Electrorecepción y electrogénesis

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Capacidades relacionadas con la electricidad biológica
El pescado de elefante es un pez mormyrid débilmente eléctrico que genera un campo eléctrico con su órgano eléctrico y luego utiliza sus knollenorgans electroreceptivos y mormyromasts para localizar objetos cercanos por las distorsiones que causan en el campo eléctrico.

Electrorecepción y electrogénesis son capacidades biológicas estrechamente relacionadas para percibir estímulos eléctricos y generar campos eléctricos. Ambos se utilizan para localizar presas; Algunos grupos de peces (el más famoso es la anguila eléctrica, que en realidad no es una anguila sino un pez cuchillo) utilizan descargas eléctricas más fuertes para aturdir a sus presas. Estas capacidades se encuentran casi exclusivamente en animales acuáticos o anfibios, ya que el agua es mucho mejor conductor de la electricidad que el aire. En la electrolocalización pasiva, objetos como presas se detectan detectando los campos eléctricos que crean. En la electrolocalización activa, los peces generan un campo eléctrico débil y sienten las diferentes distorsiones de ese campo creadas por objetos que conducen o resisten la electricidad. La electrolocalización activa la practican dos grupos de peces débilmente eléctricos, los Gymnotiformes (peces cuchillo) y los Mormyridae (peces elefante), y por Gymnarchus niloticus, el pez cuchillo africano. Un pez eléctrico genera un campo eléctrico utilizando un órgano eléctrico, modificado a partir de los músculos de su cola. El campo se llama débil si sólo es suficiente para detectar presas y fuerte si es lo suficientemente potente como para aturdir o matar. El campo puede ser en pulsos breves, como en el pez elefante, o en una onda continua, como en el pez cuchillo. Algunos peces fuertemente eléctricos, como la anguila eléctrica, localizan a sus presas generando un campo eléctrico débil y luego descargan fuertemente sus órganos eléctricos para aturdir a la presa; Otros peces fuertemente eléctricos, como la raya eléctrica, se electrolocalizan pasivamente. Los observadores de estrellas son únicos porque son fuertemente eléctricos pero no utilizan la electrolocalización.

La ampulla electroreceptiva de Lorenzini evolucionaba temprano en la historia de los vertebrados; se encuentran en peces cartilaginosos como los tiburones, y en peces bonidos como los coelacantos y esturiones, y por lo tanto deben ser antiguos. La mayoría de los peces bony han perdido en segundo lugar su ampullae de Lorenzini, pero otros electroreceptores no homologados han evolucionado repetidamente, incluyendo en dos grupos de mamíferos, los monotremas (platypus y echidnas) y los cetáceos (delfín de Guiana).

Historia

Hans Lissmann descubrió electrorecepción en 1950 a través de sus observaciones Gymnarchus niloticus.

En 1678, mientras hacía disecciones de tiburones, el médico italiano Stefano Lorenzini descubrió órganos en sus cabezas ahora llamados ampollas de Lorenzini. Publicó sus hallazgos en Osservazioni intorno alle torpedini. La función electroreceptiva de estos órganos fue establecida por R. W. Murray en 1960.

En 1921, el anatomista alemán Viktor Franz describió los órganos de knollen (órganos tuberosos) en la piel del pez elefante, nuevamente sin conocimiento de su función como electrorreceptores.

En 1949, el zoólogo ucraniano-británico Hans Lissmann observó que el pez cuchillo africano (Gymnarchus niloticus) era capaz de nadar hacia atrás a la misma velocidad y con la misma destreza sorteando obstáculos que cuando nadaba hacia adelante, evitando colisiones. Demostró en 1950 que el pez producía un campo eléctrico variable y que reaccionaba a cualquier cambio en el campo eléctrico a su alrededor.

Electrolocalización

La ampulla electroreceptiva de Lorenzini (puntos rojos) evolucionaba de los órganos de línea lateral mechanosensorio (líneas grises) de los vertebrados tempranos. Se ven aquí en la cabeza de un tiburón.
Ampullae de Lorenzini, encontrado en varios grupos basales de peces, son canales llenos de gelatina que conectan los poros en la piel con bulbos sensoriales. Detectan pequeñas diferencias en el potencial eléctrico entre sus dos extremos.

Los animales electrorreceptivos utilizan los sentidos para localizar objetos a su alrededor. Esto es importante en nichos ecológicos donde el animal no puede depender de la visión: por ejemplo, en cuevas, en aguas turbias y de noche. La electrolocalización puede ser pasiva, detectando campos eléctricos como los generados por los movimientos musculares de presas enterradas, o activa, donde el depredador electrogénico genera un campo eléctrico débil que le permite distinguir entre objetos conductores y no conductores en sus proximidades.

Electrolocalización pasiva

En la electrolocalización pasiva, el animal detecta los débiles campos bioeléctricos generados por otros animales y los utiliza para localizarlos. Estos campos eléctricos son generados por todos los animales debido a la actividad de sus nervios y músculos. Una segunda fuente de campos eléctricos en los peces es la bomba de iones asociada con la osmorregulación en la membrana branquial. Este campo está modulado por la apertura y cierre de la boca y las hendiduras branquiales. La electrorrecepción pasiva generalmente se basa en receptores ampulares, como las ampollas de Lorenzini, que son sensibles a estímulos de baja frecuencia, por debajo de 50 Hz. Estos receptores tienen un canal lleno de gelatina que va desde los receptores sensoriales hasta la superficie de la piel.

Electrolocalización activa

Un knollenorgan, un electroreceptor tuberoso de pescado débilmente eléctrico. Celda de receptor RC=; b.m.= membrana básica; n=nerve.
Mormyromast, un tipo de electroreceptor encontrado sólo en peces mormyrid

En la electrolocalización activa, el animal detecta el entorno que lo rodea generando campos eléctricos débiles (electrogénesis) y detecta distorsiones en estos campos utilizando órganos electrorreceptores. Este campo eléctrico se genera mediante un órgano eléctrico especializado que consta de músculos o nervios modificados. Los animales que utilizan la electrorrecepción activa incluyen los peces débilmente eléctricos, que generan pequeños pulsos eléctricos (denominados "tipo de pulso"), como en los Mormyridae, o producen una descarga casi sinusoidal del órgano eléctrico (denominada & #34;tipo onda"), como en Gymnotidae.

Muchos de estos peces, como Gymnarchus y Apteronotus, mantienen su cuerpo bastante rígido, nadando hacia adelante o hacia atrás con igual facilidad mediante aletas onduladas que se extienden en la mayor parte de su longitud. de sus cuerpos. Nadar hacia atrás puede ayudarles a buscar y evaluar presas utilizando señales electrosensoriales. Los experimentos de Lannoo y Lannoo en 1993 respaldan la propuesta de Lissmann de que este estilo de natación con la espalda recta funciona eficazmente dadas las limitaciones de la electrolocalización activa. Los Apteronotus pueden seleccionar y atrapar pulgas de agua Daphnia más grandes entre las más pequeñas, y no discriminan contra las pulgas de agua oscurecidas artificialmente, en ambos casos con o sin luz.

Estos peces crean un potencial generalmente menor que un voltio (1 V). Los peces débilmente eléctricos pueden discriminar entre objetos con diferentes valores de resistencia y capacitancia, lo que puede ayudar a identificar objetos. La electrorrecepción activa suele tener un alcance de aproximadamente la longitud de un cuerpo, aunque los objetos con una impedancia eléctrica similar a la del agua circundante son casi indetectables.

La electrolocalización activa se basa en electrorreceptores tuberosos que son sensibles a estímulos de alta frecuencia (20-20 000 Hz). Estos receptores tienen un tapón suelto de células epiteliales que acopla capacitivamente las células receptoras sensoriales al entorno externo. El pez elefante (Mormyridae) de África tiene electrorreceptores tuberosos conocidos como Knollenorgans y Mormyromasts en su piel.

El pez elefante emite pulsos cortos para localizar a su presa. Los objetos capacitivos y resistivos afectan el campo eléctrico de manera diferente, lo que permite al pez localizar objetos de diferentes tipos dentro de una distancia de aproximadamente la longitud de un cuerpo. Los objetos resistivos aumentan la amplitud del pulso; Los objetos capacitivos introducen distorsiones.

Los Gymnotiformes, incluido el pez cuchillo de cristal (Sternopygidae) y la anguila eléctrica (Gymnotidae), se diferencian de los Mormyridae en que emiten una onda continua, aproximada a una onda sinusoidal, desde su órgano eléctrico. Como ocurre con los Mormyridae, el campo eléctrico generado les permite discriminar con precisión entre objetos capacitivos y resistivos.

Electrolocalización de objetos capacitantes y resistivos en peces de vidrio.
Muchos peces gimnotoides generan una onda eléctrica continua, que es
distorsionado de forma diferente por los objetos según su conductividad.

Los órganos eléctricos del anguila ocupan gran parte de su cuerpo.
Pueden descargar ambos débilmente para electrolocalización
y fuertemente para aturdir presa.

Electrocomunicación

Las anguilas eléctricas crean campos eléctricos lo suficientemente poderosos para aturdir la presa usando músculos modificados. Algunos peces de navajas débilmente eléctricos parecen imitar los patrones de descarga de la anguila eléctrica; esto puede ser la imitación batesiana, para engañar a los depredadores que son demasiado peligrosos para atacar.

Los peces débilmente eléctricos pueden comunicarse modulando la forma de onda eléctrica que generan. Pueden usar esto para atraer parejas y en exhibiciones territoriales. Los bagres eléctricos utilizan con frecuencia sus descargas eléctricas para alejar a otras especies de sus lugares de refugio, mientras que con sus propias especies han ritualizado peleas con exhibiciones con la boca abierta y, a veces, mordiscos, pero rara vez utilizan descargas eléctricas de órganos.

Cuando dos peces cuchillo de cristal (Sternopygidae) se acercan, ambos individuos cambian sus frecuencias de descarga en una respuesta para evitar interferencias.

En los peces cuchillo de nariz roma, Brachyhypopomus, el patrón de descarga eléctrica es similar a la descarga electrolocativa de bajo voltaje de la anguila eléctrica, Electrophorus. Se supone que esto es una imitación batesiana de la anguila eléctrica poderosamente protegida. Los machos de Brachyhypopomus producen un "zumbido" atraer hembras; esto consume entre el 11% y el 22% de su presupuesto total de energía, mientras que la electrocomunicación femenina consume sólo el 3%. Los machos grandes producían señales de mayor amplitud, y estas son las preferidas por las hembras. El costo para los machos se reduce mediante un ritmo circadiano, coincidiendo más actividad con el cortejo nocturno y el desove, y menos en otros momentos.

Los peces que se alimentan de peces electrolocalizadores pueden "escuchar a escondidas" sus presas. en las descargas de sus presas para detectarlas. El bagre africano electroreceptivo de dientes afilados (Clarias gariepinus) puede cazar al mormírido débilmente eléctrico, Marcusenius macrolepidotus de esta manera. Esto ha llevado a la presa, en una carrera armamentista evolutiva, a desarrollar señales más complejas o de mayor frecuencia que son más difíciles de detectar.

Algunos embriones y crías de tiburón "congelan" cuando detectan la señal eléctrica característica de sus depredadores.

Evolución y distribución taxonómica

En los vertebrados, la electrorrecepción pasiva es un rasgo ancestral, lo que significa que estuvo presente en su último ancestro común. El mecanismo ancestral se denomina electrorrecepción ampular, por el nombre de los órganos receptores implicados, ampollas de Lorenzini. Estos evolucionaron a partir de los sensores mecánicos de la línea lateral y existen en peces cartilaginosos (tiburones, rayas y quimeras), peces pulmonados, bichires, celacantos, esturiones, peces espátula, salamandras acuáticas y cecilias. Las ampollas de Lorenzini parecen haberse perdido en las primeras etapas de la evolución de los peces óseos y los tetrápodos, aunque la evidencia de su ausencia en muchos grupos es incompleta e insatisfactoria. Cuando la electrorrecepción ocurre en estos grupos, se ha adquirido secundariamente en la evolución, utilizando órganos distintos y no homólogos de las ampollas de Lorenzini.

Los órganos eléctricos han evolucionado al menos ocho veces, cada uno formando una pinza: dos veces durante la evolución de los peces cartilaginosos, creando los patines eléctricos y los rayos, y seis veces durante la evolución de los peces gordos. Se muestran sin símbolos grupos pasivamente electos, incluyendo aquellos que mueven sus cabezas para dirigir sus electroreceptores. No se muestran especies no electrófanas. Los peces electrolocalizantes activos están marcados con un pequeño rayo amarillo y sus características ondas de descarga. Los peces capaces de ofrecer descargas eléctricas están marcados con un rayo rojo flash .

Vertebras
Lampreys

Recep de disco final.
Pescados jawed
Peces cartilaginosos

Selachimorpha (sharks)

Batoidea

Torpediniformes (rayos eléctricos)

otros rayos

Rajidae (skates)

430 mya
Pescados buenos
Pescados afinados por lobos

Coelacanths

Peces pulmonares

Anfibios

(aquatic salamanders, cecilians; others: perdido)

Mamíferos
Monotremes

(platypus, echidna)

glándulas en hocico
Cetáceos

(Delfín de Guiana)

criptas vibrissal
(Perdido)
Peces afinados por Ray

bichirs, reedfishes

sturgeons, paddlefishes

La mayoría de peces bony

Mormyroidea
Mormyridae

elefantepes

Gymnarchidae

pez cuchillo africano

knollenorgans,
órgano eléctrico
Silurophysi
Gymnotiformes
S. Amer.

Carretes eléctricos

órgano eléctrico
Siluriformes
Gafas eléctricas

amp. receptores
Uranoscopidae

Stargazers

no electrolocalización
(Perdido)
425 mya
Amp. de Lorenz.

Pez cartilaginoso

Tiburones y rayos (Elasmobranchii) confía en la electrolocación usando su ampullae de Lorenzini en las etapas finales de sus ataques, como puede demostrarse por la respuesta de alimentación robusta provocada por campos eléctricos similares a los de su presa. Los tiburones son los animales más sensibles eléctricamente conocidos, respondiendo a los campos actuales directos tan bajos como 5 nV/cm.

Pez óseo

Dos grupos de peces teleósteos son débilmente eléctricos y activamente electrorreceptivos: los peces cuchillo neotropicales (Gymnotiformes) y los peces elefante africanos (Notopteroidei), lo que les permite navegar y encontrar alimento en aguas turbias. Los Gymnotiformes incluyen la anguila eléctrica, que además del uso de electrolocalización de bajo voltaje por parte del grupo, es capaz de generar descargas eléctricas de alto voltaje para aturdir a sus presas. Una electrogénesis tan poderosa utiliza grandes órganos eléctricos modificados a partir de músculos. Estos constan de una pila de electrocitos, cada uno de los cuales es capaz de generar un pequeño voltaje; los voltajes se suman efectivamente (en serie) para proporcionar una potente descarga eléctrica del órgano.

Monotremes

El platilpo es un mamífero monotreme que adquirió electrorecepción en segundo lugar. Sus receptores se organizan en rayas en su factura, dándole alta sensibilidad a los lados y abajo; hace giros rápidos de su cabeza mientras nada para detectar presa.

Los monotremas, incluidos los ornitorrincos semiacuáticos y los equidnas terrestres, son el único grupo de mamíferos que ha evolucionado la electrorrecepción. Mientras que los electrorreceptores de peces y anfibios evolucionaron a partir de órganos mecanosensoriales de la línea lateral, los de los monotremas se basan en glándulas cutáneas inervadas por nervios trigéminos. Los electrorreceptores de los monotremas constan de terminaciones nerviosas libres ubicadas en las glándulas mucosas del hocico. Entre los monotremas, el ornitorrinco (Ornithorhynchus anatinus) tiene el sentido eléctrico más agudo. El ornitorrinco localiza a su presa utilizando casi 40.000 electrorreceptores dispuestos en franjas de adelante hacia atrás a lo largo del pico. La disposición es altamente direccional, siendo más sensible hacia los lados y hacia abajo. Al realizar movimientos cortos y rápidos de la cabeza llamados sacádicas, los ornitorrincos localizan con precisión a sus presas. El ornitorrinco parece utilizar electrorrecepción junto con sensores de presión para determinar la distancia a su presa a partir del retraso entre la llegada de señales eléctricas y los cambios de presión en el agua.

Las capacidades electroreceptivas de las cuatro especies de echidna son mucho más simples. Echidnas largas (genus Zaglossus) tienen unos 2.000 receptores, mientras que las echidnas cortas (Tachyglossus aculeatus) tienen alrededor de 400, cerca del final del hocico. Esta diferencia se puede atribuir a sus métodos de hábitat y alimentación. Las echidnas occidentales de larga data se alimentan de lombriz en los bosques tropicales, lo suficientemente húmedas para realizar señales eléctricas bien. Las echidnas cortas se alimentan principalmente de termitas y hormigas, que viven en nidos en zonas secas; los interiores del nido son presumiblemente húmedos para que funcione la electrorecepción. Los experimentos han demostrado que las echidnas pueden ser entrenadas para responder a campos eléctricos débiles en agua y suelo húmedo. El sentido eléctrico de la echidna es hipotetizado para ser un remanente evolutivo de un ancestro como el yeso.

Delfines

Los delfines han evolucionado la electrorecepción en estructuras diferentes de las de los peces, los anfibios y los monotremas. Las criptas vibrisales sin pelo en la tribuna del delfín de la Guayana ( Sotalia guianensis ), originalmente asociadas con bigotes de mamíferos, son capaces de electrorecepción tan baja como 4.8 μV/cm, suficientes para detectar pequeños peces. Esto es comparable a la sensibilidad de los electroreceptores en el ornitorrinco.

Abejas

Hasta hace poco, la electrorrecepción sólo se conocía en los vertebrados. Investigaciones recientes han demostrado que las abejas pueden detectar la presencia y el patrón de una carga estática en las flores.

Contenido relacionado

Ley de Fick

La Ley de Fick es enunciado que resume la forma en la que operan los principios de difusión. Esta ley cuantifica el movimiento de una sustancia desde una...

Híbrido (biología)

En biología, un híbrido es la descendencia que resulta de combinar las cualidades de dos organismos de diferentes razas, variedades, especies o géneros a...

Evolución divergente

La evolución divergente o selección divergente es la acumulación de diferencias entre poblaciones estrechamente relacionadas dentro de una especie, lo que...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save