres ejes de la nave espacial. Cada propulsor R-4D medía 12 pulgadas (30 cm) de largo por 6 pulgadas (15 cm) de diámetro, generaba 100 libras de fuerza (440 N) de empuje y usaba monometilhidrazina (MMH) alimentada con helio como combustible y tetróxido de nitrógeno (NTO).) como oxidante. Cada conjunto cuádruple medía 2,2 por 2,7 pies (0,67 por 0,82 m) y tenía sus propios tanques de combustible, oxidante y helio montados en el interior de un panel de revestimiento de 8 por 2,75 pies (2,44 por 0,84 m). El tanque de combustible primario (MMH) contenía 69,1 libras (31,3 kg); el tanque de combustible secundario contenía 45,2 libras (20,5 kg); el tanque del oxidante primario contenía 137,0 libras (62,1 kg) y el tanque del oxidante secundario contenía 89,2 libras (40,5 kg). Los tanques de propulsor se presurizaron desde un solo tanque que contenía 1,35 libras (0,61 kg) de helio líquido. Una serie de válvulas de retención impidieron el contraflujo, y los requisitos de contraflujo y espacio libre se resolvieron conteniendo el combustible y el oxidante en vejigas de teflón que separaban los propulsores del presurizador de helio.
Los cuatro clústeres RCS completamente independientes proporcionaron redundancia; sólo se necesitaban dos unidades funcionales adyacentes para permitir un control completo de la actitud.
El módulo lunar utilizó una disposición similar de cuatro quads de motores propulsores R-4D para su RCS.
Sistema de energía eléctrica

La energía eléctrica era producida por tres pilas de combustible, cada una de las cuales medía 44 pulgadas (1,1 m) de alto por 22 pulgadas (0,56 m) de diámetro y pesaba 245 libras (111 kg). Estos combinaron hidrógeno y oxígeno para generar energía eléctrica y produjeron agua potable como subproducto. Las celdas fueron alimentadas por dos tanques semiesféricos-cilíndricos de 31,75 pulgadas (0,806 m) de diámetro, cada uno con 29 libras (13 kg) de hidrógeno líquido, y dos tanques esféricos de 26 pulgadas (0,66 m) de diámetro, cada uno con 326 libras (148 kg). kg) de oxígeno líquido (que también suministraba el sistema de control ambiental).
En el vuelo del Apolo 13, el EPS quedó inutilizado por una ruptura explosiva de un tanque de oxígeno, que perforó el segundo tanque y provocó la pérdida de todo el oxígeno. Después del accidente, se añadió un tercer tanque de oxígeno para evitar el funcionamiento por debajo del 50% de la capacidad del tanque. Esto permitió eliminar el equipo interno de agitación del tanque, que había contribuido a la falla.
También a partir del Apolo 14, se añadió al SM una batería auxiliar de 400 Ah para uso de emergencia. El Apolo 13 había consumido mucho sus baterías de entrada en las primeras horas después de la explosión, y si bien esta nueva batería no podía alimentar el CM durante más de 5 a 10 horas, ganaría tiempo en caso de una pérdida temporal de las tres celdas de combustible.. Tal evento ocurrió cuando el Apolo 12 fue alcanzado dos veces por un rayo durante el lanzamiento.
Sistema de control ambiental
La atmósfera de la cabina se mantuvo a 5 libras por pulgada cuadrada (34 kPa) de oxígeno puro procedente de los mismos tanques de oxígeno líquido que alimentaban las pilas de combustible del sistema de energía eléctrica. El agua potable suministrada por las pilas de combustible se almacenó para beber y preparar alimentos. Un sistema de control térmico que utilizaba una mezcla de agua y etilenglicol como refrigerante arrojaba el calor residual de la cabina del CM y los componentes electrónicos al espacio exterior a través de dos radiadores de 30 pies cuadrados (2,8 m2) ubicados en la parte inferior. sección de los muros exteriores, uno cubriendo los sectores 2 y 3 y el otro cubriendo los sectores 5 y 6.
Sistema de comunicaciones
Las comunicaciones de corto alcance entre el CSM y el LM emplearon dos antenas de cimitarra VHF montadas en el SM justo encima de los radiadores del ECS. Estas antenas estaban ubicadas originalmente en el módulo de comando del Bloque I y realizaban una doble función como tracas aerodinámicas para estabilizar la cápsula después de un aborto de lanzamiento. Las antenas se trasladaron al módulo de servicio del Bloque II cuando esta función se consideró innecesaria.
En el mamparo de popa se montó una antena orientable unificada de banda S de alta ganancia para comunicaciones de largo alcance con la Tierra. Se trataba de una serie de cuatro reflectores de 31 pulgadas (0,79 m) de diámetro que rodeaban un único reflector cuadrado de 11 pulgadas (0,28 m). Durante el lanzamiento, se plegó en paralelo al motor principal para encajar dentro del Adaptador de nave espacial a LM (SLA). Después de la separación del CSM del SLA, se desplegó en ángulo recto con respecto al SM.
Se utilizaron cuatro antenas omnidireccionales de banda S en el CM cuando la actitud del CSM impidió que la antena de alta ganancia apuntara a la Tierra. Estas antenas también se utilizaron entre el desembarco y el aterrizaje del SM.
Especificaciones
- Duración: 24,8 pies (7,6 m)
- Diámetro: 12,8 pies (3,9 m)
- Masa: 54,060 lb (24,520 kg)
- Masa de estructura: 4.200 lb (1.900 kg)
- Masa de equipo eléctrico: 2.600 lb (1.200 kg)
- Propulsión de servicio (SSP) masa de motor: 6.600 lb (3.000 kg)
- Propulsores de motores SPS: 40,590 lb (18,410 kg)
- Propulsión RCS: 2 o 4 × 100 lbf (440 N)
- Propulsores RCS: MMH/N
2O
4 - Propulsión del motor SPS: 20.500 lbf (91,000 N)
- Propulsores de motores SPS: (UDMH/N
2H
4)/N
2O
4 - SPS Isp: 314 s (3.100 N·s/kg)
- Spacecraft delta-v: 9.200 pies/s (2.800 m/s)
- Sistema eléctrico: tres pilas de combustible de 1,4 kW 30 V DC
Modificaciones para las misiones Saturn IB

La capacidad de carga útil del vehículo de lanzamiento Saturn IB utilizado para lanzar las misiones de órbita terrestre baja (Apolo 1 (planificada), Apolo 7, Skylab 2, Skylab 3, Skylab 4 y Apollo-Soyuz) no podía soportar las 66.900- libra (30,300 kg) de masa del CSM completamente alimentado. Esto no fue un problema, porque el requisito de nave espacial delta-v de estas misiones era mucho menor que el de la misión lunar; por lo tanto, podrían lanzarse con menos de la mitad de la carga total de propulsor SPS, llenando sólo los tanques de sumidero del SPS y dejando vacíos los tanques de almacenamiento. Los CSM lanzados en órbita de Saturno IB oscilaron entre 32.558 libras (14.768 kg) (Apollo-Soyuz) y 46.000 libras (21.000 kg) (Skylab 4).
Las antenas omnidireccionales fueron suficientes para las comunicaciones terrestres durante las misiones orbitales terrestres, por lo que la antena de banda S de alta ganancia del SM se omitió en el Apollo 1, el Apollo 7 y los tres vuelos del Skylab. Fue restaurado para la misión Apolo-Soyuz para comunicarse a través del satélite ATS-6 en órbita geoestacionaria, un precursor experimental del actual sistema TDRSS.
En las misiones Skylab y Apollo–Soyuz, se ahorraron algunos pesos secos adicionales eliminando los tanques de almacenamiento de combustible y oxidación vacíos de otro modo (dejando los tanques de sumidero parcialmente llenos), junto con uno de los dos tanques de presión de helio. Esto permitió la adición de un propulsor adicional RCS para permitir el uso como una copia de seguridad para la quemadura de dérbito en caso de posible falla SPS.
Dado que la nave espacial de las misiones de Skylab no estaría ocupada para la mayor parte de la misión, había una menor demanda en el sistema de energía, por lo que una de las tres células de combustible fue eliminada de estas PYME. El módulo de comando también fue pintado parcialmente blanco, para proporcionar control térmico pasivo para el tiempo prolongado que permanecería en órbita.
El módulo de comando podría modificarse para transportar astronautas adicionales como pasajeros agregando sofás con asientos plegables en el compartimento de equipos de popa. El CM-119 estaba equipado con dos asientos plegables como vehículo de rescate Skylab, que nunca se utilizó.
Principales diferencias entre el Bloque I y el Bloque II
Módulo de comando
- El bloque II usó una escotilla de apertura exterior de una pieza, de liberación rápida en lugar de la escotilla de dos piezas usada en el bloque I, en la que la pieza interna tenía que ser desenrollada y colocada dentro de la cabina para entrar o salir de la nave espacial (una falla que condenó a la tripulación Apolo 1). La escotilla del bloque II podría abrirse rápidamente en caso de emergencia. (Ambos versiones de la escotilla estaban cubiertas con una sección extra, extraíble de la cubierta protectora Boost que rodeaba el CM para protegerlo en caso de un aborto de lanzamiento.)
- El bloque El túnel de acceso hacia delante era más pequeño que el bloque II, y estaba destinado sólo para el egreso de la tripulación de emergencia después de la caída en caso de problemas con la escotilla principal. Fue cubierto por la nariz del escudo de calor delantero durante el vuelo. El bloque II contenía un escudo de calor más corto hacia adelante con una escotilla plana extraíble, debajo de un anillo de atraque y un mecanismo de sonda que captó y sostuvo el LM.
- La capa de película PET aluminizada, que dio al escudo de calor del bloque II una apariencia brillante espejo, estaba ausente en el bloque I, exponiendo el material de resina gris claro epoxi, que en algunos vuelos fue pintado blanco.
- El bloque Las antenas de escimitar I VHF estaban ubicadas en dos estragos semicirculares originalmente pensados necesarios para ayudar a estabilizar el CM durante la reentrada. Sin embargo, las pruebas de reentrada no descubiertas demostraron que eran innecesarias para la estabilidad, y también aerodinámicamente ineficaces a altas velocidades de reentrada lunar simuladas. Por lo tanto, los estragos fueron retirados del bloque II y las antenas fueron trasladadas al módulo de servicio.
- El conector umbilical Block I CM/SM fue más pequeño que en el bloque II, situado cerca de la escotilla de la tripulación en lugar de casi 180 grados de distancia. El punto de separación fue entre los módulos, en lugar del brazo bisagra más grande montado en el módulo de servicio, separando en el lado CM del bloque II.
- Los dos motores RCS de lanzamiento negativo ubicados en el compartimiento delantero fueron colocados verticalmente en el bloque I, y horizontalmente en el bloque II.
Módulo de servicio
- En el vuelo del bloque I de Apolo 6, el SM fue pintado de blanco para coincidir con la apariencia del módulo de comandos. En Apolo 1, Apolo 4, y toda la nave espacial del bloque II, las paredes SM quedaron sin pintar excepto los radiadores EPS y ECS, que eran blancos.
- Los radiadores EPS y ECS fueron rediseñados para el bloque II. El bloque I tenía tres radiadores EPS más grandes ubicados en los sectores 1 y 4. Los radiadores del ECS se ubicaron en la sección de popa de los Sectores 2 y 5.
- El bloque Las células de combustible estaban ubicadas en el vracs de popa en el sector 4, y sus tanques de hidrógeno y oxígeno estaban ubicados en el sector 1.
- El bloque I tenía tanques de combustible y óxido SPS ligeramente más largos que llevaban más propelente que el bloque II.
- El escudo de calor del bloque II era una forma rectangular con esquinas ligeramente redondeadas en los sectores de tanques propulsantes. El escudo del bloque I era la misma forma básica, pero se abultó ligeramente cerca de los extremos más como un reloj de arena o una figura ocho, para cubrir más de los tanques.
CSMs produced

Contenido relacionado
Historia de la cámara
Tubo de vacío
Señales de humo