Fotosistema I

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Reacciones dependientes de la luz de la fotosíntesis en la membrana tilakoide
Ubicación del psa genes en el genoma de cloroplast Arabidopsis thaliana. Los 21 genes de codificación de proteínas involucrados en la fotosíntesis se muestran como cajas verdes.
El

Fotosistema I (PSI, o plastocianina-ferredoxina oxidorreductasa) es uno de los dos fotosistemas en las reacciones fotosintéticas de la luz de algas, plantas, y cianobacterias. El fotosistema I es un complejo proteico integral de membrana que utiliza energía luminosa para catalizar la transferencia de electrones a través de la membrana tilacoide desde la plastocianina a la ferredoxina. En última instancia, los electrones transferidos por el Fotosistema I se utilizan para producir el portador de hidrógeno de energía moderada NADPH. La energía fotónica absorbida por el Fotosistema I también produce una fuerza motriz de protones que se utiliza para generar ATP. PSI se compone de más de 110 cofactores, significativamente más que el Fotosistema II.

Historia

Este fotosistema se conoce como PSI porque fue descubierto antes del Fotosistema II, aunque experimentos futuros demostraron que el Fotosistema II es en realidad la primera enzima de la cadena de transporte de electrones fotosintética. Algunos aspectos de la PSI se descubrieron en la década de 1950, pero en ese momento aún no se reconocía la importancia de estos descubrimientos. Louis Duysens propuso por primera vez los conceptos de Fotosistemas I y II en 1960 y, ese mismo año, una propuesta de Fay Bendall y Robert Hill reunió descubrimientos anteriores en una teoría coherente de reacciones fotosintéticas en serie. La hipótesis de Hill y Bendall fue confirmada posteriormente en experimentos realizados en 1961 por los grupos de Duysens y Witt.

Componentes y acción

Dos subunidades principales de PSI, PsaA y PsaB, son proteínas estrechamente relacionadas implicadas en la unión de los cofactores vitales de transferencia de electrones P700, Acc, A0, A 1 y Fx. PsaA y PsaB son proteínas de membrana integrales de 730 a 750 aminoácidos que contienen 11 segmentos transmembrana. Un grupo de hierro y azufre [4Fe-4S] llamado Fx está coordinado por cuatro cisteínas; PsaA y PsaB proporcionan dos cisteínas cada una. Las dos cisteínas de cada uno son proximales y están ubicadas en un bucle entre el noveno y décimo segmento transmembrana. Un motivo de cremallera de leucina parece estar presente aguas abajo de las cisteínas y podría contribuir a la dimerización de PsaA/PsaB. Los aceptores terminales de electrones FA y FB, también grupos de hierro-azufre [4Fe-4S], están ubicados en una proteína de 9 kDa llamada PsaC que se une a PsaA. Núcleo /PsaB cerca de FX.

Componentes de PSI (subunidades de proteínas, lípidos, pigmentos, coenzimas y cofactores).
Subunidades de proteínas Descripción
PsaA Las proteínas transmembranas grandes relacionadas con la unión de P700, A0, A1, y Fx. Parte de la familia de proteínas centro de reacción fotosintética.
PsaB
PsaC Centro Iron-sulfur; apoproteína para Fa y Fb
PsaD Se requiere para el montaje, ayuda a unir ferredoxina. Inter Pro:IPR003685
Psae InterPro:IPR003375
PsaI Puede estabilizar PsaL. Estabiliza la unión de complejos de captura ligera II. Inter Pro:IPR001302
PsaJ InterPro:IPR002615
PsaK InterPro:IPR035982
PsaL InterPro:IPR036592
PsaM InterPro:IPR010010
PsaX InterPro:IPR012986
complejo cytochrome b6f Proteína soluble
FaDe PsaC; En cadena de transporte de electrones (ETC)
FbDe PsaC; En ETC
FxDe PsaAB; En ETC
Ferredoxin Transportador de electrones en ETC
Plastocyanin Proteína soluble
Lipids Descripción
ODM II Monogalactosyldiglyceride lipid
PG I fosfolípido fosfolípido fosfatoidilglicerol
PG III fosfolípido fosfolípido fosfatoidilglicerol
PG IV fosfolípido fosfolípido fosfatoidilglicerol
Pigmentos Descripción
Clorophyll a90 moléculas de pigmento en el sistema de antena
Clorophyll a5 moléculas de pigmento en ETC
Clorophyll a0Aceptor temprano de electrones de clorofila modificada en ETC
Clorophyll a. 1 molécula de pigmento en ETC
β-caroteno 22 moléculas de pigmento carotenoides
Coenzimas y cofactores Descripción
QK-A Aceptor temprano de electrones vitamina K1 fitoquinona en ETC
QK-B Aceptor temprano de electrones vitamina K1 Filoquinona en ETC
FNR enzima ferredoxina-NADP+ oxidoreductasa
Ca2+
Calcio ion
Mg2+
iones de magnesio

Fotón

La fotoexcitación de las moléculas de pigmento en el complejo de antena induce la transferencia de electrones y energía.

Complejo de antena

El complejo antena está compuesto por moléculas de clorofila y carotenoides montadas en dos proteínas. Estas moléculas de pigmento transmiten la energía de resonancia de los fotones cuando se fotoexcitan. Las moléculas de antena pueden absorber todas las longitudes de onda de luz dentro del espectro visible. El número de estas moléculas de pigmento varía de un organismo a otro. Por ejemplo, la cianobacteria Synechococcus elongatus (Thermosynechococcus elongatus) tiene alrededor de 100 clorofilas y 20 carotenoides, mientras que los cloroplastos de espinaca tienen alrededor de 200 clorofilas y 50 carotenoides. Ubicadas dentro del complejo de antenas de PSI hay moléculas de clorofila llamadas centros de reacción P700. La energía transmitida por las moléculas antena se dirige al centro de reacción. Puede haber hasta 120 o tan solo 25 moléculas de clorofila por P700.

Centro de reacción P700

El centro de reacción P700 está compuesto de clorofila a modificada que absorbe mejor la luz a una longitud de onda de 700 nm. P700 recibe energía de las moléculas de la antena y utiliza la energía de cada fotón para elevar un electrón a un nivel de energía superior (P700*). Estos electrones se mueven en pares en un proceso de oxidación/reducción desde P700* a aceptores de electrones, dejando atrás P700+. El par P700* - P700+ tiene un potencial eléctrico de aproximadamente −1,2 voltios. El centro de reacción está formado por dos moléculas de clorofila y, por tanto, se denomina dímero. Se cree que el dímero está compuesto por una molécula de clorofila a y una molécula de clorofila a′. Sin embargo, si P700 forma un complejo con otras moléculas antena, ya no puede ser un dímero.

Clorofila A0 y A1 modificada

Las dos moléculas de clorofila modificadas son los primeros aceptores de electrones en PSI. Están presentes uno por lado PsaA/PsaB, formando dos ramas que los electrones pueden tomar para alcanzar Fx. A0 acepta electrones de P700*, los pasa a A1 del mismo lado, que luego pasa el electrón a la quinona del mismo lado. Diferentes especies parecen tener diferentes preferencias por cualquiera de las ramas A/B.

Filoquinona

Una filoquinona, a veces llamada vitamina K1, es el siguiente aceptor temprano de electrones en PSI. Oxida A1 para recibir el electrón y a su vez es reoxidado por Fx, desde donde el electrón pasa a Fb y Fa. La reducción de Fx parece ser el paso limitante de la tasa.

Complejo hierro-azufre

En PSI se encuentran tres centros proteicos de reacción hierro-azufre. Etiquetados como Fx, Fa y Fb, sirven como relés de electrones. Fa y Fb están unidos a subunidades proteicas del complejo PSI y Fx está unido al complejo PSI. Varios experimentos han demostrado cierta disparidad entre las teorías de la orientación del cofactor hierro-azufre y el orden de operación. En un modelo, Fx pasa un electrón a Fa, quien lo pasa a Fb para alcanzar la ferredoxina.

Ferredoxina

La ferredoxina (Fd) es una proteína soluble que facilita la reducción de NADP+
>
a NADPH. Fd se mueve para transportar un electrón a un tilacoide solitario o a una enzima que reduce NADP+
>
. Las membranas tilacoides tienen un sitio de unión para cada función de Fd. La función principal de Fd es transportar un electrón desde el complejo hierro-azufre a la enzima ferredoxina-NADP+ reductasa.

Ferredoxina-NADP+ reductasa (FNR)

Esta enzima transfiere el electrón de la ferredoxina reducida a NADP+
para completar la reducción a NADPH. FNR también puede aceptar un electrón de NADPH uniéndose a él.

Plastocianina

La plastocianina es un transportador de electrones que transfiere el electrón del citocromo b6f al cofactor P700 del PSI en su estado ionizado P700+.

Dominio de la proteína Ycf4

El dominio de la proteína Ycf4 que se encuentra en la membrana tilacoide es vital para el fotosistema I. Esta proteína transmembrana tilacoide ayuda a ensamblar los componentes del fotosistema I. Sin ella, la fotosíntesis sería ineficiente.

Evolución

Los datos moleculares muestran que la PSI probablemente evolucionó a partir de los fotosistemas de las bacterias verdes del azufre. Los fotosistemas de las bacterias verdes del azufre y los de las cianobacterias, las algas y las plantas superiores no son los mismos, pero existen muchas funciones análogas y estructuras similares. Tres características principales son similares entre los diferentes fotosistemas. Primero, el potencial redox es lo suficientemente negativo como para reducir la ferredoxina. A continuación, los centros de reacción aceptores de electrones incluyen proteínas hierro-azufre. Por último, los centros redox en complejos de ambos fotosistemas se construyen sobre un dímero de subunidad proteica. El fotosistema de las bacterias verdes del azufre contiene incluso los mismos cofactores de la cadena de transporte de electrones en PSI. El número y grado de similitudes entre los dos fotosistemas indica fuertemente que PSI y el fotosistema análogo de las bacterias verdes del azufre evolucionaron a partir de un fotosistema ancestral común.

Contenido relacionado

Ley de Fick

La Ley de Fick es enunciado que resume la forma en la que operan los principios de difusión. Esta ley cuantifica el movimiento de una sustancia desde una...

Híbrido (biología)

En biología, un híbrido es la descendencia que resulta de combinar las cualidades de dos organismos de diferentes razas, variedades, especies o géneros a...

Evolución divergente

La evolución divergente o selección divergente es la acumulación de diferencias entre poblaciones estrechamente relacionadas dentro de una especie, lo que...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save