Cordillera en medio del océano

Una cordillera en medio del océano (MOR) es un sistema montañoso del fondo marino formado por placas tectónicas. Por lo general, tiene una profundidad de unos 2.600 metros (8.500 pies) y se eleva unos 2.000 metros (6.600 pies) sobre la parte más profunda de una cuenca oceánica. Esta característica es donde tiene lugar la expansión del fondo marino a lo largo de un límite de placa divergente. La tasa de expansión del fondo marino determina la morfología de la cresta de la dorsal oceánica y su anchura en una cuenca oceánica.
La producción de nuevo fondo marino y litosfera oceánica es el resultado del afloramiento del manto en respuesta a la separación de placas. El derretimiento se eleva como magma en la debilidad lineal entre las placas que se separan y emerge como lava, creando nueva corteza oceánica y litosfera al enfriarse.
La primera dorsal descubierta en medio del océano fue la Cordillera del Atlántico Medio, que es un centro en expansión que divide las cuencas del Atlántico Norte y Sur; de ahí el origen del nombre 'cordillera en medio del océano'. La mayoría de los centros de expansión oceánica no se encuentran en el medio de su base oceánica de acogida, pero de todos modos se denominan tradicionalmente dorsales oceánicas. Las dorsales en medio del océano alrededor del mundo están unidas por límites de placas tectónicas y el rastro de las crestas a través del fondo del océano parece similar a la costura de una pelota de béisbol. El sistema de dorsales en medio del océano es, por tanto, la cadena montañosa más larga de la Tierra, alcanzando unos 65.000 km (40.000 millas).
Sistema global

Las dorsales en medio del océano del mundo están conectadas y forman la Ocean Ridge, un único sistema global de dorsales en medio del océano que es parte de todos los océanos, lo que la convierte en la cadena montañosa más larga del mundo. . La cadena montañosa continua tiene 65.000 km (40.400 millas) de largo (varias veces más larga que los Andes, la cadena montañosa continental más larga), y la longitud total del sistema de dorsales oceánicas es de 80.000 km (49.700 millas) de largo.
Descripción



Morfología
En el centro de expansión en una dorsal en medio del océano, la profundidad del fondo marino es de aproximadamente 2.600 metros (8.500 pies). En los flancos de las dorsales, la profundidad del fondo marino (o la altura de un lugar en una dorsal en medio del océano por encima del nivel de la base) se correlaciona con su edad (edad de la litosfera donde se mide la profundidad). La relación profundidad-edad se puede modelar mediante el enfriamiento de una placa litosférica o del semiespacio del manto. Una buena aproximación es que la profundidad del fondo marino en un lugar sobre una dorsal en expansión en medio del océano es proporcional a la raíz cuadrada de la edad del fondo marino. La forma general de las dorsales resulta de la isostasia de Pratt: cerca del eje de la dorsal, hay un manto caliente y de baja densidad que sostiene la corteza oceánica. A medida que la placa oceánica se enfría, lejos del eje de la dorsal, la litosfera del manto oceánico (la parte más fría y densa del manto que, junto con la corteza, comprende las placas oceánicas) se espesa y la densidad aumenta. Por lo tanto, el fondo marino más antiguo está sustentado por material más denso y es más profundo.
Tasa de expansión es la velocidad a la que una cuenca oceánica se ensancha debido a la expansión del fondo marino. Las tasas se pueden calcular mapeando las anomalías magnéticas marinas que se extienden por las dorsales oceánicas. A medida que el basalto cristalizado extruido en el eje de una cresta se enfría por debajo de los puntos Curie de los óxidos de hierro y titanio apropiados, en esos óxidos se registran direcciones del campo magnético paralelas al campo magnético de la Tierra. Las orientaciones del campo conservadas en la corteza oceánica constituyen un registro de las direcciones del campo magnético de la Tierra a lo largo del tiempo. Debido a que el campo ha invertido direcciones a intervalos conocidos a lo largo de su historia, el patrón de inversiones geomagnéticas en la corteza oceánica puede usarse como indicador de la edad; Dada la edad de la corteza y la distancia desde el eje de la cresta, se pueden calcular las tasas de dispersión.
Las tasas de dispersión oscilan entre aproximadamente 10 y 200 mm/año. Las crestas de expansión lenta, como la Cordillera del Atlántico Medio, se han extendido mucho menos (mostrando un perfil más pronunciado) que las crestas más rápidas, como la Dorsal del Pacífico Oriental (perfil suave), durante la misma cantidad de tiempo y con el enfriamiento y la consiguiente profundización batimétrica. Las crestas de expansión lenta (menos de 40 mm/año) generalmente tienen grandes valles de rift, a veces de hasta 10 a 20 km (6,2 a 12,4 millas), y un terreno muy accidentado en la cresta de la cresta que puede tener un relieve de hasta 1000 m. (3.300 pies). Por el contrario, las crestas de rápida expansión (más de 90 mm/año), como la East Pacific Rise, carecen de valles de rift. La tasa de expansión del Océano Atlántico Norte es de ~ 25 mm/año, mientras que en la región del Pacífico es de 80 a 145 mm/año. La tasa más alta conocida es de más de 200 mm/año en el Mioceno en la Dorsal del Pacífico Oriental. Las crestas que se extienden a tasas <20 mm/año se denominan crestas de expansión ultralenta (por ejemplo, la cresta Gakkel en el Océano Ártico y la cresta del suroeste de la India).
El centro o eje de dispersión comúnmente se conecta a una falla transformante orientada en ángulo recto con respecto al eje. Los flancos de las dorsales en medio del océano están marcados en muchos lugares por cicatrices inactivas de fallas transformantes llamadas zonas de fractura. A velocidades de dispersión más rápidas, los ejes a menudo muestran centros de dispersión superpuestos que carecen de fallas de transformación de conexión. La profundidad del eje cambia de manera sistemática con profundidades menores entre compensaciones, como fallas transformantes y centros de expansión superpuestos que dividen el eje en segmentos. Una hipótesis para diferentes profundidades a lo largo del eje son las variaciones en el suministro de magma al centro de expansión. Las crestas de expansión ultralenta forman segmentos de crestas tanto magmáticas como amagmáticas (actualmente carecen de actividad volcánica) sin fallas transformantes.
Vulcanismo
Las dorsales en medio del océano exhiben vulcanismo y sismicidad activos. La corteza oceánica se encuentra en constante estado de 'renovación' en las dorsales oceánicas por los procesos de expansión del fondo marino y la tectónica de placas. Nuevo magma emerge constantemente en el fondo del océano e invade la corteza oceánica existente en y cerca de las fisuras a lo largo de los ejes de las dorsales. Las rocas que forman la corteza debajo del fondo marino son más jóvenes a lo largo del eje de la cresta y envejecen a medida que aumenta la distancia desde ese eje. Nuevo magma de composición basáltica emerge en el eje y cerca de él debido a la descompresión que se derrite en el manto subyacente de la Tierra. El material sólido del manto ascendente isentrópico excede la temperatura del solidus y se funde.
El magma cristalizado forma una nueva corteza de basalto conocida como MORB por el basalto de las dorsales en medio del océano y el gabro debajo de ella. en la corteza oceánica inferior. El basalto de las dorsales oceánicas es un basalto toleítico y tiene un bajo contenido de elementos incompatibles. Los respiraderos hidrotermales alimentados por calor magmático y volcánico son una característica común en los centros de expansión oceánica. Una característica de las crestas elevadas son sus valores de flujo de calor relativamente altos, de aproximadamente 1 a 10 μcal/cm2s, o aproximadamente 0,04 a 0,4 W/m2.
La mayor parte de la corteza de las cuencas oceánicas tiene menos de 200 millones de años, una edad mucho más joven que los 4.540 millones de años de la Tierra. Este hecho refleja el proceso de reciclaje de la litosfera en el manto de la Tierra durante la subducción. A medida que la corteza oceánica y la litosfera se alejan del eje de la dorsal, la peridotita en la litosfera del manto subyacente se enfría y se vuelve más rígida. La corteza y la peridotita relativamente rígida debajo de ella forman la litosfera oceánica, que se asienta sobre la astenosfera, menos rígida y viscosa.

Mecanismos de conducción

La litosfera oceánica se forma en una dorsal oceánica, mientras que la litosfera se subduce nuevamente hacia la astenosfera en las fosas oceánicas. Se cree que dos procesos, el empuje de las crestas y el tirón de losas, son responsables de la propagación en las dorsales oceánicas. El empuje de cresta se refiere al deslizamiento gravitacional de la placa oceánica que se eleva por encima de la astenosfera más caliente, creando así una fuerza corporal que provoca el deslizamiento de la placa cuesta abajo. En la tracción de losa, el peso de una placa tectónica que se subduce (jala) debajo de una placa suprayacente en una zona de subducción arrastra el resto de la placa detrás de ella. Se considera que el mecanismo de tracción de la losa contribuye más que el empuje de la cumbrera.
Un proceso propuesto previamente para contribuir al movimiento de las placas y la formación de nueva corteza oceánica en las dorsales oceánicas es el "transportador del manto" debido a la convección profunda (ver imagen). Sin embargo, algunos estudios han demostrado que el manto superior (astenosfera) es demasiado plástico (flexible) para generar suficiente fricción para arrastrar la placa tectónica. Además, el afloramiento del manto que hace que se forme magma debajo de las dorsales oceánicas parece afectar sólo a sus 400 km superiores (250 millas), como se deduce de la tomografía sísmica y de las observaciones de la discontinuidad sísmica en el manto superior a unos 400 km (250 millas). Por otro lado, algunas de las placas tectónicas más grandes del mundo, como la Placa de América del Norte y la Placa de América del Sur, están en movimiento, pero sólo están siendo subducidas en lugares restringidos como el Arco de las Antillas Menores y el Arco de Escocia, lo que apunta a La acción de la cresta empuja la fuerza del cuerpo sobre estas placas. Los modelos informáticos de los movimientos de las placas y del manto sugieren que el movimiento de las placas y la convección del manto no están conectados, y que la fuerza impulsora de la placa principal es la tracción de la losa.
Impacto en el nivel del mar global
El aumento del ritmo de expansión del fondo marino (es decir, el ritmo de expansión de la dorsal oceánica) ha provocado que el nivel global (eustático) del mar aumente en escalas de tiempo muy largas (millones de años). Una mayor expansión del fondo marino significa que la dorsal en medio del océano se expandirá y formará una dorsal más ancha con una profundidad promedio menor, ocupando más espacio en la cuenca oceánica. Esto desplaza el océano suprayacente y provoca un aumento del nivel del mar.
El cambio en el nivel del mar se puede atribuir a otros factores (expansión térmica, derretimiento del hielo y convección del manto que crean una topografía dinámica). Sin embargo, en escalas de tiempo muy largas, es el resultado de cambios en el volumen de las cuencas oceánicas que, a su vez, se ven afectados por la velocidad de expansión del fondo marino a lo largo de las dorsales oceánicas.
El nivel del mar entre 100 y 170 metros más alto en el período Cretácico (144-65 Ma) se atribuye en parte a la tectónica de placas porque la expansión térmica y la ausencia de capas de hielo solo representan una parte del nivel adicional del mar.
Impacto en la química del agua de mar y la deposición de carbonatos

El fondo marino que se extiende sobre las dorsales oceánicas es un sistema de intercambio iónico a escala global. Los respiraderos hidrotermales en los centros de expansión introducen diversas cantidades de hierro, azufre, manganeso, silicio y otros elementos en el océano, algunos de los cuales se reciclan en la corteza oceánica. El helio-3, un isótopo que acompaña al vulcanismo desde el manto, es emitido por respiraderos hidrotermales y puede detectarse en columnas dentro del océano.
Las rápidas tasas de expansión expandirán la dorsal oceánica provocando que las reacciones del basalto con el agua de mar se produzcan más rápidamente. La relación magnesio/calcio será menor porque se eliminarán más iones de magnesio del agua de mar y la roca los consumirá, y más iones de calcio se eliminarán de la roca y se liberarán en el agua de mar. La actividad hidrotermal en la cresta de la cresta es eficaz para eliminar el magnesio. Una relación Mg/Ca más baja favorece la precipitación de polimorfos de calcita de carbonato cálcico con bajo contenido de Mg (mares de calcita).
La lenta expansión en las dorsales oceánicas tiene el efecto contrario y dará como resultado una mayor proporción de Mg/Ca que favorece la precipitación de aragonito y calcita polimorfos de carbonato de calcio con alto contenido de Mg (mares de aragonito).
Los experimentos muestran que la mayoría de los organismos modernos con alto contenido de calcita habrían sido calcita con bajo contenido de Mg en los mares de calcita del pasado, lo que significa que la relación Mg/Ca en el esqueleto de un organismo varía con la relación Mg/Ca del agua de mar. en el que fue cultivado.
La mineralogía de los organismos formadores de arrecifes y productores de sedimentos está regulada por reacciones químicas que ocurren a lo largo de la dorsal oceánica, cuyo ritmo está controlado por la velocidad de expansión del fondo marino.
Historia
Descubrimiento
Los primeros indicios de que una cresta divide la cuenca del Océano Atlántico provinieron de los resultados de la expedición británica Challenger en el siglo XIX. Los oceanógrafos Matthew Fontaine Maury y Charles Wyville Thomson analizaron los sondeos de líneas lanzadas al fondo marino y revelaron un aumento prominente en el fondo marino que recorría la cuenca del Atlántico de norte a sur. Las ecosondas de sonar lo confirmaron a principios del siglo XX.
No fue hasta después de la Segunda Guerra Mundial, cuando se estudió con más detalle el fondo del océano, que se conoció la extensión total de las dorsales en medio del océano. El Vema, un barco del Observatorio Terrestre Lamont-Doherty de la Universidad de Columbia, atravesó el Océano Atlántico y registró datos de ecosonda sobre la profundidad del fondo del océano. Un equipo dirigido por Marie Tharp y Bruce Heezen concluyó que había una enorme cadena montañosa con un valle de rift en su cima, que se extendía por el medio del Océano Atlántico. Los científicos la llamaron 'Cordillera del Atlántico Medio'. Otras investigaciones mostraron que la cresta de la cresta era sísmicamente activa y se encontraron lavas frescas en el valle del rift. Además, el flujo de calor de la corteza terrestre fue mayor aquí que en otras partes de la cuenca del Océano Atlántico.
Al principio, se pensó que la cresta era una característica específica del Océano Atlántico. Sin embargo, a medida que continuaron los estudios del fondo del océano en todo el mundo, se descubrió que cada océano contiene partes del sistema de dorsales oceánicas. La expedición alemana Meteor trazó la dorsal oceánica desde el Atlántico Sur hasta el Océano Índico a principios del siglo XX. Aunque la primera sección descubierta del sistema de dorsales discurre por el centro del Océano Atlántico, se descubrió que la mayoría de las dorsales en medio del océano están ubicadas lejos del centro de otras cuencas oceánicas.
Impacto del descubrimiento: expansión del fondo marino
Alfred Wegener propuso la teoría de la deriva continental en 1912. Afirmó: "la dorsal del Atlántico Medio... zona en la que el fondo del Atlántico, a medida que se expande, se abre continuamente y crea espacio. para sima [que se eleva] fresca, relativamente fluida y caliente desde las profundidades". Sin embargo, Wegener no continuó con esta observación en sus trabajos posteriores y su teoría fue descartada por los geólogos porque no había ningún mecanismo para explicar cómo los continentes podían atravesar la corteza oceánica, y la teoría quedó en gran medida olvidada.
Tras el descubrimiento de la extensión mundial de la dorsal oceánica en la década de 1950, los geólogos se enfrentaron a una nueva tarea: explicar cómo se pudo haber formado una estructura geológica tan enorme. En la década de 1960, los geólogos descubrieron y comenzaron a proponer mecanismos para la expansión del fondo marino. El descubrimiento de las dorsales oceánicas y el proceso de expansión del fondo marino permitieron ampliar la teoría de Wegener para incluir el movimiento de la corteza oceánica y los continentes. La tectónica de placas era una explicación adecuada para la expansión del fondo marino, y la aceptación de la tectónica de placas por parte de la mayoría de los geólogos resultó en un importante cambio de paradigma en el pensamiento geológico.
Se estima que a lo largo de las dorsales oceánicas de la Tierra cada año se forman 2,7 km2 (1,0 millas cuadradas) de nuevo fondo marino mediante este proceso. Con un espesor de la corteza terrestre de 7 km (4,3 millas), esto equivale a unos 19 km3 (4,6 millas cúbicas) de nueva corteza oceánica que se forman cada año.
- Cerradura oceánica y química de ventilación profunda
- Placas en la corteza de la tierra, según la teoría de la placa tectónica
- Desnudamiento magnético Seafloor
- Una demostración de desnudamiento magnético
Lista de dorsales en medio del océano
- Aden Ridge – Parte de un sistema activo de grietas oblicuas en el Golfo de Adén, entre Somalia y la Península Arábiga
- Cocos Ridge – Pacific volcán hotspotPáginas que muestran descripciones cortas de objetivos redireccionados
- Explorer Ridge – Mid-ocean ridge oeste de Columbia Británica, Canadá
- Centro de Esparcimiento de Galápagos - una cresta de tendencia este-oeste al este de las islas epónimas entre las placas Nazca y Cocos
- Gorda Ridge – Centro de difusión tectónica frente a la costa norte de California y el sur de Oregon
- Juan de Fuca Ridge – Placa Divergente borde frente a la costa de la región del Pacífico noroeste de América del Norte
- South American–Antarctic Ridge – Mid-ocean ridge in the South Atlantic between the South American Plate and the Antarctic Plate
- Chile Rise – Cresta oceánica submarina en el Océano PacíficoPáginas que muestran descripciones cortas de objetivos redireccionados
- East Pacific Rise – Una cresta medio-oceánica en un divergente límite de placas tectónicas en el suelo del Océano Pacífico
- Gakkel Ridge – Cresta media-oceánica bajo el Océano Ártico entre la Placa Norteamericana y la Placa Eurasia (Med-Arctic Ridge)
- Pacífico-Antártico Ridge – Límite de placa tectónica en el Océano Pacífico Sur
- Central Indian Ridge – Una cresta entre el océano Índico norte-sur en el Océano Índico occidental
- Carlsberg Ridge – Helado de placa tectónica
- Southeast Indian Ridge – Mid-ocean ridge in the southern Indian Ocean
- Southwest Indian Ridge – A mid-ocean ridge on the bed of the south-west Indian Ocean and south-east Atlantic Ocean
- Mid-Atlantic Ridge – Atlantic Ocean tectonic plate boundary
- Kolbeinsey Ridge – Segment of the Mid-Atlantic Ridge north of Iceland in the Arctic Ocean
- Mohns Ridge – Región geográfica en la cuenca del Atlántico
- Knipovich – zoólogo rusoPáginas que muestran descripciones cortas de objetivos redireccionados Ridge (entre Groenlandia y Spitsbergen)
- Reykjanes Ridge – Atlantic Ocean tectonic plate boundaryPáginas que muestran descripciones cortas de objetivos redireccionados (sur de Islandia)
Lista de dorsales oceánicas antiguas
- Aegir Ridge – Extinct mid-ocean ridge in the far-northern Atlantic Ocean
- Alfa Ridge – Mayor cresta volcánica bajo el Océano Ártico
- Kula-Farallon Ridge – Antigua cresta de medio océano
- Mid-Labrador Ridge – Mid-ocean ridge in the Labrador Sea
- Pacific-Farallon Ridge – Cretácea tardía durante el Cretáceo tardío
- Pacific-Kula Ridge – Cresta entre el Pacífico y las placas Kula en el Océano Pacífico durante el período de Paleogene
- Phoenix Ridge – Antigua cresta de medio océano entre las placas Phoenix y PacíficoPáginas que muestran descripciones cortas de objetivos redireccionados
Contenido relacionado
Precisión y exactitud
Longitud geográfica
Núcleo externo de la Tierra