Distribución logística

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar

En teoría de probabilidad y estadística, la distribución logística es una distribución de probabilidad continua. Su función de distribución acumulativa es la función logística, que aparece en la regresión logística y las redes neuronales de avance. Se asemeja a la distribución normal en forma pero tiene colas más pesadas (mayor curtosis). La distribución logística es un caso especial de la distribución lambda de Tukey.

Especificación

Función de densidad de probabilidad

Cuando el parámetro de ubicación μ es 0 y el parámetro de escala s< /span> es 1, entonces la función de densidad de probabilidad de la distribución logística viene dada por

Así, en general, la densidad es:

Debido a que esta función se puede expresar en términos del cuadrado de la función secante hiperbólica "sech", a veces se la denomina distribución sech-cuadrado(d). (Ver también: distribución secante hiperbólica).

Función de distribución acumulativa

La distribución logística recibe su nombre de su función de distribución acumulativa, que es una instancia de la familia de funciones logísticas. La función de distribución acumulativa de la distribución logística también es una versión escalada de la tangente hiperbólica.

En esta ecuación μ es la media y s es un parámetro de escala proporcional a la desviación estándar.

Función cuantil

La función de distribución acumulativa inversa (función cuantil) de la distribución logística es una generalización de la función logit. Su derivada se llama función de densidad cuantil. Se definen de la siguiente manera:

Parametrización alternativa

Una parametrización alternativa de la distribución logística puede derivarse expresando el parámetro de escala, , en términos de la desviación estándar, , utilizando la sustitución , donde . Las formas alternativas de las funciones anteriores son razonablemente directas.

Aplicaciones

La distribución logística, y el patrón en forma de S de su función de distribución acumulativa (la función logística) y su función cuantil (la función logit), se han utilizado ampliamente en muchas áreas diferentes.

Regresión logística

Una de las aplicaciones más comunes es la regresión logística, que se utiliza para modelar variables dependientes categóricas (por ejemplo, opciones de sí o no o una elección de 3 o 4 posibilidades), de forma muy parecida a como se utiliza la regresión lineal estándar para modelar variables continuas. (por ejemplo, ingresos o población). Específicamente, los modelos de regresión logística pueden expresarse como modelos de variables latentes con variables de error que siguen una distribución logística. Esta redacción es común en la teoría de los modelos de elección discreta, donde la distribución logística juega el mismo papel en la regresión logística que la distribución normal en la regresión probit. De hecho, las distribuciones logística y normal tienen una forma bastante similar. Sin embargo, la distribución logística tiene colas más pesadas, lo que a menudo aumenta la solidez de los análisis basados en ella en comparación con el uso de la distribución normal.

Física

La PDF de esta distribución tiene la misma forma funcional que la derivada de la función de Fermi. En la teoría de las propiedades de los electrones en semiconductores y metales, esta derivada establece el peso relativo de las distintas energías de los electrones en sus contribuciones al transporte de electrones. Aquellos niveles de energía cuyas energías están más cercanas a la "media" de la distribución; (Nivel de Fermi) dominan procesos como la conducción electrónica, con algunas manchas inducidas por la temperatura. Sin embargo, tenga en cuenta que la distribución de probabilidad pertinente en las estadísticas de Fermi-Dirac es en realidad una distribución simple de Bernoulli, con el factor de probabilidad dado por la función de Fermi.

La distribución logística surge como distribución límite de un movimiento aleatorio amortiguado de velocidad finita descrito por un proceso telegráfico en el que los tiempos aleatorios entre cambios de velocidad consecutivos tienen distribuciones exponenciales independientes con parámetros linealmente crecientes.

Hidrología

Distribución logística acumulativa ajustada a las precipitaciones de octubre utilizando CumFreq, vea también ajuste de distribución

En hidrología, la distribución de la descarga de los ríos y las precipitaciones de larga duración (por ejemplo, totales mensuales y anuales, que consisten en la suma de 30 360 valores diarios respectivamente) a menudo se considera casi normal según el teorema del límite central. Sin embargo, la distribución normal necesita una aproximación numérica. Como la distribución logística, que puede resolverse analíticamente, es similar a la distribución normal, se puede utilizar en su lugar. La imagen azul ilustra un ejemplo de ajuste de la distribución logística a las precipitaciones clasificadas de octubre (que se distribuyen casi normalmente) y muestra el cinturón de confianza del 90% basado en la distribución binomial. Los datos de lluvia se representan trazando posiciones como parte del análisis de frecuencia acumulada.

Clasificaciones de ajedrez

La Federación de Ajedrez de Estados Unidos y la FIDE han cambiado su fórmula para calcular las calificaciones de ajedrez de la distribución normal a la distribución logística; consulte el artículo sobre el sistema de clasificación Elo (basado en la distribución normal).

Distribuciones relacionadas

  • La distribución logística imita la distribución del sech.
  • Si entonces .
  • Si U(0, 1) entonces .
  • Si y entonces independientemente .
  • Si y entonces (La suma es no una distribución logística). Note que .
  • Si X ~ Logistic(μ, sEntonces expX~ LogLogistic, y exp(X) + γ ~ cambio de logística de troncos.
  • Si X ~ Exponential(1) then
  • Si X, Y ~ Exponential(1) then
  • La distribución de metalog es la generalización de la distribución logística, en la que la serie de potencia se expande en términos de son reemplazados por parámetros logísticos y . La función cuantitativa de metalog resultante es altamente flexible, tiene una forma cerrada simple, y puede adaptarse a los datos con mínimos cuadrados lineales.

Derivaciones

Momentos de orden superior

El momento central de norden se puede expresar en términos de la función cuantil:

Esta integral es bien conocida y se puede expresar en términos de números de Bernoulli:

Contenido relacionado

Conjunto vacío

En matemáticas, el conjunto vacío es el conjunto único que no tiene elementos; su tamaño o cardinalidad es cero. Algunas teorías axiomáticas de...

Historia de la lógica

La historia de la lógica se ocupa del estudio del desarrollo de la ciencia de la inferencia válida tal como se encuentran en el Organon, encontraron una...

Ley de los grandes números

En la teoría de la probabilidad, la ley de los grandes números es un teorema que describe el resultado de realizar el mismo experimento un gran número de...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save