Permitividad relativa
La permitividad relativa es la medida de la capacidad de un material aislante para almacenar energía eléctrica en un campo eléctrico, respecto del vacío. Esta, se define como la relación entre la permitividad del material (ε) y la permitividad del vacío (ε₀) ε / ε₀. Así, la permitividad relativa mide la capacidad de los materiales dieléctricos (aislantes) para almacenar energía eléctrica dentro de un campo eléctrico. En algunos textos se conoce como constante dieléctrica.
Podemos entender la permitividad relativa como el factor que reduce la fuerza de Coulomb entre dos cargas puntuales cuando se encuentran dentro de un material (permitividad), a diferencia de lo que pasaría si se encontraran en el vacío (permitividad relativa). La permitividad relativa de un material para una frecuencia de cero se conoce como su permisividad relativa estática.
Además, es directamente proporcional a la capacitancia de un condensador que utilice ese material como dieléctrico. En otras palabras, si un condensador utiliza un material con alta permitividad relativa, tendrá una mayor capacidad para almacenar carga que un condensador idéntico con el vacío como material dieléctrico.
El término histórico para la permitividad relativa es constante dieléctrica. Todavía se usa comúnmente, pero las organizaciones de estándares lo han desaprobado debido a su ambigüedad, ya que algunos informes anteriores lo usaban también para la permitividad absoluta ε. La permitividad puede usarse como una propiedad estática o como una variante dependiente de la frecuencia, en cuyo caso también se conoce como función dieléctrica. También se ha utilizado para referirse únicamente al componente real ε'r de la permitividad relativa de valores complejos.
HSD
Fórmula de la permitividad relativa
La permitividad relativa generalmente se denota como εr(ω), función de la permitividad absoluta respecto de la frecuencia, o como κ (kappa minúscula), valor constante, y se define de la siguiente manera:
- ε ε r()⋅ ⋅ )=ε ε ()⋅ ⋅ )ε ε 0,{displaystyle varepsilon _{r}(omega)={frac {varepsilon (omega)}{varepsilon ♪♪
donde ε(ω) es la permitividad compleja dependiente de la frecuencia del material, y ε0 es la permitividad del vacío.
Esto, se explica porque la permitividad (ε) es una propiedad física de los materiales que describe cómo se polarizan en presencia de un campo eléctrico. Un material con alta permitividad se polariza más fácilmente que uno con baja permitividad. Y dado que la permitividad del vacío (ε₀) es una constante universal que define la permitividad del espacio vacío, se puede abstraer un valor constante que represente su permitividad respecto de otros materiales.
La permitividad relativa es un número adimensional que en general tiene un valor complejo, sus partes real e imaginaria se denotan como:
- ε ε r()⋅ ⋅ )=ε ε r.()⋅ ⋅ )− − iε ε r.()⋅ ⋅ ).{displaystyle varepsilon _{r}(omega)=varepsilon _{r}'(omega)-ivarepsilon _{r}''''(omega).}
La permitividad relativa de un medio está relacionada con su susceptibilidad eléctrica, χe, como εr(ω) = 1 + χe.
En medios anisotrópicos (como cristales no cúbicos), la permitividad relativa es un tensor de segundo rango.
Medición de la permitividad relativa
La permitividad estática relativa, εr, se puede medir para campos eléctricos estáticos de la siguiente manera: primero, la capacitancia de un capacitor de prueba, C0, se mide con vacío entre sus placas. Luego, usando el mismo capacitor y distancia entre sus placas, se mide la capacitancia C con un dieléctrico entre las placas. La permitividad relativa se puede calcular entonces como
- ε ε r=CC0.{displaystyle varepsilon ¿Qué? {C} {C_{0}}}
Para los campos electromagnéticos variables en el tiempo, esta cantidad se vuelve dependiente de la frecuencia. Una técnica indirecta para calcular εr es la conversión de resultados de medición de parámetros S de radiofrecuencia. En esta fuente bibliográfica se puede encontrar una descripción de las conversiones de parámetros S utilizadas con frecuencia para determinar el εr dependiente de la frecuencia. Alternativamente, pueden emplearse efectos basados en resonancia a frecuencias fijas.
Aplicaciones de la permitividad relativa
Energía
La permitividad relativa es una información esencial cuando se diseñan condensadores y en otras circunstancias en las que se espera que un material introduzca capacitancia en un circuito. Si un material con una permitividad relativa alta se coloca en un campo eléctrico, la magnitud de ese campo se reducirá considerablemente dentro del volumen del dieléctrico. Este hecho se usa comúnmente para aumentar la capacitancia de un diseño de capacitor en particular. Las capas debajo de los conductores grabados en las placas de circuito impreso (PCB) también actúan como dieléctricos.
- Diseño de condensadores: La permitividad relativa del material dieléctrico utilizado en un condensador determina su capacitancia.
- Cálculo del campo eléctrico: La permitividad relativa afecta la fuerza del campo eléctrico generado por una carga eléctrica en un material.
- Comportamiento de las ondas electromagnéticas: La permitividad relativa influye en la velocidad de propagación de las ondas electromagnéticas en un material.
Comunicación
Los dieléctricos se utilizan en las líneas de transmisión de radiofrecuencia (RF). En un cable coaxial, se puede usar polietileno entre el conductor central y el blindaje exterior. También se puede colocar dentro de guías de ondas para formar filtros. Las fibras ópticas son ejemplos de guías de ondas dieléctricas. Consisten en materiales dieléctricos dopados deliberadamente con impurezas para controlar el valor preciso de εr dentro de la sección transversal. Esto controla el índice de refracción del material y, por lo tanto, también los modos ópticos de transmisión. Sin embargo, en estos casos es técnicamente la permitividad relativa lo que importa, ya que no se operan en el límite electrostático.
Medio ambiente
La permitividad relativa del aire cambia con la temperatura, la humedad y la presión barométrica. Se pueden construir sensores para detectar cambios en la capacitancia causados por cambios en la permitividad relativa. La mayor parte de este cambio se debe a los efectos de la temperatura y la humedad, ya que la presión barométrica es bastante estable. Usando el cambio de capacitancia, junto con la temperatura medida, la humedad relativa se puede obtener usando fórmulas de ingeniería.
Química
La permitividad estática relativa de un solvente es una medida relativa de su polaridad química. Por ejemplo, el agua es muy polar y tiene una permitividad estática relativa de 80,10 a 20 °C, mientras que el n-hexano no es polar y tiene una permitividad estática relativa de 1,89 a 20 °C. Esta información es importante al diseñar técnicas de separación, preparación de muestras y cromatografía en química analítica.
Sin embargo, la correlación debe tratarse con precaución. Por ejemplo, el diclorometano tiene un valor de εr de 9,08 (20 °C) y es poco soluble en agua (13 g/L o 9,8 mL/L a 20 °C); al mismo tiempo, el tetrahidrofurano tiene su εr = 7,52 a 22 °C, pero es completamente miscible con agua. En el caso del tetrahidrofurano, el átomo de oxígeno puede actuar como aceptor de enlaces de hidrógeno; mientras que el diclorometano no puede formar enlaces de hidrógeno con el agua.
Esto es aún más notable cuando se comparan los valores de εr del ácido acético (6,2528) y del yodoetano (7,6177). El gran valor numérico de εr no sorprende en el segundo caso, ya que el átomo de yodo es fácilmente polarizable; sin embargo, esto no implica que también sea polar (la polarizabilidad electrónica prevalece sobre la orientacional en este caso).
Permitividad relativa en medios con pérdida
Nuevamente, al igual que para la permitividad absoluta, la permitividad relativa para materiales con pérdida se puede formular como:
- ε ε r=ε ε r.− − iσ σ ⋅ ⋅ ε ε 0,{displaystyle varepsilon _{r}=varepsilon ¿Por qué?
en términos de "conductividad dieléctrica" σ (unidades S/m, siemens por metro), que "suma todos los efectos disipativos del material; puede representar una conductividad [eléctrica] real causada por la migración de portadores de carga y también puede referirse a una pérdida de energía asociada con la dispersión de ε′ [la permitividad de valor real]" (pág. 8). Expandiendo la frecuencia angular ω = 2πc/λ y la constante eléctrica ε0 = 1/ µ0c2, que se reduce a:
- ε ε r=ε ε r.− − iσ σ λ λ κ κ ,{displaystyle varepsilon _{r}=varepsilon _{r}-isigma lambda kappa}
donde λ es la longitud de onda, c es la velocidad de la luz en el vacío y κ = µ0c/2π = 59,95849 Ω ≈ 60,0 Ω es una constante recientemente introducida (unidades de ohmios, o siemens recíproco, tal que σλκ = εr permanece sin unidades).
Permitividad relativa en física
En la teoría causal de las ondas, la permitividad es una cantidad compleja. La parte imaginaria corresponde a un cambio de fase de la polarización P relativa a E y conduce a la atenuación de las ondas electromagnéticas que atraviesan el medio. Por definición, la permitividad relativa lineal del vacío es igual a 1, es decir, ε = ε0, aunque existen efectos teóricos cuánticos no lineales en el vacío que se vuelven no despreciables a altas intensidades de campo.
La siguiente tabla proporciona algunos valores típicos.
Solvent | Permiso relativo | Temperatura | |
---|---|---|---|
C6H6 | benzene | 2.3 | 298 K (25 °C) |
Et2O | diethyl ether | 4.3 | 293 K (20 °C) |
(CH)2)4O | tetrahidrofuran (THF) | 7.6 | 298 K (25 °C) |
CH2Cl2 | dichloromethane | 9.1 | 293 K (20 °C) |
NH3()liq) | amoníaco líquido | 17 | 273 K (0 °C) |
C2H5Oh. | etanol | 24.3 | 298 K (25 °C) |
CH3Oh. | metanol | 32.7 | 298 K (25 °C) |
CH3NO2 | nitrometano | 35,9 | 303 K (30 °C) |
HCONMe2 | dimetil formamide (DMF) | 36,7 | 298 K (25 °C) |
CH3CN | acetonitrile | 37,5 | 293 K (20 °C) |
H2O | agua | 78.4 | 298 K (25 °C) |
HCONH2 | formamide | 109 | 293 K (20 °C) |
La permitividad relativa del hielo es ~3,15.
Permitividad relativa en metales
La permitividad generalmente se asocia con materiales dieléctricos, sin embargo, los metales se describen como que tienen una permitividad efectiva, con una permitividad relativa real igual a uno. En la región de baja frecuencia, que se extiende desde las radiofrecuencias hasta la región del infrarrojo lejano y los terahercios, la frecuencia de plasma del gas de electrones es mucho mayor que la frecuencia de propagación electromagnética, por lo que el índice de refracción n de un el metal es casi un número puramente imaginario. En el régimen de baja frecuencia, la permitividad relativa efectiva también es casi puramente imaginaria: tiene un valor imaginario muy grande relacionado con la conductividad y un valor real comparativamente insignificante.
Tabla de permitividad relativa (materiales comunes)
Material | Índice de Refracción |
---|---|
Vacío | 1 (por definición) |
Aire | 1,000 589 86 ±0,000 000 50 (en STP, 900 kHz) |
PTFE/Teflón | 2,1 |
Polietileno/XLPE | 2,25 |
Poliimida | 3,4 |
Polipropileno | 2,2 – 2,36 |
Poliestireno | 2,4 – 2,7 |
Disulfuro de Carbono | 2,6 |
BoPET | 3,1 |
Papel (impresión) | 1,4 (200 kHz) |
Polímeros Electroactivos | 2 – 12 |
Mica | 3 – 6 |
Dióxido de Silicio | 3,9 |
Zafiro | 8,9 – 11,1 (anisotrópico) |
Concreto | 4,5 |
Pyrex (vidrio) | 4,7 (3,7 – 10) |
Neopreno | 6,7 |
Caucho natural | 7 |
Diamante | 5,5 – 10 |
Sal | 3 – 15 |
Resina de melamina | 7,2 – 8,4 |
Grafito | 10 – 15 |
Caucho de silicona | 2,9 – 4 |
Silicio | 11,68 |
GaAs | 12,4 |
Nitruro de Silicio | 7 – 8 (policristalino, 1 MHz) |
Amoníaco | 26, 22, 20, 17 (−80, −40, 0, +20 °C) |
Metanol | 30 |
Etilenglicol | 37 |
Furfural | 42,0 |
Glicerol | 41,2, 47, 42,5 (0, 20, 25 °C) |
Agua | 87,9, 80,2, 55,5 (0, 20, 100 °C); 1,77 para luz visible |
Ácido Fluorhídrico | 175, 134, 111, 83,6 (−73, −42, −27, 0 °C) |
Hidracina | 52 (20 °C) |
Formamida | 84 (20 °C) |
Ácido Sulfúrico | 84 – 100 (20–25 °C) |
Peróxido de Hidrógeno | 128 acuoso – 60 (−30 – 25 °C) |
Ácido Cíanhidrico | 158,0 – 2,3 (0 – 21 °C) |
Dióxido de Titanio | 86 – 173 |
Titanato de Estroncio | 310 |
Titanato de Bario Estroncio | 500 |
Titanato de Bario | 1200 – 10 000 (20–120 °C) |
Titanato de Plomo y Circonio | 500 – 6 000 |
Polímeros Conjugados | 1,8 – 6 hasta 100 000 |
Titanato de Calcio y Cobre | >250 000 |
Contenido relacionado
Coeficiente de reflexión
Frecuencia de corte
Oscilador electronico