Gen supresor de tumores

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Gene que inhibe la expresión del fenotipo tumorigenico
El ciclo celular. Muchos supresores tumorales trabajan para regular el ciclo en puntos de control específicos para evitar que las células dañadas se repitan.

Un gen supresor de tumores (TSG), o anti-oncogén, es un gen que regula una célula durante la división y replicación celular. Si la célula crece sin control, resultará en cáncer. Cuando se muta un gen supresor de tumores, se produce una pérdida o reducción de su función. En combinación con otras mutaciones genéticas, esto podría permitir que la célula crezca de manera anormal. La pérdida de función de estos genes puede ser aún más significativa en el desarrollo de cánceres humanos, en comparación con la activación de oncogenes.

Los TSG se pueden agrupar en las siguientes categorías: genes cuidadores, genes guardianes y, más recientemente, genes paisajistas. Los genes guardianes aseguran la estabilidad del genoma a través de la reparación del ADN y, posteriormente, cuando mutan, permiten que las mutaciones se acumulen. Mientras tanto, los genes guardianes regulan directamente el crecimiento celular inhibiendo la progresión del ciclo celular o induciendo la apoptosis. Por último, los genes paisajistas regulan el crecimiento contribuyendo al entorno circundante, cuando mutan pueden causar un entorno que promueva la proliferación no regulada. Los esquemas de clasificación evolucionan a medida que se realizan avances médicos en campos que incluyen la biología molecular, la genética y la epigenética.

Historia

El descubrimiento de los oncogenes y su capacidad para desregular los procesos celulares relacionados con la proliferación y el desarrollo celular apareció por primera vez en la literatura en oposición a la idea de los genes supresores de tumores. Sin embargo, la idea de la mutación genética que conduce a un mayor crecimiento del tumor dio paso a otra posible idea genética de genes que desempeñan un papel en la disminución del crecimiento celular y el desarrollo de las células. Esta idea no se consolidó hasta que Henry Harris realizó experimentos con hibridación de células somáticas en 1969.

Dentro de los experimentos del Dr. Harris, las células tumorales se fusionaron con células somáticas normales para crear células híbridas. Cada célula tenía cromosomas de ambos padres y, al crecer, la mayoría de estas células híbridas no tenían la capacidad de desarrollar tumores en los animales. La supresión de la tumorigenicidad en estas células híbridas llevó a los investigadores a formular la hipótesis de que los genes dentro de la célula somática normal tenían acciones inhibidoras para detener el crecimiento del tumor. Esta hipótesis inicial finalmente condujo al descubrimiento del primer gen supresor de tumores clásico por parte de Alfred Knudson, conocido como el gen Rb, que codifica la proteína supresora de tumores del retinoblastoma.

Alfred Knudson, pediatra y genetista del cáncer, propuso que para desarrollar retinoblastoma, se requieren dos mutaciones alélicas para perder las copias funcionales de ambos genes Rb y conducir a la tumorigenicidad. Knudson observó que el retinoblastoma a menudo se desarrollaba temprano en la vida de los pacientes más jóvenes en ambos ojos, mientras que en algunos casos más raros el retinoblastoma se desarrollaba más tarde en la vida y solo era unilateral. Este patrón de desarrollo único permitió a Knudson y a varios otros grupos científicos en 1971 formular correctamente la hipótesis de que el desarrollo temprano del retinoblastoma fue causado por la herencia de una mutación de pérdida de función en un gen de la línea germinal RB seguida de una mutación de novo posterior en su Rb funcional. alelo del gen. Se planteó la hipótesis de que la aparición más esporádica de desarrollo unilateral de retinoblastoma se desarrollaría mucho más tarde en la vida debido a dos mutaciones de novo que eran necesarias para perder por completo las propiedades supresoras de tumores. Este hallazgo formó la base de la hipótesis de dos golpes. Para verificar que la pérdida de función de los genes supresores de tumores provoca un aumento de la tumorigenicidad, se realizaron experimentos de eliminación intersticial en el cromosoma 13q14 para observar el efecto de la eliminación de los loci del gen Rb. Esta eliminación provocó un mayor crecimiento tumoral en el retinoblastoma, lo que sugiere que la pérdida o inactivación de un gen supresor de tumores puede aumentar la tumorigenicidad.

Hipótesis de dos aciertos

A diferencia de los oncogenes, los genes supresores de tumores generalmente siguen la hipótesis de dos golpes, que establece que ambos alelos que codifican una proteína en particular deben verse afectados antes de que se manifieste un efecto. Si solo un alelo del gen está dañado, el otro aún puede producir suficiente proteína correcta para conservar la función apropiada. En otras palabras, los alelos supresores de tumores mutantes suelen ser recesivos, mientras que los alelos de oncogenes mutantes suelen ser dominantes.

Modelos de supresión tumoral
Ilustración de hipótesis de dos puntos

Propuesto por A.G. Knudson para casos de retinoblastoma. Observó que el 40 % de los casos en EE. UU. eran causados por una mutación en la línea germinal. Sin embargo, los padres afectados podían tener hijos sin la enfermedad, pero los niños no afectados se convirtieron en padres de niños con retinoblastoma. Esto indica que uno podría heredar una línea germinal mutada pero no mostrar la enfermedad. Knudson observó que la edad de aparición del retinoblastoma seguía una cinética de segundo orden, lo que implicaba que eran necesarios dos eventos genéticos independientes. Reconoció que esto era consistente con una mutación recesiva que involucraba un solo gen, pero que requería una mutación bialélica. Los casos hereditarios involucran una mutación heredada y una sola mutación en el alelo normal. El retinoblastoma no hereditario implica dos mutaciones, una en cada alelo. Knudson también señaló que los casos hereditarios a menudo desarrollaron tumores bilaterales y los desarrollarían más temprano en la vida, en comparación con los casos no hereditarios en los que las personas solo se vieron afectadas por un solo tumor.

Hay excepciones a la regla de dos resultados para los supresores de tumores, como ciertas mutaciones en el producto del gen p53. Las mutaciones de p53 pueden funcionar como un negativo dominante, lo que significa que una proteína p53 mutada puede impedir la función de la proteína natural producida a partir del alelo no mutado. Otros genes supresores de tumores que no siguen la regla de los dos aciertos son los que presentan haploinsuficiencia, incluidos PTCH en meduloblastoma y NF1 en neurofibroma. Otro ejemplo es p27, un inhibidor del ciclo celular, que cuando un alelo muta provoca una mayor susceptibilidad a los carcinógenos.

Funciones

Las proteínas codificadas por la mayoría de los genes supresores de tumores inhiben la proliferación o supervivencia celular. Por lo tanto, la inactivación de genes supresores de tumores conduce al desarrollo de tumores mediante la eliminación de proteínas reguladoras negativas. En la mayoría de los casos, las proteínas supresoras de tumores inhiben las mismas vías de regulación celular que son estimuladas por los productos de los oncogenes. Si bien los genes supresores de tumores tienen la misma función principal, tienen varios mecanismos de acción que realizan sus productos transcritos, que incluyen los siguientes:

  1. Proteínas intracelulares, que controlan la expresión genética de una etapa específica del ciclo celular. Si estos genes no se expresan, el ciclo celular no continúa, inhibiendo efectivamente la división celular. (p. ej., pRB y p16)
  2. Receptores o transductores de señales para hormonas secretas o señales de desarrollo que inhiben la proliferación celular (por ejemplo, factor de crecimiento transformador (TGF)-β y poliposis adenomatosa coli (APC)).
  3. Proteínas de control de puntos de control que desencadenan la detención del ciclo celular en respuesta al daño del ADN o defectos cromosómicos (por ejemplo, proteína de susceptibilidad del cáncer de mama 1 (BRCA1), p16 y p14).
  4. Proteínas que inducen apoptosis. Si el daño no se puede reparar, la célula inicia la muerte celular programada para eliminar la amenaza que representa al organismo en su conjunto. (por ejemplo, p53).
  5. Adhesión celular. Algunas proteínas involucradas en la adherencia celular evitan que las células tumorales se dispersen, bloquean la pérdida de la inhibición del contacto e inhiben la metástasis. Estas proteínas se conocen como supresores de metástasis. (por ejemplo, CADM1)
  6. Proteínas involucradas en la reparación de errores en ADN. Los genes cuidadores codifican proteínas que funcionan en la reparación de mutaciones en el genoma, evitando que las células se replican con mutaciones. Además, el aumento de la tasa de mutación de la reducción de la reparación de ADN provoca una mayor inactivación de otros supresores tumorales y la activación de oncógenos. (por ejemplo, p53 y proteína de reparación del desajuste de ADN 2 (MSH2)).
  7. Ciertos genes también pueden actuar como supresores tumorales y oncógenas. Apodado Proto-oncogenes con función supresor tumoral, estos genes actúan como “agentes dobles” que regulan positiva y negativamente la transcripción. (por ejemplo, receptores NOTCH, TP53 y FAS).

Influencias epigenéticas

La expresión de genes, incluidos los supresores de tumores, puede alterarse mediante alteraciones bioquímicas conocidas como metilación del ADN. La metilación es un ejemplo de modificaciones epigenéticas, que comúnmente regulan la expresión en genes de mamíferos. La adición de un grupo metilo a las colas de las histonas o directamente en el ADN hace que el nucleosoma se empaquete estrechamente, lo que restringe la transcripción de cualquier gen en esta región. Este proceso no solo tiene la capacidad de inhibir la expresión génica, sino que también puede aumentar la posibilidad de mutaciones. Stephen Baylin observó que si las regiones promotoras experimentan un fenómeno conocido como hipermetilación, podría dar lugar a errores transcripcionales posteriores, silenciamiento del gen supresor de tumores, plegamiento incorrecto de proteínas y, finalmente, crecimiento del cáncer. Baylin et al. encontraron inhibidores de la metilación conocidos como azacitidina y decitabina. Estos compuestos en realidad pueden ayudar a prevenir el crecimiento del cáncer al inducir la reexpresión de genes previamente silenciados, deteniendo el ciclo celular de la célula tumoral y obligándola a la apoptosis.

Hay más ensayos clínicos en curso de investigación sobre tratamientos para la hipermetilación, así como terapias alternativas de supresión de tumores que incluyen la prevención de la hiperplasia tisular, el desarrollo de tumores o la diseminación metastásica de tumores. El equipo que trabaja con Wajed ha investigado la metilación del tejido neoplásico con el fin de identificar algún día opciones de tratamiento temprano para la modificación genética que pueda silenciar el gen supresor de tumores. Además de la metilación del ADN, otras modificaciones epigenéticas, como la desacetilación de histonas o las proteínas de unión a la cromatina, pueden impedir que la ADN polimerasa transcriba eficazmente las secuencias deseadas, como las que contienen genes supresores de tumores.

Importancia clínica

La terapia génica se utiliza para restablecer la función de un tipo de gen mutado o eliminado. Cuando los genes supresores de tumores se alteran de una manera que da como resultado una expresión menor o nula, pueden surgir varios problemas graves para el huésped. Esta es la razón por la que los genes supresores de tumores se han estudiado y utilizado comúnmente para la terapia génica. Los dos enfoques principales utilizados actualmente para introducir material genético en las células son los métodos de administración viral y no viral.

Métodos virales

El método viral de transferir material genético aprovecha el poder de los virus. Mediante el uso de virus que son resistentes a las alteraciones del material genético, los métodos virales de terapia génica para genes supresores de tumores han demostrado ser exitosos. En este método, se utilizan vectores de virus. Los dos vectores más utilizados son los vectores adenovirales y los vectores adenoasociados. La manipulación genética in vitro de este tipo de vectores es fácil y la aplicación in vivo es relativamente segura en comparación con otros vectores. Antes de que los vectores se inserten en los tumores del huésped, se preparan mutando o eliminando las partes de su genoma que controlan la replicación. Esto los hace más seguros para la inserción. Luego, el material genético deseado se inserta y se liga al vector. En el caso de los genes supresores de tumores, se ha utilizado con éxito material genético que codifica p53, que tras su aplicación ha mostrado reducción del crecimiento o proliferación tumoral.

Métodos no virales

El método no viral de transferencia de material genético se usa con menos frecuencia que el método viral. Sin embargo, el método no viral es un método más económico, seguro y disponible de administración de genes, sin mencionar que se ha demostrado que los métodos no virales inducen menos respuestas inmunitarias en el huésped y no tienen restricciones en cuanto al tamaño o la longitud del material genético transferible.. La terapia génica no viral utiliza métodos químicos o físicos para introducir material genético en las células deseadas. Los métodos químicos se utilizan principalmente para la introducción de genes supresores de tumores y se dividen en dos categorías, que son plásmidos desnudos o plásmidos recubiertos con liposomas. La estrategia del plásmido desnudo ha ganado interés debido a sus métodos fáciles de usar. La inyección directa en los músculos permite que el plásmido se absorba en la célula de posibles tumores donde el material genético del plásmido se puede incorporar al material genético de las células tumorales y revertir cualquier daño previo causado a los genes supresores de tumores. El método del plásmido recubierto con liposomas también ha sido de interés recientemente ya que producen una respuesta inmune del huésped relativamente baja y son eficaces con la orientación celular. La cápsula cargada positivamente en la que se empaqueta el material genético ayuda con la atracción electrostática a las membranas cargadas negativamente de las células, así como al ADN cargado negativamente de las células tumorales. De esta manera, los métodos no virales de terapia génica son altamente efectivos para restaurar la función del gen supresor de tumores en las células tumorales que han perdido parcial o totalmente esta función.

Limitaciones

Las terapias génicas virales y no virales mencionadas anteriormente se usan comúnmente, pero cada una tiene algunas limitaciones que deben tenerse en cuenta. La limitación más importante que tienen estos métodos es la eficacia con la que las células tumorales del huésped absorben los vectores adenovirales y adenoasociados, los plásmidos desnudos o los plásmidos recubiertos de liposomas. Si no se logra una absorción adecuada por parte de las células tumorales del huésped, la reinserción presenta problemas tales como que el sistema inmunitario del huésped reconozca estos vectores o plásmidos y los destruya, lo que perjudica aún más la eficacia general del tratamiento de terapia génica.

Ejemplos

GeneFunción original¿Dos-Hit?Carcinomas asociados
RbReplicación del ADN, división celular y muerteSí.Retinoblastoma
p53ApoptosisNoLa mitad de todas las malignidades conocidas
VHLDivisión celular, muerte y diferenciación Sí.Cáncer de riñón
APCADN, división celular, migración, adherencia, muerte Sí.Cáncer colorrectal
BRCA2División celular y muerte, y reparación de rupturas de ADN dobles Sí.Cáncer de mama / ovario
NF1 Diferenciación celular, división, desarrollo, transducción de señal RAS No Tumores nerviosos, neuroblastoma
PTCH Hedgehog señalización No Medulloblastoma, Carcinoma de células basales

  • Proteína de retinoblastoma (pRb). pRb fue la primera proteína tumoral-supresor descubierta en el retinoblastoma humano; sin embargo, evidencia reciente también ha implicado el pRb como factor de supervivencia tumoral. RB1 gene es un gen de portero que bloquea la proliferación celular, regula la división celular y la muerte celular. Específicamente el pRb evita la progresión del ciclo celular desde la fase G1 en la fase S mediante la unión a E2F y la represión de la transcripción de genes necesaria. Esto evita que la célula replica su ADN si hay daño.
  • p53. TP53, un gen cuidador, codifica la proteína p53, que se apoda "el guardián del genoma". p53 tiene muchas funciones diferentes en la célula incluyendo la reparación de ADN, induciendo apoptosis, transcripción y regulando el ciclo celular. El p53 mutado está involucrado en muchos cánceres humanos, de los 6,5 millones de diagnósticos de cáncer cada año alrededor del 37% están conectados a mutaciones p53. Esto lo convierte en un objetivo popular para nuevas terapias de cáncer. La pérdida de Homozygous de p53 se encuentra en el 65% de los cánceres de colon, el 30–50% de los cánceres de mama y el 50% de los cánceres de pulmón. El p53 mutado también está involucrado en la fisiopatología de leucemias, linfomas, sarcomas y tumores neurogénicos. Las anormalidades del gen p53 se pueden heredar en el síndrome de Li-Fraumeni (LFS), que aumenta el riesgo de desarrollar varios tipos de cáncer.
  • BCL2. BCL2 es una familia de proteínas que están involucradas en inducir o inhibir la apoptosis. La función principal consiste en mantener la composición de la membrana mitocondria y prevenir la liberación de citocromo c en el citosol. Cuando cytochrome c es liberado de la mitocondria comienza una cascada de señalización para comenzar la apoptosis.
  • SWI/SNF. SWI/SNF es un complejo de remodelación de la cromatina, que se pierde en cerca del 20% de los tumores. El complejo consta de 10-15 subunidades codificadas por 20 genes diferentes. Las mutaciones en los complejos individuales pueden conducir a la confusión, lo que compromete la capacidad del complejo para trabajar juntos en su conjunto. SWI/SNF tiene la capacidad de mover los nucleosomas, que condensa el ADN, permitiendo la transcripción o bloquear la transcripción de ocurrir para ciertos genes. La mutación de esta habilidad podría causar que los genes se enciendan o se apagan en los tiempos equivocados.

A medida que el costo de la secuenciación del ADN continúa disminuyendo, se pueden secuenciar más cánceres. Esto permite el descubrimiento de nuevos supresores de tumores y puede dar una idea de cómo tratar y curar diferentes tipos de cáncer en el futuro. Otros ejemplos de supresores de tumores incluyen pVHL, APC, CD95, ST5, YPEL3, ST7 y ST14, p16, BRCA2.

Contenido relacionado

Madre de vinagre

Romero

Sabueso afgano

Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save