Sistema de referencia inercial
En la física clásica y la relatividad especial, un sistema de referencia inercial es un marco de referencia que no experimenta aceleración. En un marco de referencia inercial, un objeto físico con una fuerza neta cero que actúa sobre él se mueve con una velocidad constante (que podría ser cero) o, de manera equivalente, es un marco de referencia en el que se cumple la primera ley de movimiento de Newton. Un marco de referencia inercial se puede definir en términos analíticos como un marco de referencia que describe el tiempo y el espacio de manera homogénea, isotrópica e independiente del tiempo. Conceptualmente, la física de un sistema en un marco inercial no tiene causas externas al sistema. Un marco de referencia inercial también puede denominarse marco de referencia inercial, marco inercial, marco de referencia galileano, o espacio inercial.
Es importante notar que todos los marcos inerciales están en un estado de movimiento rectilíneo constante entre sí; en otras palabras, un acelerómetro que se mueva con cualquiera de ellos detectaría aceleración cero. Las medidas en un marco inercial se pueden convertir en medidas en otro mediante una simple transformación (la transformación de Galileo en la física newtoniana y la transformación de Lorentz en la relatividad especial). En relatividad general, en cualquier región lo suficientemente pequeña como para que la curvatura del espacio-tiempo y las fuerzas de marea sean despreciables, uno puede encontrar un conjunto de marcos de inercia que describen aproximadamente esa región.
En un marco de referencia no inercial en física clásica y relatividad especial, la física de un sistema varía dependiendo de la aceleración de ese marco con respecto a un marco inercial, y las fuerzas físicas habituales deben complementarse con fuerzas ficticias. Por el contrario, los sistemas en la relatividad general no tienen causas externas, debido al principio del movimiento geodésico.En la física clásica, por ejemplo, una pelota que se deja caer hacia el suelo no cae exactamente en línea recta porque la Tierra está girando, lo que significa que el marco de referencia de un observador en la Tierra no es inercial. La física debe tener en cuenta el efecto Coriolis, en este caso considerado como una fuerza, para predecir el movimiento horizontal. Otro ejemplo de tal fuerza ficticia asociada con marcos de referencia giratorios es el efecto centrífugo o fuerza centrífuga.
Introducción
El movimiento de un cuerpo solo se puede describir en relación con otra cosa: otros cuerpos, observadores o un conjunto de coordenadas de espacio-tiempo. Estos se llaman marcos de referencia. Si las coordenadas se eligen mal, las leyes del movimiento pueden ser más complejas de lo necesario. Por ejemplo, supongamos que un cuerpo libre sobre el que no actúan fuerzas externas está en reposo en algún instante. En muchos sistemas de coordenadas, comenzaría a moverse en el siguiente instante, aunque no haya fuerzas sobre él. Sin embargo, siempre se puede elegir un marco de referencia en el que permanezca estacionario. De manera similar, si el espacio no se describe de manera uniforme o el tiempo de forma independiente, un sistema de coordenadas podría describir el simple vuelo de un cuerpo libre en el espacio como un zig-zag complicado en su sistema de coordenadas. De hecho, se puede dar un resumen intuitivo de los marcos de referencia inerciales: en un marco de referencia inercial,
En un marco inercial, se cumple la primera ley de Newton, la ley de la inercia: cualquier movimiento libre tiene una magnitud y una dirección constantes. La segunda ley de Newton para una partícula toma la forma:
con F la fuerza neta (un vector), m la masa de una partícula y a la aceleración de la partícula (también un vector) que sería medida por un observador en reposo en el marco. La fuerza F es la suma vectorial de todas las fuerzas "reales" sobre la partícula, como las fuerzas de contacto, las fuerzas electromagnéticas, gravitatorias y nucleares. Por el contrario, la segunda ley de Newton en un marco de referencia giratorio, girando a una velocidad angular Ω alrededor de un eje, toma la forma:
que se ve igual que en un marco inercial, pero ahora la fuerza F ′ es la resultante no solo de F, sino también de términos adicionales (el párrafo que sigue a esta ecuación presenta los puntos principales sin matemáticas detalladas):
donde la rotación angular del marco se expresa mediante el vector Ω que apunta en la dirección del eje de rotación, y con una magnitud igual a la velocidad angular de rotación Ω, el símbolo × denota el vector producto vectorial, el vector x B ubica el cuerpo y el vector v B es la velocidad del cuerpo según un observador giratorio (diferente de la velocidad vista por el observador inercial).
Los términos adicionales en la fuerza F ′ son las fuerzas "ficticias" para este marco, cuyas causas son externas al sistema en el marco. El primer término adicional es la fuerza de Coriolis, el segundo la fuerza centrífuga y el tercero la fuerza de Euler. Todos estos términos tienen estas propiedades: desaparecen cuando Ω = 0; es decir, son cero para un marco inercial (que, por supuesto, no gira); toman una magnitud y dirección diferente en cada marco giratorio, dependiendo de su valor particular de Ω; son omnipresentes en el marco giratorio (afectan a cada partícula, independientemente de las circunstancias); y no tienen un origen aparente en fuentes físicas identificables, en particular, la materia. Además, las fuerzas ficticias no disminuyen con la distancia (a diferencia, por ejemplo, de las fuerzas nucleares o las fuerzas eléctricas). Por ejemplo, la fuerza centrífuga que parece emanar del eje de rotación en un marco giratorio aumenta con la distancia desde el eje.
Todos los observadores están de acuerdo en las fuerzas reales, F; solo los observadores no inerciales necesitan fuerzas ficticias. Las leyes de la física en el marco inercial son más simples porque no hay presentes fuerzas innecesarias.
En la época de Newton se invocaba a las estrellas fijas como marco de referencia, supuestamente en reposo relativo al espacio absoluto. En marcos de referencia que estaban en reposo con respecto a las estrellas fijas o en traslación uniforme con respecto a estas estrellas, se suponía que se sostenían las leyes de movimiento de Newton. Por el contrario, en marcos que se aceleran con respecto a las estrellas fijas, un caso importante son los marcos que giran con respecto a las estrellas fijas, las leyes del movimiento no se cumplieron en su forma más simple, sino que tuvieron que complementarse con la adición de fuerzas ficticias, por ejemplo. ejemplo, la fuerza de Coriolis y la fuerza centrífuga. Newton ideó dos experimentos para demostrar cómo se podían descubrir estas fuerzas, revelando así a un observador que no estaban en un marco de inercia: el ejemplo de la tensión en la cuerda que une dos esferas que giran alrededor de su centro de gravedad, y el ejemplo de la curvatura de la superficie del agua en un balde giratorio. En ambos casos, la aplicación de la segunda ley de Newton no funcionaría para el observador giratorio sin invocar las fuerzas centrífugas y de Coriolis para explicar sus observaciones (tensión en el caso de las esferas; superficie de agua parabólica en el caso del cubo giratorio).
Como sabemos ahora, las estrellas fijas no son fijas. Los que residen en la Vía Láctea giran con la galaxia, exhibiendo movimientos propios. Aquellos que están fuera de nuestra galaxia (como las nebulosas que alguna vez se confundieron con estrellas) también participan en su propio movimiento, en parte debido a la expansión del universo y en parte debido a velocidades peculiares. La Galaxia de Andrómeda está en curso de colisión con la Vía Láctea a una velocidad de 117 km/s. El concepto de marcos de referencia inerciales ya no está ligado ni a las estrellas fijas ni al espacio absoluto. Más bien, la identificación de un marco inercial se basa en la simplicidad de las leyes de la física en el marco. En particular, la ausencia de fuerzas ficticias es su propiedad identificatoria.
En la práctica, aunque no es un requisito, usar un marco de referencia basado en las estrellas fijas como si fuera un marco de referencia inercial introduce muy poca discrepancia. Por ejemplo, la aceleración centrífuga de la Tierra debido a su rotación alrededor del Sol es unas treinta millones de veces mayor que la del Sol alrededor del centro galáctico.
Para ilustrar más, considere la pregunta: "¿Nuestro Universo gira?" Para responder, podríamos intentar explicar la forma de la Vía Láctea usando las leyes de la física, aunque otras observaciones podrían ser más definitivas; es decir, proporcionar mayores discrepancias o menor incertidumbre de medición, como la anisotropía de la radiación de fondo de microondas o la nucleosíntesis del Big Bang.La planitud de la Vía Láctea depende de su velocidad de rotación en un marco de referencia inercial. Si atribuimos su velocidad aparente de rotación por completo a la rotación en un marco inercial, se predice una "planitud" diferente que si supusiéramos que parte de esta rotación en realidad se debe a la rotación del universo y no debería incluirse en la rotación de la galaxia. sí mismo. Basado en las leyes de la física, se establece un modelo en el que un parámetro es la velocidad de rotación del Universo. Si las leyes de la física concuerdan con mayor precisión con las observaciones en un modelo con rotación que sin ella, nos inclinamos a seleccionar el valor de mejor ajuste para la rotación, sujeto a todas las demás observaciones experimentales pertinentes. Si ningún valor del parámetro de rotación es exitoso y la teoría no está dentro del error observacional, se considera una modificación de la ley física, por ejemplo, se invoca la materia oscura para explicar la curva de rotación galáctica. Hasta ahora, las observaciones muestran que cualquier rotación del universo es muy lenta, no más rápida que una vez cada6 × 10 años (10 rad/año), y persiste el debate sobre si hay alguna rotación. Sin embargo, si se encontrara la rotación, la interpretación de las observaciones en un marco ligado al universo tendría que corregirse por las fuerzas ficticias inherentes a tal rotación en la física clásica y la relatividad especial, o interpretarse como la curvatura del espacio-tiempo y el movimiento de la materia a lo largo de la misma. Las geodésicas en relatividad general.
Cuando los efectos cuánticos son importantes, surgen complicaciones conceptuales adicionales en los marcos de referencia cuánticos.
Fondo
Un conjunto de marcos donde las leyes de la física son simples.
De acuerdo con el primer postulado de la relatividad especial, todas las leyes físicas toman su forma más simple en un marco inercial, y existen múltiples marcos inerciales interrelacionados por traslación uniforme:
Principio especial de la relatividad: si se elige un sistema de coordenadas K de modo que, en relación con él, las leyes físicas sean válidas en su forma más simple, las mismas leyes serán válidas en relación con cualquier otro sistema de coordenadas K' que se mueva en traslación uniforme relativamente a k— Albert Einstein: Los fundamentos de la teoría general de la relatividad, Sección A, §1
Esta simplicidad se manifiesta en que los marcos inerciales tienen una física autónoma sin necesidad de causas externas, mientras que la física en marcos no inerciales tiene causas externas. El principio de simplicidad se puede utilizar tanto en la física newtoniana como en la relatividad especial; véase Nagel y también Blagojević.
Las leyes de la mecánica newtoniana no siempre se cumplen en su forma más simple... Si, por ejemplo, un observador se coloca en un disco que gira con respecto a la Tierra, sentirá una "fuerza" que lo empuja hacia la periferia. del disco, que no es causado por ninguna interacción con otros cuerpos. Aquí, la aceleración no es consecuencia de la fuerza habitual, sino de la llamada fuerza de inercia. Las leyes de Newton se cumplen en su forma más simple solo en una familia de marcos de referencia, llamados marcos de inercia. Este hecho representa la esencia del principio galileano de relatividad: las leyes de la mecánica tienen la misma forma en todos los marcos inerciales.— Milutin Blagojević: Gravitación y simetrías de calibre, página 4
En términos prácticos, la equivalencia de los marcos de referencia inerciales significa que los científicos dentro de una caja que se mueve uniformemente no pueden determinar su velocidad absoluta mediante ningún experimento. De lo contrario, las diferencias establecerían un marco de referencia estándar absoluto. Según esta definición, complementada con la constancia de la velocidad de la luz, los marcos de referencia inerciales se transforman entre sí según el grupo de transformaciones de simetría de Poincaré, del cual las transformaciones de Lorentz son un subgrupo. En la mecánica newtoniana, que puede verse como un caso límite de la relatividad especial en el que la velocidad de la luz es infinita, los marcos de referencia inerciales están relacionados por el grupo galileano de simetrías.
Espacio absoluto
Newton postuló un espacio absoluto considerado bien aproximado por un marco de referencia estacionario relativo a las estrellas fijas. Un marco inercial era entonces uno en traslación uniforme en relación con el espacio absoluto. Sin embargo, algunos científicos (llamados "relativistas" por Mach), incluso en la época de Newton, sintieron que el espacio absoluto era un defecto de la formulación y debería ser reemplazado.
De hecho, la expresión marco de referencia inercial (en alemán: Inertialsystem) fue acuñada por Ludwig Lange en 1885, para reemplazar las definiciones de Newton de "espacio y tiempo absolutos" por una definición más operativa. Según la traducción de Iro, Lange propuso la siguiente definición:
Un marco de referencia en el que un punto de masa lanzado desde el mismo punto en tres direcciones diferentes (no coplanares) sigue trayectorias rectilíneas cada vez que se lanza, se denomina marco inercial.
Se puede encontrar una discusión de la propuesta de Lange en Mach.
Blagojević explica en detalle la insuficiencia de la noción de "espacio absoluto" en la mecánica newtoniana:
- La existencia del espacio absoluto contradice la lógica interna de la mecánica clásica ya que, según el principio de relatividad de Galileo, ninguno de los marcos inerciales puede ser singularizado.
- El espacio absoluto no explica las fuerzas de inercia ya que están relacionadas con la aceleración con respecto a cualquiera de los marcos de inercia.
- El espacio absoluto actúa sobre los objetos físicos al inducir su resistencia a la aceleración, pero no se puede actuar sobre él.
— Milutin Blagojević: Gravitation and Gauge Symmetries, página 5
La utilidad de las definiciones operativas se llevó mucho más lejos en la teoría especial de la relatividad. DiSalle proporciona algunos antecedentes históricos, incluida la definición de Lange, quien dice en resumen:
La pregunta original, "¿en relación con qué marco de referencia se mantienen las leyes del movimiento?" se revela que está mal planteado. Porque las leyes del movimiento determinan esencialmente una clase de marcos de referencia y (en principio) un procedimiento para construirlos.— Robert DiSalle Espacio y tiempo: marcos inerciales
Marco de referencia inercial de Newton
Dentro del ámbito de la mecánica newtoniana, un marco de referencia inercial, o marco de referencia inercial, es aquel en el que la primera ley de movimiento de Newton es válida. Sin embargo, el principio de la relatividad especial generaliza la noción de marco inercial para incluir todas las leyes físicas, no simplemente la primera ley de Newton.
Newton vio la primera ley como válida en cualquier marco de referencia que esté en movimiento uniforme en relación con las estrellas fijas; es decir, ni girando ni acelerando en relación con las estrellas. Hoy se abandona la noción de "espacio absoluto" y se define un marco inercial en el campo de la mecánica clásica como:
Un marco de referencia inercial es aquel en el que el movimiento de una partícula no sujeta a fuerzas es en línea recta a velocidad constante.
Por lo tanto, con respecto a un marco inercial, un objeto o cuerpo acelera solo cuando se aplica una fuerza física y (siguiendo la primera ley del movimiento de Newton), en ausencia de una fuerza neta, un cuerpo en reposo permanecerá en reposo y un cuerpo en movimiento seguirá moviéndose uniformemente, es decir, en línea recta y con rapidez constante. Los marcos inerciales newtonianos se transforman entre sí según el grupo galileano de simetrías.
Si se interpreta que esta regla dice que el movimiento en línea recta es una indicación de fuerza neta cero, la regla no identifica marcos de referencia inerciales porque el movimiento en línea recta se puede observar en una variedad de marcos. Si la regla se interpreta como la definición de un marco de inercia, entonces debemos poder determinar cuándo se aplica una fuerza neta cero. El problema fue resumido por Einstein:
La debilidad del principio de inercia radica en que se trata de un argumento en un círculo: una masa se mueve sin aceleración si está lo suficientemente lejos de otros cuerpos; sabemos que está suficientemente lejos de otros cuerpos sólo por el hecho de que se mueve sin aceleración.— Albert Einstein: El significado de la relatividad, p. 58
Hay varios enfoques para este problema. Un enfoque es argumentar que todas las fuerzas reales caen con la distancia de sus fuentes de una manera conocida, por lo que solo tenemos que estar seguros de que un cuerpo está lo suficientemente lejos de todas las fuentes para garantizar que no haya ninguna fuerza presente.Un posible problema con este enfoque es la visión históricamente duradera de que el universo distante podría afectar las cosas (principio de Mach). Otro enfoque es identificar todas las fuentes reales de fuerzas reales y dar cuenta de ellas. Un posible problema con este enfoque es que podríamos pasar por alto algo, o dar cuenta de manera inapropiada de su influencia, tal vez, nuevamente, debido al principio de Mach y una comprensión incompleta del universo. Un tercer enfoque es observar la forma en que las fuerzas se transforman cuando cambiamos los marcos de referencia. Las fuerzas ficticias, aquellas que surgen por la aceleración de un marco, desaparecen en marcos inerciales, y tienen reglas de transformación complicadas en casos generales. Sobre la base de la universalidad de la ley física y la solicitud de marcos donde las leyes se expresen de la manera más simple,
Newton mismo enunció un principio de relatividad en uno de sus corolarios de las leyes del movimiento:
Los movimientos de los cuerpos incluidos en un espacio dado son los mismos entre sí, ya sea que ese espacio esté en reposo o avance uniformemente en línea recta.— Isaac Newton: Principia, Corolario V, p. 88 en la traducción de Andrew Motte
Este principio difiere del principio especial en dos aspectos: primero, está restringido a la mecánica y, segundo, no menciona la simplicidad. Comparte con el principio especial la invariancia de la forma de la descripción entre marcos de referencia que se traducen mutuamente. El papel de las fuerzas ficticias en la clasificación de los marcos de referencia se analiza más adelante.
Mecánica newtoniana
Las teorías clásicas que utilizan la transformación galileana postulan la equivalencia de todos los marcos de referencia inerciales. Algunas teorías pueden incluso postular la existencia de un marco privilegiado que proporciona espacio absoluto y tiempo absoluto. La transformación de Galileo transforma las coordenadas de un marco de referencia inercial, , a otro, por simple suma o resta de coordenadas:
donde r 0 y t 0 representan cambios en el origen del espacio y el tiempo, y v es la velocidad relativa de los dos marcos de referencia inerciales. Bajo las transformaciones galileanas, el tiempo t 2 − t 1 entre dos eventos es el mismo para todos los marcos de referencia y la distancia entre dos eventos simultáneos (o, de manera equivalente, la longitud de cualquier objeto, | r 2 − r 1 |) también es el mismo.
Relatividad especial
La teoría de la relatividad especial de Einstein, como la mecánica newtoniana, postula la equivalencia de todos los marcos de referencia inerciales. Sin embargo, debido a que la relatividad especial postula que la velocidad de la luz en el espacio libre es invariable, la transformación entre marcos inerciales es la transformación de Lorentz, no la transformación de Galileo que se usa en la mecánica newtoniana. La invariancia de la velocidad de la luz conduce a fenómenos contrarios a la intuición, como la dilatación del tiempo y la contracción de la longitud, y la relatividad de la simultaneidad, que han sido extensamente verificados experimentalmente. La transformación de Lorentz se reduce a la transformación de Galileo cuando la velocidad de la luz se acerca al infinito o cuando la velocidad relativa entre fotogramas se acerca a cero.
Relatividad general
La relatividad general se basa en el principio de equivalencia:
No hay ningún experimento que los observadores puedan realizar para distinguir si surge una aceleración debido a una fuerza gravitacional o porque su marco de referencia está acelerando.— Douglas C. Giancoli, Física para científicos e ingenieros con física moderna, p. 155.
Esta idea se introdujo en el artículo de 1907 de Einstein "Principio de la relatividad y la gravitación" y luego se desarrolló en 1911. El apoyo a este principio se encuentra en el experimento de Eötvös, que determina si la relación entre la masa inercial y la gravitatoria es la misma para todos los cuerpos, independientemente de tamaño o composición. Hasta la fecha no se ha encontrado ninguna diferencia en algunas partes de 10. Para una discusión de las sutilezas del experimento de Eötvös, como la distribución de masa local alrededor del sitio experimental (incluyendo una broma sobre la masa del propio Eötvös), vea Franklin.
La teoría general de Einstein modifica la distinción entre efectos nominalmente "inerciales" y "no inerciales" al reemplazar el espacio de Minkowski "plano" de la relatividad especial con una métrica que produce una curvatura distinta de cero. En la relatividad general, el principio de inercia se reemplaza por el principio de movimiento geodésico, por el cual los objetos se mueven de una manera dictada por la curvatura del espacio-tiempo. Como consecuencia de esta curvatura, no es un hecho en la relatividad general que los objetos inerciales que se mueven a una velocidad particular entre sí continúen haciéndolo. Este fenómeno de desviación geodésica significa que los marcos de referencia inerciales no existen globalmente como en la mecánica newtoniana y la relatividad especial.
Sin embargo, la teoría general se reduce a la teoría especial sobre regiones suficientemente pequeñas del espacio-tiempo, donde los efectos de curvatura se vuelven menos importantes y los argumentos anteriores del marco inercial pueden volver a entrar en juego. En consecuencia, la relatividad especial moderna ahora se describe a veces solo como una "teoría local"."Local" puede abarcar, por ejemplo, toda la galaxia de la Vía Láctea: el astrónomo Karl Schwarzschild observó el movimiento de pares de estrellas orbitando entre sí. Encontró que las dos órbitas de las estrellas de tal sistema se encuentran en un plano, y el perihelio de las órbitas de las dos estrellas permanece apuntando en la misma dirección con respecto al sistema solar. Schwarzschild señaló que eso se veía invariablemente: la dirección del momento angular de todos los sistemas estelares dobles observados permanece fija con respecto a la dirección del momento angular del Sistema Solar. Estas observaciones le permitieron concluir que los marcos de inercia dentro de la galaxia no giran entre sí, y que el espacio de la Vía Láctea es aproximadamente galileano o minkowskiano.
Ejemplos
Ejemplo sencillo
Considere una situación común en la vida cotidiana. Dos autos viajan a lo largo de una carretera, ambos moviéndose a velocidades constantes. Ver Figura 1. En algún momento en particular, están separados por 200 metros. El auto de adelante viaja a 22 metros por segundo y el auto de atrás viaja a 30 metros por segundo. Si queremos averiguar cuánto tardará el segundo automóvil en alcanzar al primero, hay tres "marcos de referencia" obvios que podríamos elegir.
Primero, pudimos observar los dos autos desde el costado de la carretera. Definimos nuestro "marco de referencia" S de la siguiente manera. Nos paramos a un lado de la carretera y ponemos en marcha un cronómetro en el momento exacto en que nos adelanta el segundo automóvil, que sucede cuando están separados por una distancia d = 200 m. Como ninguno de los autos está acelerando, podemos determinar sus posiciones mediante las siguientes fórmulas, donde es la posición en metros del auto uno después del tiempo t en segundos y es la posición del auto dos después del tiempo t.
Observe que estas fórmulas predicen que en t = 0 s el primer automóvil está a 200 m por la carretera y el segundo automóvil está justo a nuestro lado, como se esperaba. Queremos encontrar el tiempo en el que . Por lo tanto, establecemos y resolvemos para , es decir:
Alternativamente, podríamos elegir un marco de referencia S′ situado en el primer automóvil. En este caso, el primer automóvil está parado y el segundo automóvil se acerca por detrás a una velocidad de v 2 − v 1 = 8 m/s. Con el fin de alcanzar el primer coche, se necesita un tiempo ded/v 2 − v 1=200/8s, es decir, 25 segundos, como antes. Tenga en cuenta cuánto más fácil se vuelve el problema al elegir un marco de referencia adecuado. El tercer marco de referencia posible estaría unido al segundo automóvil. Ese ejemplo se parece al caso que acabamos de analizar, excepto que el segundo automóvil está estacionario y el primer automóvil retrocede hacia él a 8 m/s.
Habría sido posible elegir un marco de referencia giratorio, acelerado, moviéndose de manera complicada, pero esto habría servido para complicar el problema innecesariamente. También es necesario tener en cuenta que uno puede convertir las mediciones realizadas en un sistema de coordenadas a otro. Por ejemplo, suponga que su reloj avanza cinco minutos en comparación con la hora estándar local. Si sabe que es así, cuando alguien le pregunte qué hora es, puede deducir cinco minutos de la hora que muestra su reloj para obtener la hora correcta. Las medidas que un observador hace sobre un sistema dependen por tanto del marco de referencia del observador (se podría decir que el autobús llegó a las tres y cinco, cuando en realidad llegó a las tres).
Ejemplo adicional
Para un ejemplo simple que involucre solo la orientación de dos observadores, considere a dos personas de pie, una frente a la otra a ambos lados de una calle de norte a sur. Vea la Figura 2. Un automóvil pasa junto a ellos en dirección sur. Para la persona que miraba al este, el auto se movía hacia la derecha. Sin embargo, para la persona que miraba hacia el oeste, el automóvil se movía hacia la izquierda. Esta discrepancia se debe a que las dos personas usaron dos marcos de referencia diferentes desde los cuales investigar este sistema.
Para un ejemplo más complejo que involucre a los observadores en movimiento relativo, considere a Alfred, que está parado al costado de una carretera y observa cómo pasa un automóvil de izquierda a derecha. En su marco de referencia, Alfred define el lugar donde está parado como el origen, el camino como el eje x y la dirección frente a él como el eje y positivo. Para él, el automóvil se mueve a lo largo del eje x con alguna velocidad v en la dirección x positiva. El marco de referencia de Alfred se considera un marco de referencia inercial porque no está acelerando (ignorando efectos como la rotación y la gravedad de la Tierra).
Ahora considere a Betsy, la persona que conduce el automóvil. Betsy, al elegir su marco de referencia, define su ubicación como el origen, la dirección a su derecha como el eje x positivo y la dirección frente a ella como el eje y positivo. En este marco de referencia, es Betsy la que está estacionaria y el mundo que la rodea es el que se mueve; por ejemplo, cuando pasa junto a Alfred, lo observa moverse con velocidad v en la dirección y negativa. Si conduce hacia el norte, entonces el norte es la dirección y positiva; si gira hacia el este, el este se convierte en la dirección y positiva.
Finalmente, como ejemplo de observadores no inerciales, suponga que Candace está acelerando su automóvil. Cuando ella pasa junto a él, Alfred mide su aceleración y encuentra que es a en la dirección x negativa. Suponiendo que la aceleración de Candace es constante, ¿qué aceleración mide Betsy? Si la velocidad v de Betsy es constante, ella está en un marco de referencia inercial y encontrará que la aceleración es la misma que la de Alfred en su marco de referencia, a en la dirección y negativa. Sin embargo, si está acelerando a una tasa A en la dirección y negativa (en otras palabras, disminuyendo la velocidad), encontrará que la aceleración de Candace es a ′ = a− A en la dirección y negativa: un valor más pequeño que el medido por Alfred.
Los marcos de referencia son especialmente importantes en la relatividad especial, porque cuando un marco de referencia se mueve a una fracción significativa de la velocidad de la luz, entonces el flujo de tiempo en ese marco no se aplica necesariamente en otro marco. Se considera que la velocidad de la luz es la única constante verdadera entre marcos de referencia en movimiento.
Observaciones
Es importante tener en cuenta algunas suposiciones hechas anteriormente sobre los diversos marcos de referencia inerciales. Newton, por ejemplo, empleó el tiempo universal, como se explica en el siguiente ejemplo. Suponga que tiene dos relojes, y ambos marcan exactamente el mismo ritmo. Los sincroniza para que ambos muestren exactamente la misma hora. Los dos relojes ahora están separados y un reloj está en un tren en movimiento rápido, viajando a velocidad constante hacia el otro. Según Newton, estos dos relojes seguirán funcionando al mismo ritmo y ambos mostrarán la misma hora. Newton dice que la tasa de tiempo medida en un marco de referencia debe ser la misma que la tasa de tiempo en otro. Es decir, existe un "universal" el tiempo y todos los demás tiempos en todos los demás marcos de referencia correrán al mismo ritmo que este tiempo universal, independientemente de su posición y velocidad. Este concepto de tiempo y simultaneidad fue posteriormente generalizado por Einstein en su teoría especial de la relatividad (1905) donde desarrolló transformaciones entre marcos de referencia inerciales basados en la naturaleza universal de las leyes físicas y su economía de expresión (transformaciones de Lorentz).
La definición de marco de referencia inercial también puede extenderse más allá del espacio euclidiano tridimensional. Newton asumió un espacio euclidiano, pero la relatividad general usa una geometría más general. Como ejemplo de por qué esto es importante, considere la geometría de un elipsoide. En esta geometría, una partícula "libre" se define como una partícula en reposo o que viaja a velocidad constante en una trayectoria geodésica. Dos partículas libres pueden comenzar en el mismo punto de la superficie, viajando con la misma velocidad constante en diferentes direcciones. Después de un tiempo, las dos partículas chocan en el lado opuesto del elipsoide. Ambas partículas "libres" viajaron con una velocidad constante, satisfaciendo la definición de que no actuaban fuerzas. No se produjo ninguna aceleración, por lo que se cumplió la primera ley de Newton. Esto significa que las partículas estaban en marcos de referencia inerciales. Como no actuaban fuerzas, fue la geometría de la situación la que hizo que las dos partículas se encontraran de nuevo. De manera similar, ahora es común describirque existimos en una geometría de cuatro dimensiones conocida como espacio-tiempo. En esta imagen, la curvatura de este espacio 4D es responsable de la forma en que dos cuerpos con masa se juntan incluso si no actúan fuerzas. Esta curvatura del espacio-tiempo reemplaza la fuerza conocida como gravedad en la mecánica newtoniana y la relatividad especial.
Marcos no inerciales
Aquí se considera la relación entre los marcos de referencia observacionales inerciales y no inerciales. La diferencia básica entre estos marcos es la necesidad de fuerzas ficticias en los marcos no inerciales, como se describe a continuación.
Un marco de referencia acelerado a menudo se define como el marco "primado", y todas las variables que dependen de ese marco se notan con números primos, por ejemplo, x′, y′, a′.
El vector desde el origen de un marco de referencia inercial hasta el origen de un marco de referencia acelerado se suele notar como R. Dado un punto de interés que existe en ambos marcos, el vector desde el origen inercial hasta el punto se llama r, y el vector desde el origen acelerado hasta el punto se llama r′. De la geometría de la situación, obtenemos
Tomando las derivadas primera y segunda de esta con respecto al tiempo, obtenemos
donde V y A son la velocidad y aceleración del sistema acelerado con respecto al sistema inercial yv y a son la velocidad y aceleración del punto de interés con respecto al marco inercial.
Estas ecuaciones permiten transformaciones entre los dos sistemas de coordenadas; por ejemplo, ahora podemos escribir la segunda ley de Newton como
Cuando hay un movimiento acelerado debido a que se ejerce una fuerza, hay una manifestación de inercia. Si un automóvil eléctrico diseñado para recargar su sistema de batería cuando desacelera se cambia a frenado, las baterías se recargan, lo que ilustra la fuerza física de la manifestación de la inercia. Sin embargo, la manifestación de la inercia no evita la aceleración (o la desaceleración), ya que la manifestación de la inercia ocurre en respuesta al cambio de velocidad debido a una fuerza. Visto desde la perspectiva de un marco de referencia giratorio, la manifestación de la inercia parece ejercer una fuerza (ya sea en dirección centrífuga o en una dirección ortogonal al movimiento de un objeto, el efecto Coriolis).
Un tipo común de marco de referencia acelerado es un marco que gira y se traslada (un ejemplo es un marco de referencia adjunto a un CD que se reproduce mientras se lleva el reproductor). Este arreglo conduce a la ecuación (ver Fuerza ficticia para una derivación):
o, para resolver la aceleración en el marco acelerado,
Multiplicando por la masa m da
dónde(fuerza de Euler),(Fuerza Coriolis),(fuerza centrífuga).
Separación de marcos de referencia no inerciales e inerciales
Teoría
Los marcos de referencia inerciales y no inerciales se pueden distinguir por la ausencia o presencia de fuerzas ficticias, como se explica en breve.
El efecto de estar en el marco no inercial es requerir que el observador introduzca una fuerza ficticia en sus cálculos...— Sidney Borowitz y Lawrence A Bornstein en Una visión contemporánea de la física elemental, p. 138
La presencia de fuerzas ficticias indica que las leyes físicas no son las leyes más simples disponibles, por lo que, en términos del principio especial de la relatividad, un marco donde están presentes fuerzas ficticias no es un marco inercial:
Las ecuaciones de movimiento en un sistema no inercial difieren de las ecuaciones en un sistema inercial por términos adicionales llamados fuerzas de inercia. Esto nos permite detectar experimentalmente la naturaleza no inercial de un sistema.— VI Arnold'd: Métodos matemáticos de la mecánica clásica, segunda edición, p. 129
Los cuerpos en marcos de referencia no inerciales están sujetos a las llamadas fuerzas ficticias (pseudo-fuerzas); es decir, fuerzas que resultan de la aceleración del propio marco de referencia y no de ninguna fuerza física que actúe sobre el cuerpo. Ejemplos de fuerzas ficticias son la fuerza centrífuga y la fuerza de Coriolis en marcos de referencia giratorios.
Entonces, ¿cómo se separan las fuerzas "ficticias" de las fuerzas "reales"? Es difícil aplicar la definición newtoniana de marco inercial sin esta separación. Por ejemplo, considere un objeto estacionario en un marco inercial. Estando en reposo, no se aplica ninguna fuerza neta. Pero en un marco que gira sobre un eje fijo, el objeto parece moverse en un círculo y está sujeto a la fuerza centrípeta (que se compone de la fuerza de Coriolis y la fuerza centrífuga). ¿Cómo podemos decidir que el marco giratorio es un marco no inercial? Hay dos enfoques para esta resolución: un enfoque es buscar el origen de las fuerzas ficticias (la fuerza de Coriolis y la fuerza centrífuga). Encontraremos que no hay fuentes para estas fuerzas, ni portadores de fuerza asociados, ni cuerpos originarios.Un segundo enfoque es observar una variedad de marcos de referencia. Para cualquier marco de inercia, la fuerza de Coriolis y la fuerza centrífuga desaparecen, por lo que la aplicación del principio de la relatividad especial identificaría estos marcos donde las fuerzas desaparecen como compartiendo las mismas y más simples leyes físicas y, por lo tanto, dictaminaría que el marco giratorio no es un marco. sistema inercial.
Newton examinó este problema él mismo usando esferas giratorias, como se muestra en la Figura 2 y la Figura 3. Señaló que si las esferas no giran, la tensión en la cuerda de amarre se mide como cero en cada marco de referencia.Si las esferas solo parecen girar (es decir, estamos viendo esferas estacionarias desde un marco giratorio), la tensión cero en la cuerda se explica al observar que la fuerza centrípeta es suministrada por las fuerzas centrífuga y de Coriolis en combinación, por lo que no se necesita tensión. Si las esferas realmente giran, la tensión observada es exactamente la fuerza centrípeta requerida por el movimiento circular. Así, la medida de la tensión en la cuerda identifica el marco inercial: es aquel donde la tensión en la cuerda proporciona exactamente la fuerza centrípeta demandada por el movimiento tal como se observa en ese marco, y no un valor diferente. Es decir, el marco inercial es aquel donde se desvanecen las fuerzas ficticias.
Hasta aquí las fuerzas ficticias debidas a la rotación. Sin embargo, para la aceleración lineal, Newton expresó la idea de indetectabilidad de las aceleraciones en línea recta que tienen en común:
Si los cuerpos, de cualquier modo que se muevan entre sí, son empujados en la dirección de líneas paralelas por fuerzas aceleradoras iguales, continuarán moviéndose entre sí de la misma manera que si no hubieran sido empujados por tales fuerzas.— Isaac Newton: Principia Corolario VI, p. 89, en la traducción de Andrew Motte
Este principio generaliza la noción de marco inercial. Por ejemplo, un observador confinado en un ascensor en caída libre afirmará que él mismo es un marco inercial válido, incluso si está acelerando por gravedad, siempre que no tenga conocimiento de nada fuera del ascensor. Entonces, estrictamente hablando, el marco inercial es un concepto relativo. Con esto en mente, podemos definir marcos inerciales colectivamente como un conjunto de marcos que están estacionarios o se mueven a velocidad constante entre sí, de modo que un solo marco inercial se define como un elemento de este conjunto.
Para que estas ideas se apliquen, todo lo observado en el marco tiene que estar sujeto a una aceleración común de línea de base compartida por el marco mismo. Esa situación se aplicaría, por ejemplo, al ejemplo del ascensor, donde todos los objetos están sujetos a la misma aceleración gravitatoria, y el propio ascensor acelera al mismo ritmo.
Aplicaciones
Los sistemas de navegación inercial utilizaron un grupo de giroscopios y acelerómetros para determinar las aceleraciones relativas al espacio inercial. Después de que un giroscopio gira en una orientación particular en el espacio inercial, la ley de conservación del momento angular requiere que retenga esa orientación mientras no se le apliquen fuerzas externas. Tres giroscopios ortogonales establecen un marco de referencia inercial y los aceleradores miden la aceleración relativa a ese marco. Las aceleraciones, junto con un reloj, se pueden usar para calcular el cambio de posición. Por lo tanto, la navegación inercial es una forma de navegación a estima que no requiere entrada externa y, por lo tanto, no puede ser bloqueada por ninguna fuente de señal externa o interna.
Una brújula giroscópica, empleada para la navegación de embarcaciones marítimas, encuentra el norte geométrico. Lo hace, no detectando el campo magnético de la Tierra, sino utilizando el espacio de inercia como referencia. La carcasa exterior del dispositivo girocompás se sostiene de tal manera que permanece alineada con la plomada local. Cuando la rueda del giroscopio dentro del dispositivo de girocompás gira hacia arriba, la forma en que la rueda del giroscopio está suspendida hace que la rueda del giroscopio alinee gradualmente su eje giratorio con el eje de la Tierra. La alineación con el eje de la Tierra es la única dirección en la que el eje giratorio del giroscopio puede estar estacionario con respecto a la Tierra y no se requiere que cambie de dirección con respecto al espacio de inercia. Después de girar, una brújula giroscópica puede alcanzar la dirección de alineación con el eje de la Tierra en tan solo un cuarto de hora.
Contenido relacionado
Número de Prandtl
Ventaja mecanica
Mecánica clásica