Lista de integrales de funciones hiperbólicas inversas
Contenido keyboard_arrow_down
La siguiente es una lista de integrales indefinidas (antiderivadas) de expresiones que involucran funciones hiperbólicas inversas. Para obtener una lista completa de fórmulas integrales, consulte las listas de integrales.
- En todas las fórmulas la constante a se supone que no es cero, y C denota la constante integración.
- Para cada fórmula de integración hiperbólica inversa hay una fórmula correspondiente en la lista de integrales de funciones trigonométricas inversas.
- El estándar ISO 80000-2 utiliza el prefijo "ar-" en lugar de "arc-" para las funciones hiperbólicas inversas; lo hacemos aquí.
Fórmulas de integración del seno hiperbólico inverso
∫ ∫ arsinh ()ax)dx=xarsinh ()ax)− − a2x2+1a+C{displaystyle int operatorname {arsinh} (ax),dx=xoperatorname {arsinh} (ax)-{frac {sqrt {a^{2}x^{2}+1}{a}}}+C}}
∫ ∫ xarsinh ()ax)dx=x2arsinh ()ax)2+arsinh ()ax)4a2− − xa2x2+14a+C{displaystyle int xoperatorname {arsinh},dx={frac {x^{2}operatorname {arsinh} {2}}{2}}+{frac {fnMicrosoft {f}{4a^{2}}}}-{frac {x{sqrt {2}x} {2}+1} {4a}+C}
∫ ∫ x2arsinh ()ax)dx=x3arsinh ()ax)3− − ()a2x2− − 2)a2x2+19a3+C{displaystyle int x^{2}operatorname {arsinh} (ax),dx={frac [x^{3}operatorname {arsinh} {3}}{3}-{frac {left(a^{2}x^{2}-2right){sqrt {cH00}}}+C}
∫ ∫ xmarsinh ()ax)dx=xm+1arsinh ()ax)m+1− − am+1∫ ∫ xm+1a2x2+1dx()mل ل − − 1){displaystyle int x^{m}operatorname {arsinh} (ax),dx={frac [x^{m+1}operatorname {arsinh} {m+1}-{frac {fn} {fn} {fnK} {fn}} {fn}} {fn}} {fn}}} {fn}}} {fn}}} {fn}}}}} {fn}} {fnfn}}}}nnfnf} {fn}}}}}nnnnnnnn}nnn}nnnn}}nn}n}n}n}n}n}n}nn}n}n}nnn}n}nnnnnnnnnnnnnnnnnnn}n}n}n}n}n}n}n}n}nnnnnn}n {a^{2}x^{2}+1},dxquad (mneq -1)}
∫ ∫ arsinh ()ax)2dx=2x+xarsinh ()ax)2− − 2a2x2+1arsinh ()ax)a+C{displaystyle int operatorname {arsinh} (ax)^{2},dx=2x+xoperatorname {arsinh} (ax)^{2}-{frac {2{sqrt {a^{2}x^{2}+1}}operatorname {arsinh} {ax}{a}}}}+C} {}} {}}}} {}}}}}}}}}}}}}}}
∫ ∫ arsinh ()ax)ndx=xarsinh ()ax)n− − na2x2+1arsinh ()ax)n− − 1a+n()n− − 1)∫ ∫ arsinh ()ax)n− − 2dx{fnMicrosoft Sans Serif} {fnMicrosoft Sans Serif} {fnMicrosoft Sans Serif} {fn} {fn} {fnfn} {fn0}fn1}fnfnfn1}fnfncH009cH009cH009cH009}cH009cH009cH009cH009cH009cH009cH009cH009cH009cH009cH009cH009cH009cH009cH009cH009}cH009}cH009cH009cH009cH009cH009}cH009cH009cH009cH009cH009cH009cH009cH009
∫ ∫ arsinh ()ax)ndx=− − xarsinh ()ax)n+2()n+1)()n+2)+a2x2+1arsinh ()ax)n+1a()n+1)+1()n+1)()n+2)∫ ∫ arsinh ()ax)n+2dx()nل ل − − 1,− − 2){fnMicrosoft Sans Serif} {fn0} {fn0} {fn0} {fn0} {fn0} {fn0} {fn0} {fn0} {fn0} {fn0} {fn0} {fn0}cH00}cH00}}cH00}cH00}cH00}cH00cH00}cH00}cH00}cH00}cH00}cH00}cH00}cH00cH00}cH00cH00cH00}cH00}cH00cH00}cH00}cH00}cH00}cH00cH00cH00cH00}cH00}cH00}cH00cH00}cH00cH00cH00}cH00}c
Fórmulas de integración del coseno hiperbólico inverso
∫ ∫ arcosh ()ax)dx=xarcosh ()ax)− − ax+1ax− − 1a+C{displaystyle int operatorname {arcosh} (ax),dx=xoperatorname {arcosh} (ax)-{frac {sqrt {ax+1}{sqrt {fnK}} {fn}}}}} {fn}}}} {c}}}} {c}}}} {c}}}}}}}}} {c}}}}}}}}} {c}}}}}} {c}}}}}}}}} {}}}}}}}}}}}}}} {}}}}}}}}}}} {}}}}}}}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
∫ ∫ xarcosh ()ax)dx=x2arcosh ()ax)2− − arcosh ()ax)4a2− − xax+1ax− − 14a+C{displaystyle int xoperatorname {arcosh}(ax),dx={frac [x^{2}operatorname {arcosh} {2} {frac {fnMicroc {fnMicrosoft}{4a^{2}}}}}-{frac {x{sqrt {ax+1}{sqrt {ax-1}}}}} {4a}}}}}}} {c}}} {c}}} {c}}}}}}} {c}}}}}}}} {c}}}}}}}}}} {c}}}}}} {c}}}} {c}}}}}}}}}} {c}}}}}}}}}}}}} {c}}}}}} {c}}}}}}}}}}} {c} {c}}}}}}}}}}}}}}}}}} {c}}}}}} {c}}}}}}}}}}}}}}}}}
∫ ∫ x2arcosh ()ax)dx=x3arcosh ()ax)3− − ()a2x2+2)ax+1ax− − 19a3+C{displaystyle int x^{2}operatorname {arcosh} (ax),dx={frac [x^{3}operatorname {arcosh} {3}}{3}-{frac {left(a^{2}x^{2}+2right){sqrt {ax+1}{sqrt {ax-1}}{9a^{3}}}}}}}+C}
∫ ∫ xmarcosh ()ax)dx=xm+1arcosh ()ax)m+1− − am+1∫ ∫ xm+1ax+1ax− − 1dx()mل ل − − 1){displaystyle int x^{m}operatorname {arcosh} (ax),dx={frac [x^{m+1}operatorname {arcosh} {m+1}-{frac {a}{m+1} {fnK} {m+1}{sqrt {ax+1}{sqrt {ax-1}}}},dxquad (mneq -1)}} {fnK}}}}}} {\fnK}}}}}}} {fnKf}}}}}}}}}}}}}}}}}} {
∫ ∫ arcosh ()ax)2dx=2x+xarcosh ()ax)2− − 2ax+1ax− − 1arcosh ()ax)a+C{fnMicrosoftware {fnMicrosoft Sans Serif} {fnMicrosoft Sans Serif} {fnMicrosoft Sans} {fnMicroc {2{sqrt {ax+1}{sqrt {ax-1}f}fnMicrosoft} {fnMicrosoft} {fnMicrosoft}}}}}}} {f}}}}}}}}}}}}}}}}}}}}}}}} {f} {f}f}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} {
∫ ∫ arcosh ()ax)ndx=xarcosh ()ax)n− − nax+1ax− − 1arcosh ()ax)n− − 1a+n()n− − 1)∫ ∫ arcosh ()ax)n− − 2dx{displaystyle int operatorname {arcosh} (ax)^{n},dx=xoperatorname {arcosh} (ax)^{n}-{frac {n{sqrt {ax+1}{sqrt {ax-1}operatorname {arcosh} (ax)^{n-1}}{a}}}+n(n-1)int operatorname {arcosh} (ax)^{n-2},dx}
∫ ∫ arcosh ()ax)ndx=− − xarcosh ()ax)n+2()n+1)()n+2)+ax+1ax− − 1arcosh ()ax)n+1a()n+1)+1()n+1)()n+2)∫ ∫ arcosh ()ax)n+2dx()nل ل − − 1,− − 2){displaystyle int operatorname {arcosh} (ax)^{n},dx=-{frac {xoperatorname {arcosh} (ax)^{n+2}{(n+1)(n+2)}+{fracfrac {sqrt {ax+1}{sqrt {ax-1}operatorname {arcosh} (ax)^{n+1}}{a(n+1)}}+{frac {1}{ n+1)}int operatorname {arcosh} (ax)}{n+2},dxquad (nne)
Fórmulas de integración de la tangente hiperbólica inversa
∫ ∫ Artanh ()ax)dx=xArtanh ()ax)+In ()1− − a2x2)2a+C{displaystyle int operatorname {artanh} (ax),dx=xoperatorname {artanh} (ax)+{frac {ln left(1-a^{2}x^{2}right)}{2a}}+C}
∫ ∫ xArtanh ()ax)dx=x2Artanh ()ax)2− − Artanh ()ax)2a2+x2a+C{displaystyle int xoperatorname {artanh}(ax),dx={frac [x^{2}operatorname {artanh} {2} {frac {fnMicroc {fnMicrosoft}{2a^{2}}}}}+{frac {x}{2a}+C}
∫ ∫ x2Artanh ()ax)dx=x3Artanh ()ax)3+In ()1− − a2x2)6a3+x26a+C{displaystyle int x^{2}operatorname {artanh} (ax),dx={frac {x^{3}fnfnnfnncncncncncncncncncncnccnccH00}cH009}\ccccH0}cccH00cH00cH00}cH00cH00cH00cH00}}}\\\cH00cH00\\cH00cH00cH00cH00cH00cH00cH00\cH00cH00cH00cH00cH00cH00cH00cH00}cH00}cH00cH00cH00cH00cH00cH00}}}cH00\cH00ccH00cH00cH00}}}}ccH {x^{2}{6a}}+C}
∫ ∫ xmArtanh ()ax)dx=xm+1Artanh ()ax)m+1− − am+1∫ ∫ xm+11− − a2x2dx()mل ل − − 1){displaystyle int x^{m}operatorname {artanh} (ax),dx={frac [x^{m+1}operatorname {artanh} {m+1}-{frac {a}{m+1}int {fnMic} {x^{m+1}{1-a^{2}},dxquad (mneq -1)}
Fórmulas de integración de la cotangente hiperbólica inversa
∫ ∫ arco ()ax)dx=xarco ()ax)+In ()a2x2− − 1)2a+C{displaystyle int operatorname {arcoth} (ax),dx=xoperatorname {arcoth} (ax)+{frac {ln left(a^{2}x^{2}-1right)}{2a}+C}
∫ ∫ xarco ()ax)dx=x2arco ()ax)2− − arco ()ax)2a2+x2a+C{displaystyle int xoperatorname {arcoth}(ax),dx={frac [x^{2}operatorname {arcoth} (ax)}{2}-{frac {operatorname {arcoth} (ax)}{2a^{2}}}}+{frac {x}{2a}+C}
∫ ∫ x2arco ()ax)dx=x3arco ()ax)3+In ()a2x2− − 1)6a3+x26a+C{displaystyle int x^{2}operatorname {arcoth} (ax),dx={frac {x^{3}fnfnfnfnncncncncncncncncncnccH00}cH009}\fn1fn1}mcH0}cccH0cH0cH0} {x^{2}{6a}}+C}
∫ ∫ xmarco ()ax)dx=xm+1arco ()ax)m+1+am+1∫ ∫ xm+1a2x2− − 1dx()mل ل − − 1){displaystyle int x^{m}operatorname {arcoth} (ax),dx={frac [x^{m+1}operatorname {arcoth} {m+1}+{frac {a}{m+1}int {fnMic} {x^{m+1}{2}x^{2},dxquad (mneq -1)}
Fórmulas de integración de la secante hiperbólica inversa
∫ ∫ arsech ()ax)dx=xarsech ()ax)− − 2aarctan 1− − ax1+ax+C{displaystyle int operatorname {arsech} (ax),dx=xoperatorname {arsech} (ax)-{frac {2}{a}}operatorname {arctan} {sqrt {frac} {1-ax}{1+ax}}+C}
∫ ∫ xarsech ()ax)dx=x2arsech ()ax)2− − ()1+ax)2a21− − ax1+ax+C{displaystyle int xoperatorname {arsech}(ax),dx={frac {x^{2}fnMicroc {fnMicrosoft Sans Serif}{2}} {fnMicroc {fn} {fnMicroc} {fnMicroc} {fnMicroc} {fnMicroc} {fnMicroc} {fnMicroc}} {fnMicroc}} {f}}}}}} {f}}f}}}}}}f}f}f}f}f}f}fnKf}fnKfnKfnKfnKfnKfnKf}fnKfnKfnKfnKf}fnun}fnun}}fnun}fnKfnun}fnun}fnun}fnun}fnun}fnun}fnunfnun}fnun} {1-ax}{1+ax}}+C}
∫ ∫ x2arsech ()ax)dx=x3arsech ()ax)3− − 13a3arctan 1− − ax1+ax− − x()1+ax)6a21− − ax1+ax+C{displaystyle int x^{2}operatorname {arsech} (ax),dx={frac {x^{3}fnMicroc {3} {3a}}fnMicroc {3a}}fnuncio {arctan} {sqrt {frac} {fnMicroc} {fnMicroc} {fn}fnMicroc} {fnMicroc} {fnMicroc} {f}f}}}}}f}}fnMicroc}}f}f}f}f}f}f}f}f}f}fnKfnKfnKfnKfnKfnKf}fnKfnKfnKfnKf}fnK}fnKf}fnKf}fnKf}fnKfnKfnKfnKfnKfnKf}fnK}f}fnK {1-ax}{1+ax}} {frac {x(1+ax)}{6a^{2}}{sqrt {frac} {1-ax}{1+ax}}+C}
∫ ∫ xmarsech ()ax)dx=xm+1arsech ()ax)m+1+1m+1∫ ∫ xm()1+ax)1− − ax1+axdx()mل ل − − 1){displaystyle int x^{m}operatorname {arsech} (ax),dx={frac {x^{m+1}fnMicroc {m+1}} {m+1}}int {fnMicroc {x^{m}{(1+ax){sqrt {frac {1-ax}{1+ax}}},dxquad (mneq -1)}
Fórmulas de integración de la cosecante hiperbólica inversa
∫ ∫ arcsch ()ax)dx=xarcsch ()ax)+1aarco 1a2x2+1+C{displaystyle int operatorname {arcsch} (ax),dx=xoperatorname {arcsch} (ax)+{frac {1}{a}}operatorname {arcoth} {sqrt {{fracrt {frac {1}{2}x^{2}}}+1}+C}
∫ ∫ xarcsch ()ax)dx=x2arcsch ()ax)2+x2a1a2x2+1+C{displaystyle int xoperatorname {arcsch}(ax),dx={frac [x^{2}operatorname {arcsch}{2}}{2}{frac {x}{sqrt {frac}{sqrt {frac} {fnMic} {fnK} {fnK} {f}}} {fnK}} {fnKfnMic} {f}f}}}}}f}}}}}f}f}}f}f}f}f}f}f}f}fnKf}fnKf}fnKfnKfnKf}fnKf}f}fnKfnKfnKfnKfnKfnKfnKfnKfnKf}}fnKfnKfnKfnKf}}fnKf}fnKf}}}fn {1}{2}x^{2}}}+1}+C}
∫ ∫ x2arcsch ()ax)dx=x3arcsch ()ax)3− − 16a3arco 1a2x2+1+x26a1a2x2+1+C{displaystyle int x^{2}operatorname {arcsch} (ax),dx={frac [x^{3}operatorname {arcsch} {3}} {frac {1}{6a^{3}}}operatorname {arcoth} {sqrt {frac {frac} {fnMicroc}} {f}}fnMicroc}} {fnMicroc} {1}{2}x^{2}}}+1}+{frac} {fnMicroc} {fnK}} {fnMicroc} {fnK} {f}} {fn}} {fnK}} {f}}} {fnK}} {fnf} {f}} {fnK}} {f}}} {fnf}}}}} {f} {f}f}}}}}}}}}}}}}}}}}}}} {f} {f} {f} {f}} {f}f}}f}}}}}f}f}}}}}}}}}}}}}} {f} {sqf}} {f}}} {sqf}} {f}f}f}f} {f} {f} {f}f}f}}}}f}f}}f}f}}}}}}} {1}{2}x^{2}}}+1}+C}
∫ ∫ xmarcsch ()ax)dx=xm+1arcsch ()ax)m+1+1a()m+1)∫ ∫ xm− − 11a2x2+1dx()mل ل − − 1){displaystyle int x^{m}operatorname {arcsch} (ax),dx={frac [x^{m+1}operatorname {arcsch} {m+1}}+{frac {1}{a(m+1)}}}int {frac {x^{m-1}{sqrt {frac}{sqrt {frac}}} {frac}}} {sq} {sq} {f}{f}} {f}f} {sqf}}} {f} {f} {f} {f} {f}f}f}f}f}f}f}f}f}f}f}f}f}f}f}f} {fnhf}fnf} {f}f} {fnhf}f}f} {f}fnKfnhfnhf}fnKf}fnhf}f}fn {1}{2}x^{2} 2}}+1}},dxquad (mneq -1)}
Contenido relacionado
Conjunto vacío
Historia de la lógica
Símbolo Mayor que (>)
Menor que <
Abscisa y ordenada
Más resultados...