Polygonal number

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Polygonal numbers
Polygonal Number 3.gif
Polygonal Number 4.gif
Polygonal Number 5.gif
Polygonal Number 6.gif
The first four types of polygonal numbers: triangular, quadrangle, pentagonal and hexagonal numbers

In mathematics, a polygonal number is a natural number that can be recomposed into a regular polygon. Ancient mathematicians discovered that numbers could be arranged in certain shapes when represented by stones or seeds.

Polygonal numbers

The number 10 can be recomposed as a triangle (see triangular number):

*
**
***
****

However, 10 cannot form a square, but 9 can (see square number):

***
***
***

Some numbers, like 36, can be recomposed in both a square and a triangle (see triangular square number):

******
******
******
******
******
******
*
**
***
****
*****
******
*******
********

The method used to enlarge the polygon to the next size is to extend two adjacent arms by one point and then add the required extra sides between the points.

Formulas

A number s-gonal can be broken down s−2 triangular numbers and in a natural number

If s is the number of sides of a polygon, the formula for the n-th number s-gonal P(s,n) is

P(s,n)=(s− − 2)n2− − (s− − 4)n2{displaystyle P(s,n)={frac {(s-2)n^{2}-(s-4)n}{2}}}{2}}}}}

or

P(s,n)=(s− − 2)n(n− − 1)2+n{displaystyle P(s,n)=(s-2){frac {n(n-1)}{2}}+n}

The n-th number s-gonal is also related to the triangular Tn numbers of the following way:

P(s,n)=(s− − 2)Tn− − 1+n=(s− − 3)Tn− − 1+Tn.{displaystyle P(s,n)=(s-2)T_{n-1}+n=(s-3)T_{n}-1+T_{n}, !

Therefore:

P(s,n+1)− − P(s,n)=(s− − 2)n+1,P(s+1,n)− − P(s,n)=Tn− − 1=n(n− − 1)2.{displaystyle {begin{aligned}P(s,n+1)-P(s,n) fake=(s-2)n+1,,P(s+1,n)-P(s,n) fake=T_{n-1}={frac {n(n-1)}{2}{2},.end{aligned}}}}}}

For a given s-gonal number P(s,n) = x, you can find n using the formula

n=8(s− − 2)x+(s− − 4)2+(s− − 4)2(s− − 2){displaystyle n={frac {{sqrt {8(s-2)x+{(s-4)}{2}}}{2}+(s-4)}{2(s-2)}}}}}}}}}}}}

and in turn can find s by calculating

s=2+2n⋅ ⋅ x− − nn− − 1{displaystyle s=2+{frac {2}{n}}}{cdot {frac {x-n}{n-1}}}}}}.

Every hexagonal number is also a triangular number

Applying the previous formula:

P(s,n)=(s− − 2)Tn− − 1+n{displaystyle P(s,n)=(s-2)T_{n-1}+n}

for the 6-sided case, we get:

P(6,n)=4Tn− − 1+n{displaystyle P(6,n)=4T_{n-1}+n}

but knowing that:

Tn− − 1=n(n− − 1)2{displaystyle T_{n-1}={frac {n(n-1)}{2}}}

results:

P(6,n)=4n(n− − 1)2+n=2n(2n− − 1)2=T2n− − 1{displaystyle P(6,n)={frac {4n(n-1)}{2}}{2} +n={frac {2n(2n-1)}{2}}}=T_{2n-1}}}}}

This shows that the n-'th hex number P(6,n) is also the (2n − 1)- th triangular number T2n−1. The sequence of the hexagonal numbers can be determined simply by taking the odd triangular numbers:

13, 610, 15, 21, 2836, 45, 55, 66...

Nth polygonal number

Yeah. l{displaystyle l} is the number of sides of a polygon, then the formula for the n{displaystyle n}- thirtieth polygonal number l{displaystyle l} sides. n((l− − 2)n− − (l− − 4))2{displaystyle {tfrac {n(l-2)n-(l-4)}}{2}}}}}.

NameFormulan
12345678910111213
Triangular1⁄2n1n + 1) 1 36 10 1521 28 3645 55 6678 91
Square1⁄2n(22)n - 0) 1 49 16 2536 49 6481 100 121144 169
Pentagonal1⁄2n(3)n - (1) 1 512 22 3551 70 92117 145 176210 247
Hexagonal1⁄2n(4)n - (2) 1 615 28 4566 91 120153 190 231276 325
Heptagonal1⁄2n(5)n - (3) 1 718 34 5581 112 148189 235 286342 403
8th1⁄2n(6)n - (4) 1 821 40 6596 133 176225 280 341408 481
Nonagonal1⁄2n(7)n - (5) 1 924 46 75111 154 204261 325 396474 559
Decagonal1⁄2n(8)n - 6) 1 1027 52 85126 175 232297 370 451540 637
11-August1⁄2n(9)n - 7) 1 1130 58 95141 196 260333 415 506606 715
12-August 1⁄2n(10)n - 8) 112 33 64105 156. 217288 369 460561 672793
13-August 1⁄2n(11)n - 9) 113 36 70115 171 238316 405 505616 738871
14-August 1⁄2n(12)n - 10) 114 39 76125 186 259344 441 550671 804949
15-August 1⁄2n(13)n - 11) 115 42 82135 201 280372 477 595726 8701027
16-August 1⁄2n(14)n - 12) 116 45 88145 216 301400 513 640781 9361105
17-August 1⁄2n(15)n - 13) 117 48 94155 231 322428 549 685836 10021183
18-August 1⁄2n(16)n - 14) 118 51 100165 246 343456 585 730891 10681261
19-August 1⁄2n(17)n - 15) 119 54 106175 261 364484 621 775946 11341339
20-August 1⁄2n(18)n - 16) 120 57 112185. 276 385512 657 8201001 12001417
21-August 1⁄2n(19)n - 17) 121 60 118195 291 406540 693 8651056 12661495
22-August 1⁄2n(20)n - 18) 122 63 124205 306 427568 729 9101111 13321573
23-August 1⁄2n(21)n - 19) 123 66 130215 321 448596 765 9551166 13981651
24-August 1⁄2n(22)n - 20) 124 69 136225 336 469624 801 10001221 14641729
25-August 1⁄2n(23)n - 21) 125 72 142235 351 491652 837 10451276 15301807
26-August 1⁄2n(24)n - 22) 126 75 148245 366 511680 873 10901331 15961885
27-August 1⁄2n(25)n - 23) 127 78 154255 381 532708 909 11351386 16621963
28-August 1⁄2n(26)n - 24) 128 81 160265 396 553736 945 11801441 17282041
29-August 1⁄2n(27)n - 25) 129 84 166275 411 574764 981 12251496 17942119
30-August 1⁄2n(28)n - 26) 130 87 172285 426 595792 1017 12701551 18602197

Properties

The following table includes some properties of the series defined by the polygonal numbers. The results of the sum of the inverses of polygonal numbers are especially relevant. ␡ ␡ i=1∞ ∞ 1ni{displaystyle sum _{i=1}^{infty }{frac {1{n_{i}}}}}}{. The first 6 values in the column "inverse sum", for triangular to octagonal numbers, come from a solution published to the general problem, which also gives a general formula for any number of sides, in terms of the function digomma.

sName Formula Amount of the reverses Number OEIS
3 Triangular 1/2(n2 + n)2[ ]A000217
4 Square 1/2(22)n2 - 0n)
= n2
π2/6[ ]A000290
5 Pentagonal 1/2(3)n2 - n)3 ln 3 - π3/3[ ]A000326
6 Hexagonal 1/2(4)n2 - 2n)
= 2n2 - n
2 ln 2[ ]A000384
7 Heptagonal 1/2(5)n2 - 3n)23ln 5+1+53ln 10− − 252+1− − 53ln 10+252+π π 25− − 10515{cHFFFFFF}{cHFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFF}{cHFFFF}{cHFFFF}{cHFFFF} {cHFFFF}{cHFFFF}{cHFF} {cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFFFF}{cHFF}{cHFF}{cHFF}{cHFFFFFF}{cHFF}{cHFFFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF[ ]A000566
8 8th 1/2(6)n2 - 4n)
= 3n2 - 2n
3/4 ln 3 + π3/12[ ]A000567
9 Nonagonal 1/2(7)n2 - 5n)A001106
10 Decagonal 1/2(8)n2 - 6n)
= 4n2 - 3n
ln 2 + π/6A001107
11 Hendecagonal 1/2(9)n2 - 7n)A051682
12 Dodecagonal 1/2(10)n2 - 8n)A051624
13 Tridecagonal 1/2(11)n2 - 9n)A051865
14 Tetradecagonal 1/2(12)n2 - 10n)2/5 ln 2 + 3/10 ln 3 + π3/10A051866
15 Pentadecagonal 1/2(13)n2 - 11n)A051867
16 Hexadecagonal 1/2(14)n2 - 12n)A051868
17 Heptadecagonal 1/2(15)n2 - 13n)A051869
18 Octadecagonal 1/2(16)n2 - 14n)4/7 Ln 2 - 2/14 ln (3 - 22) + π(1 + 2)/14A051870
19 Inneadecagonal 1/2(17)n2 - 15n)A051871
20 Icosagonal 1/2(18)n2 - 16n)A051872
21 Icosihenagonal 1/2(19)n2 - 17n)A051873
22 Icosidigonal 1/2(20)n2 - 18n)A051874
23 Icositrigonal 1/2(21)n2 - 19n)A051875
24 Icositetragonal 1/2(22)n2 - 20n)A051876
... ... ... ... ...
10000 Myriagonal 1/2(9998)n2 - 9996n)A167149

The OEIS avoids terms that use Greek prefixes (for example, "octagonal") in favor of terms that use numbers (for example, "8-gonal").

A property of this table can be expressed by the following identity (see A086270):

2P(s,n)=P(s+k,n)+P(s− − k,n),{displaystyle 2,P(s,n)=P(s+k,n)+P(s-k,n),}

with

k=0,1,2,3,...,s− − 3.{displaystyle k=0,1,2,3,...,s-3. !

Multipoly numbers

Some numbers, like 36, which is both square and triangular, belong to two sets of polygonal numbers. The problem of determining, given two sets of this type, all the numbers that belong to both can be solved by reducing the problem to a Pell equation. The simplest example is the sequence of triangular square numbers.

The following table summarizes the set of numbers s-gonal t-gonals for small values of s and t.

stSequence OEIS number
4 3 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841860625 A001110
5 3 1, 210, 40755, 7906276, 1533776805, 297544793910, 57722156241751, 11197800766105800, 2172315626468283465,... A014979
5 4 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801,... A036353
6 3 All hexagonal numbers are also triangular. A000384
6 4 1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441,... A046177
6 5 1, 40755, 1533776805,... A046180
7 3 1, 55, 121771, 5720653, 12625478965, 593128762435, 1309034909945503, 61496776341083161, 135723357520344181225, 63761087640030554511, 14072069153115290487843091,... A046194
7 4 1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025,... A036354
7 5 1, 4347, 16701685, 64167869935,... A048900
7 6 1, 121771, 12625478965,... A048903
8 3 1, 21, 11781, 203841,... A046183
8 4 1, 225, 43681, 8473921, 1643897025, 318907548961, 61866420601441, 12001766689130625, 23280871270739841, 451674487259834398561, 87622522247536602581025, 16998317641534841066320321,... A036428
8 5 1, 176, 1575425, 234631320,... A046189
8 6 1, 11781, 113123361,... A046192
8 7 1, 297045, 69010153345,... A048906
9 3 1, 325, 82621, 20985481,... A048909
9 4 1, 9, 1089, 8281, 978121, 7436529, 878351769, 6677994961, 788758910641, 5996832038649, 708304623404049, 5385148492712041, 636056763057925561,... A036411
9 5 1, 651, 180868051,... A048915
9 6 1, 325, 5330229625,... A048918
9 7 1, 26884, 542041975,... A048921
9 8 1, 631125, 286703855361,... A048924

In some cases, such as s = 10 and t = 4, there are no numbers in both sets other than 1.

The problem of finding numbers that belong to three polygon sets is more difficult. A computer search for pentagonal-square triangular numbers has returned only the trivial value of 1, although no proof has yet been found that some number does not exist that might belong to all three classes.

The number 1225 is hecatonicositetragonal (s = 124), hexacontagonal (s = 60), icosienneagonal (s = 29), hexagonal, square and triangular.

The only polygon set that is completely contained in another polygon set is the set of hexagonal numbers, which is contained in the set of triangular numbers.[citation needed]

Contenido relacionado

Diferential calculus

The differential calculus is a part of the infinitesimal calculus and mathematical analysis that studies how continuous functions change as their variables...

Yotta

Yotta is an SI prefix indicating a factor of 1024 (one...

Alexander Grothendieck

Alexander Grothendieck was a stateless mathematician, nationalized French in the years 1980. During the second half of the XX century, he carried out an...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save