Levi-Civita symbol
In mathematics, and in particular in tensor calculus, the Levi-Civita symbol is defined, also called the permutation symbol, alternating symbol or Levi-Civita tensor, as follows:
ε ε ijk={+1Yeah.(i,j,k)That's it.(1,2,3),(2,3,1)or(3,1,2)− − 1Yeah.(i,j,k)That's it.(3,2,1),(1,3,2)or(2,1,3)0otherwisei=jorj=kork=i##### ############################################################################################# ############################################################################ !
named after Tullio Levi-Civita. It is used in many areas of mathematics and physics. For example, in linear algebra, the cross product of two vectors can be written as:
a× × b=日本語e1e2e3a1a2a3b1b2b3日本語=␡ ␡ i=13(␡ ␡ j,k=13ε ε ijkajbk)ei{dsplaystyle mathbf {atimes b} ={begin{vmatrix} {e_{1}}{e_mathbf {e_{2}{e_mathbf}{e_mathbf}{e_m }{e }{1⁄4}{1}{e }{e }{e }{e }{e }{1⁄b }{e }{e }{e }{e }{e }{e {e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e êt }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{e }{
or more simply:
a× × b=c,ci=␡ ␡ j,k=13ε ε ijkajbk{displaystyle mathbf {atimes b} =mathbf {c}c_{i}=sum _{j,k=1}^{3}epsilon _{ijk}a_{j}b_{k}}}
This last expression can be further simplified using Einstein's notation, a convention in which the summation symbol can be omitted. The tensor whose components are given by the Levi-Civita symbol (a covariant tensor of rank 3) is sometimes called the permutation tensor.
Definition
The most common dimensions of the Levi-Civita symbol are the third and fourth, and to some extent the second, so it is useful to look at these definitions before generalizing to any number of dimensions.
Two Dimensions
The two-dimensional Levi-Civita symbol is defined by:
ε ε ij={+1Yeah.(i,j)That's it.(1,2)− − 1Yeah.(i,j)That's it.(2,1)0otherwisei=j{displaystyle epsilon _{ij}=left{{begin{matrix}+1 fake{mbox{si }}(i,j){mbox{ es }}(1,2)-1 pretend{mbox{si }}}{mbox{mbox{mbox{ is }}{mbox{mbox}{mbox{mbox{mbox}{mbox}{ !
Three Dimensions
The Levi-Civita symbol in three dimensions is defined as follows:
ε ε ijk={+1Yeah.(i,j,k)That's it.(1,2,3),(2,3,1)or(3,1,2)− − 1Yeah.(i,j,k)That's it.(3,2,1),(1,3,2)or(2,1,3)0otherwisei=jorj=kork=i### ############################################################################################## #################################################################################### !
Four Dimensions
ε ε ijkl={+1Yeah.(i,j,k,l)That's it.(1,2,3,4),(1,3,4,2),(1,4,2,3),(2,1,4,3),(2,3,1,4),(2,4,3,1),(3,1,2,4),(3,2,4,1),(3,4,1,2),(4,1,3,2),(4,2,1,3)or(4,3,2,1)− − 1Yeah.(i,j,k,l)That's it.(1,2,4,3),(1,3,2,4),(1,4,3,2),(2,1,3,4),(2,3,4,1),(2,4,1,3),(3,1,4,2),(3,2,1,4),(3,4,2,1),(4,1,2,3),(4,2,3,1)or(4,3,1,2)0otherwisei=j j=k k=l l=i k=i j=k###### ################################################################################################################################################################## !
Generalization to n Dimensions
The Levi-Civita symbol can be generalized to higher dimensions:
ε ε ijkl...... ={+1Yeah.(i,j,k,l,...... )is a permutation pair(1,2,3,4,...... )− − 1Yeah.(i,j,k,l,...... )is an odd permutation(1,2,3,4,...... )0if two indices are equal{displaystyle epsilon _{ijkldots }=left{{begin{matrix} +1 fake{mbox{si }}{i,j,k,l,dots}{mbox}{mbox}{mbox is a equal permutation}(1,2,3,4,dots)mbox{si !
A permutation of the series 1,2,3,4... is even if it can be reduced to the initial ordered series through an even number of exchanges of positions, otherwise it is odd. See even permutation or symmetric group for a formal definition of 'even permutation' and of 'odd permutation'.
Contenido relacionado
Mathematical hope)
Binary prefix
Diego Rodriguez (mathematician)