Numerical derivation

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Example of numerical derivation.

The numerical derivation is a technique of numerical analysis to calculate an approximation to the derivative of a function at a point using the values and properties of the function.

Formulation using finite differences

By definition the derivative of a function f(x){displaystyle f(x)} is:

f♫ ♫ (x)=limh→ → 0f(x+h)− − f(x)h{displaystyle f^{prim }(x)=lim _{hto 0}{frac {f(x+h)-f(x)}{h}}}}}}

The numerical approximations that we can make (for h > 0) will be:

Variances forward:
f♫ ♫ (x0)≈ ≈ f(x0+h)− − f(x0)h{displaystyle f^{prim }(x_{0})approx {frac {f(x_{0}+h)-f(x_{0})}{h}}}}}}}}
Reversal differences:
f♫ ♫ (x0)≈ ≈ f(x0)− − f(x0− − h)h{displaystyle f^{prim }(x_{0})approx {frac {f(x_{0})-f(x_{0}-h)}{h}}}}}}}}}

The approximation of the derivative by this method gives acceptable results with a certain error. To minimize errors, it is estimated that the average of both provides the best numerical approximation to the given problem:

Central differences:
f♫ ♫ (x0)≈ ≈ f(x0+h)− − f(x0− − h)2h{displaystyle f^{prim }(x_{0})approx {frac {f(x_{0}+h)-f(x_{0}-h)}{2h}}}}}}}}}}
f♫ ♫ ♫ ♫ (x0)≈ ≈ f(x0+h)− − 2f(x0)+f(x0− − h)h2{displaystyle f^{prim prim }(x_{0})approx {frac {f(x_{0}+h)-2f(x_{0})+f(x_{0}-h)}{h^{2}}}}}}{h

Contenido relacionado

Rolle's theorem

In differential calculus, Rolle's theorem proves the existence of an interior point in an open interval for which the derivative of a differentiable function...

Bioinformatics

Bioinformatics can be broadly defined as the application of computational technologies and statistics to the management and analysis of biological data. The...

Unit of measurement

A unit of measurement is a quantity of a certain physical magnitude, defined and adopted by convention or by law. Any value of a physical quantity can be...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save