Polygonal number
Polygonal numbers |
The first four types of polygonal numbers: triangular, quadrangle, pentagonal and hexagonal numbers |
In mathematics, a polygonal number is a natural number that can be recomposed into a regular polygon. Ancient mathematicians discovered that numbers could be arranged in certain shapes when represented by stones or seeds.
Polygonal numbers
The number 10 can be recomposed as a triangle (see triangular number):
However, 10 cannot form a square, but 9 can (see square number):
Some numbers, like 36, can be recomposed in both a square and a triangle (see triangular square number):
The method used to enlarge the polygon to the next size is to extend two adjacent arms by one point and then add the required extra sides between the points.
Formulas
If s is the number of sides of a polygon, the formula for the n-th number s-gonal P(s,n) is
- P(s,n)=(s− − 2)n2− − (s− − 4)n2{displaystyle P(s,n)={frac {(s-2)n^{2}-(s-4)n}{2}}}{2}}}}}
or
- P(s,n)=(s− − 2)n(n− − 1)2+n{displaystyle P(s,n)=(s-2){frac {n(n-1)}{2}}+n}
The n-th number s-gonal is also related to the triangular Tn numbers of the following way:
- P(s,n)=(s− − 2)Tn− − 1+n=(s− − 3)Tn− − 1+Tn.{displaystyle P(s,n)=(s-2)T_{n-1}+n=(s-3)T_{n}-1+T_{n}, !
Therefore:
- P(s,n+1)− − P(s,n)=(s− − 2)n+1,P(s+1,n)− − P(s,n)=Tn− − 1=n(n− − 1)2.{displaystyle {begin{aligned}P(s,n+1)-P(s,n) fake=(s-2)n+1,,P(s+1,n)-P(s,n) fake=T_{n-1}={frac {n(n-1)}{2}{2},.end{aligned}}}}}}
For a given s-gonal number P(s,n) = x, you can find n using the formula
- n=8(s− − 2)x+(s− − 4)2+(s− − 4)2(s− − 2){displaystyle n={frac {{sqrt {8(s-2)x+{(s-4)}{2}}}{2}+(s-4)}{2(s-2)}}}}}}}}}}}}
and in turn can find s by calculating
- s=2+2n⋅ ⋅ x− − nn− − 1{displaystyle s=2+{frac {2}{n}}}{cdot {frac {x-n}{n-1}}}}}}.
Every hexagonal number is also a triangular number
Applying the previous formula:
- P(s,n)=(s− − 2)Tn− − 1+n{displaystyle P(s,n)=(s-2)T_{n-1}+n}
for the 6-sided case, we get:
- P(6,n)=4Tn− − 1+n{displaystyle P(6,n)=4T_{n-1}+n}
but knowing that:
- Tn− − 1=n(n− − 1)2{displaystyle T_{n-1}={frac {n(n-1)}{2}}}
results:
- P(6,n)=4n(n− − 1)2+n=2n(2n− − 1)2=T2n− − 1{displaystyle P(6,n)={frac {4n(n-1)}{2}}{2} +n={frac {2n(2n-1)}{2}}}=T_{2n-1}}}}}
This shows that the n-'th hex number P(6,n) is also the (2n − 1)- th triangular number T2n−1. The sequence of the hexagonal numbers can be determined simply by taking the odd triangular numbers:
- 13, 610, 15, 21, 2836, 45, 55, 66...
Nth polygonal number
Yeah. l{displaystyle l} is the number of sides of a polygon, then the formula for the n{displaystyle n}- thirtieth polygonal number l{displaystyle l} sides. n((l− − 2)n− − (l− − 4))2{displaystyle {tfrac {n(l-2)n-(l-4)}}{2}}}}}.
Name | Formula | n | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ||
Triangular | 1⁄2n1n + 1) | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | 66 | 78 | 91 |
Square | 1⁄2n(22)n - 0) | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169 |
Pentagonal | 1⁄2n(3)n - (1) | 1 | 5 | 12 | 22 | 35 | 51 | 70 | 92 | 117 | 145 | 176 | 210 | 247 |
Hexagonal | 1⁄2n(4)n - (2) | 1 | 6 | 15 | 28 | 45 | 66 | 91 | 120 | 153 | 190 | 231 | 276 | 325 |
Heptagonal | 1⁄2n(5)n - (3) | 1 | 7 | 18 | 34 | 55 | 81 | 112 | 148 | 189 | 235 | 286 | 342 | 403 |
8th | 1⁄2n(6)n - (4) | 1 | 8 | 21 | 40 | 65 | 96 | 133 | 176 | 225 | 280 | 341 | 408 | 481 |
Nonagonal | 1⁄2n(7)n - (5) | 1 | 9 | 24 | 46 | 75 | 111 | 154 | 204 | 261 | 325 | 396 | 474 | 559 |
Decagonal | 1⁄2n(8)n - 6) | 1 | 10 | 27 | 52 | 85 | 126 | 175 | 232 | 297 | 370 | 451 | 540 | 637 |
11-August | 1⁄2n(9)n - 7) | 1 | 11 | 30 | 58 | 95 | 141 | 196 | 260 | 333 | 415 | 506 | 606 | 715 |
12-August | 1⁄2n(10)n - 8) | 1 | 12 | 33 | 64 | 105 | 156. | 217 | 288 | 369 | 460 | 561 | 672 | 793 |
13-August | 1⁄2n(11)n - 9) | 1 | 13 | 36 | 70 | 115 | 171 | 238 | 316 | 405 | 505 | 616 | 738 | 871 |
14-August | 1⁄2n(12)n - 10) | 1 | 14 | 39 | 76 | 125 | 186 | 259 | 344 | 441 | 550 | 671 | 804 | 949 |
15-August | 1⁄2n(13)n - 11) | 1 | 15 | 42 | 82 | 135 | 201 | 280 | 372 | 477 | 595 | 726 | 870 | 1027 |
16-August | 1⁄2n(14)n - 12) | 1 | 16 | 45 | 88 | 145 | 216 | 301 | 400 | 513 | 640 | 781 | 936 | 1105 |
17-August | 1⁄2n(15)n - 13) | 1 | 17 | 48 | 94 | 155 | 231 | 322 | 428 | 549 | 685 | 836 | 1002 | 1183 |
18-August | 1⁄2n(16)n - 14) | 1 | 18 | 51 | 100 | 165 | 246 | 343 | 456 | 585 | 730 | 891 | 1068 | 1261 |
19-August | 1⁄2n(17)n - 15) | 1 | 19 | 54 | 106 | 175 | 261 | 364 | 484 | 621 | 775 | 946 | 1134 | 1339 |
20-August | 1⁄2n(18)n - 16) | 1 | 20 | 57 | 112 | 185. | 276 | 385 | 512 | 657 | 820 | 1001 | 1200 | 1417 |
21-August | 1⁄2n(19)n - 17) | 1 | 21 | 60 | 118 | 195 | 291 | 406 | 540 | 693 | 865 | 1056 | 1266 | 1495 |
22-August | 1⁄2n(20)n - 18) | 1 | 22 | 63 | 124 | 205 | 306 | 427 | 568 | 729 | 910 | 1111 | 1332 | 1573 |
23-August | 1⁄2n(21)n - 19) | 1 | 23 | 66 | 130 | 215 | 321 | 448 | 596 | 765 | 955 | 1166 | 1398 | 1651 |
24-August | 1⁄2n(22)n - 20) | 1 | 24 | 69 | 136 | 225 | 336 | 469 | 624 | 801 | 1000 | 1221 | 1464 | 1729 |
25-August | 1⁄2n(23)n - 21) | 1 | 25 | 72 | 142 | 235 | 351 | 491 | 652 | 837 | 1045 | 1276 | 1530 | 1807 |
26-August | 1⁄2n(24)n - 22) | 1 | 26 | 75 | 148 | 245 | 366 | 511 | 680 | 873 | 1090 | 1331 | 1596 | 1885 |
27-August | 1⁄2n(25)n - 23) | 1 | 27 | 78 | 154 | 255 | 381 | 532 | 708 | 909 | 1135 | 1386 | 1662 | 1963 |
28-August | 1⁄2n(26)n - 24) | 1 | 28 | 81 | 160 | 265 | 396 | 553 | 736 | 945 | 1180 | 1441 | 1728 | 2041 |
29-August | 1⁄2n(27)n - 25) | 1 | 29 | 84 | 166 | 275 | 411 | 574 | 764 | 981 | 1225 | 1496 | 1794 | 2119 |
30-August | 1⁄2n(28)n - 26) | 1 | 30 | 87 | 172 | 285 | 426 | 595 | 792 | 1017 | 1270 | 1551 | 1860 | 2197 |
Properties
The following table includes some properties of the series defined by the polygonal numbers. The results of the sum of the inverses of polygonal numbers are especially relevant. ␡ ␡ i=1∞ ∞ 1ni{displaystyle sum _{i=1}^{infty }{frac {1{n_{i}}}}}}{. The first 6 values in the column "inverse sum", for triangular to octagonal numbers, come from a solution published to the general problem, which also gives a general formula for any number of sides, in terms of the function digomma.
s | Name | Formula | Amount of the reverses | Number OEIS |
---|---|---|---|---|
3 | Triangular | 1/2(n2 + n) | 2[ ] | A000217 |
4 | Square | 1/2(22)n2 - 0n) = n2 | π2/6[ ] | A000290 |
5 | Pentagonal | 1/2(3)n2 - n) | 3 ln 3 - π√3/3[ ] | A000326 |
6 | Hexagonal | 1/2(4)n2 - 2n) = 2n2 - n | 2 ln 2[ ] | A000384 |
7 | Heptagonal | 1/2(5)n2 - 3n) | 23ln 5+1+53ln 10− − 252+1− − 53ln 10+252+π π 25− − 10515{cHFFFFFF}{cHFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFF}{cHFFFF}{cHFFFF}{cHFFFF} {cHFFFF}{cHFFFF}{cHFF} {cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFFFF}{cHFF}{cHFF}{cHFF}{cHFFFFFF}{cHFF}{cHFFFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF[ ] | A000566 |
8 | 8th | 1/2(6)n2 - 4n) = 3n2 - 2n | 3/4 ln 3 + π√3/12[ ] | A000567 |
9 | Nonagonal | 1/2(7)n2 - 5n) | A001106 | |
10 | Decagonal | 1/2(8)n2 - 6n) = 4n2 - 3n | ln 2 + π/6 | A001107 |
11 | Hendecagonal | 1/2(9)n2 - 7n) | A051682 | |
12 | Dodecagonal | 1/2(10)n2 - 8n) | A051624 | |
13 | Tridecagonal | 1/2(11)n2 - 9n) | A051865 | |
14 | Tetradecagonal | 1/2(12)n2 - 10n) | 2/5 ln 2 + 3/10 ln 3 + π√3/10 | A051866 |
15 | Pentadecagonal | 1/2(13)n2 - 11n) | A051867 | |
16 | Hexadecagonal | 1/2(14)n2 - 12n) | A051868 | |
17 | Heptadecagonal | 1/2(15)n2 - 13n) | A051869 | |
18 | Octadecagonal | 1/2(16)n2 - 14n) | 4/7 Ln 2 - √2/14 ln (3 - 2√2) + π(1 + √2)/14 | A051870 |
19 | Inneadecagonal | 1/2(17)n2 - 15n) | A051871 | |
20 | Icosagonal | 1/2(18)n2 - 16n) | A051872 | |
21 | Icosihenagonal | 1/2(19)n2 - 17n) | A051873 | |
22 | Icosidigonal | 1/2(20)n2 - 18n) | A051874 | |
23 | Icositrigonal | 1/2(21)n2 - 19n) | A051875 | |
24 | Icositetragonal | 1/2(22)n2 - 20n) | A051876 | |
... | ... | ... | ... | ... |
10000 | Myriagonal | 1/2(9998)n2 - 9996n) | A167149 |
The OEIS avoids terms that use Greek prefixes (for example, "octagonal") in favor of terms that use numbers (for example, "8-gonal").
A property of this table can be expressed by the following identity (see A086270):
- 2P(s,n)=P(s+k,n)+P(s− − k,n),{displaystyle 2,P(s,n)=P(s+k,n)+P(s-k,n),}
with
- k=0,1,2,3,...,s− − 3.{displaystyle k=0,1,2,3,...,s-3. !
Multipoly numbers
Some numbers, like 36, which is both square and triangular, belong to two sets of polygonal numbers. The problem of determining, given two sets of this type, all the numbers that belong to both can be solved by reducing the problem to a Pell equation. The simplest example is the sequence of triangular square numbers.
The following table summarizes the set of numbers s-gonal t-gonals for small values of s and t.
s t Sequence OEIS number 4 3 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841860625 A001110 5 3 1, 210, 40755, 7906276, 1533776805, 297544793910, 57722156241751, 11197800766105800, 2172315626468283465,... A014979 5 4 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801,... A036353 6 3 All hexagonal numbers are also triangular. A000384 6 4 1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441,... A046177 6 5 1, 40755, 1533776805,... A046180 7 3 1, 55, 121771, 5720653, 12625478965, 593128762435, 1309034909945503, 61496776341083161, 135723357520344181225, 63761087640030554511, 14072069153115290487843091,... A046194 7 4 1, 81, 5929, 2307361, 168662169, 12328771225, 4797839017609, 350709705290025, 25635978392186449, 9976444135331412025,... A036354 7 5 1, 4347, 16701685, 64167869935,... A048900 7 6 1, 121771, 12625478965,... A048903 8 3 1, 21, 11781, 203841,... A046183 8 4 1, 225, 43681, 8473921, 1643897025, 318907548961, 61866420601441, 12001766689130625, 23280871270739841, 451674487259834398561, 87622522247536602581025, 16998317641534841066320321,... A036428 8 5 1, 176, 1575425, 234631320,... A046189 8 6 1, 11781, 113123361,... A046192 8 7 1, 297045, 69010153345,... A048906 9 3 1, 325, 82621, 20985481,... A048909 9 4 1, 9, 1089, 8281, 978121, 7436529, 878351769, 6677994961, 788758910641, 5996832038649, 708304623404049, 5385148492712041, 636056763057925561,... A036411 9 5 1, 651, 180868051,... A048915 9 6 1, 325, 5330229625,... A048918 9 7 1, 26884, 542041975,... A048921 9 8 1, 631125, 286703855361,... A048924
In some cases, such as s = 10 and t = 4, there are no numbers in both sets other than 1.
The problem of finding numbers that belong to three polygon sets is more difficult. A computer search for pentagonal-square triangular numbers has returned only the trivial value of 1, although no proof has yet been found that some number does not exist that might belong to all three classes.
The number 1225 is hecatonicositetragonal (s = 124), hexacontagonal (s = 60), icosienneagonal (s = 29), hexagonal, square and triangular.
The only polygon set that is completely contained in another polygon set is the set of hexagonal numbers, which is contained in the set of triangular numbers.[citation needed]
Contenido relacionado
Diferential calculus
Yotta
Alexander Grothendieck