Injective function
In mathematics, a function:
- f:XΔ Δ Andx f(x){displaystyle {begin{aligned}f:X fakelongrightarrow Yx fakelongmapsto f(x)end{aligned}}}}}
That's it. injecting, One by oneif to elements other than the whole X{displaystyle X} (domain) they have different elements in the whole And{displaystyle Y} (codomain) f{displaystyle f}, that is, every element of the whole And{displaystyle Y} has at most a preimage X{displaystyle X}or, what is the same, in the whole X{displaystyle X} There can be no two or more elements that have the same image.
For example, the function
- f:R→ → Rx x2{displaystyle {begin{aligned}f:mathbb {R} 'to mathbb {R} \x nightmaremapsto x^{2}end{aligned}}}}}}}}}
is not injective because value 4 can be obtained as f(2){displaystyle f(2)} and f(− − 2){displaystyle f(-2)} but if the domain is restricted to positive real numbers (obtaining a new function g:R+→ → R+{displaystyle g:mathbb {R} ^{+}to mathbb {R} ^{+}}) then if you get an injecting function you can perform a supreme calculation.
Definition
Sea f{displaystyle f} a function whose domain is the whole X{displaystyle X}, it is said that the function f{displaystyle f} That's it. injecting Yes, for everything. a{displaystyle a} and b{displaystyle b} in X{displaystyle X}Yeah. f(a)=f(b){displaystyle f(a)=f(b)} then. a=b{displaystyle a=b}, this is f(a)=f(b){displaystyle f(a)=f(b)} implies a=b{displaystyle a=b}. Equally, yes. aI was. I was. b{displaystyle aneq b} then. f(a)I was. I was. f(b){displaystyle f(a)neq f(b)}. Symbolically,
- Русский Русский a,b한 한 X,f(a)=f(b) a=b{displaystyle forall ,a,bin X,f(a)=f(b)Longrightarrow a=b}
which is equivalent to its counter reciprocal
- Русский Русский a,b한 한 X,aI was. I was. b f(a)I was. I was. f(b){displaystyle forall ,a,bin X, aneq bLongrightarrow f(a)neq f(b)}
To prove that a function is not injective, it is enough to find two different values of the domain, whose images in the codomain are equal.
Examples
- For any set X{displaystyle X} and subset S X{displaystyle Ssubseq X}, including map S→ → X{displaystyle Sto X} (which sends any element s한 한 S{displaystyle sin S} a himself) is injective. In particular, identity function X→ → X{displaystyle Xto X} is always injective (and indeed bi-yective).
- Function h:R→ → R{displaystyle h:mathbb {R} to mathbb {R} } defined by h(x)=x3{displaystyle h(x)=x^{3}} It's injective.
- Function f:R→ → R{displaystyle f:mathbb {R} to mathbb {R} } defined by f(x)=2x+1{displaystyle f(x)=2x+1} It's injective.
- Function g:R→ → R{displaystyle g:mathbb {R} to mathbb {R} } defined by g(x)=x2{displaystyle g(x)=x^{2}} is not injective because (e.g.) g(1)=1=g(− − 1){displaystyle g(1)=1=g(-1)}. However, if g{displaystyle g} is redefined in such a way that your domain is the set of non-negative real numbers [chuckles]0,+∞ ∞ ){displaystyle [0,+infty] then. g{displaystyle g} It's injective.
- The exponential function Exp:R→ → R{displaystyle exp:mathbb {R} to mathbb {R} } defined by Exp (x)=ex{displaystyle exp(x)=e^{x}} It is injective (but not overyective, because it does not generate negative numbers, which have no relation to any value of x).
- The natural logarithm function ln:(0,+∞ ∞ )→ → R{displaystyle ln:(0,+infty)to mathbb {R} } defined by x ln x{displaystyle xmapsto ln x} It's injective.
- Function g:R→ → R{displaystyle g:mathbb {R} to mathbb {R} } defined by g(x)=xn− − x{displaystyle g(x)=x^{n}-x} is not injective, since g(0)=g(1)=0{displaystyle g(0)=g(1)=0}.
Yeah. X{displaystyle X} and And{displaystyle Y} are subsets of R{displaystyle mathbb {R} }geometrically, a function f:X→ → And{displaystyle f:Xto Y} is injective if your graph is never intersected by a horizontal line more than once. This principle is known as the horizontal line test.
Cardinality and injectivity
Given two sets A{displaystyle A} and B{displaystyle B}among which there is an injective function f:A→ → B{displaystyle f:Ato B} they have cardinals who fulfill:
card(A)≤ ≤ card(B){displaystyle {mbox{card}}(A)leq {mbox{card}}}(B)}}
If there is also another injective application g:B→ → A{displaystyle g:Bto A}, then it can be proved that there is a bijective application between A and B.
Injectivity in Euclidean space
Given a function f:Ω Ω Rn→ → Rn{displaystyle mathbf {f}:omega subset mathbb {R} ^{n}to mathbb {R} ^{n}}} differential with continuity on a domain of euclid space n- dimensional conditions may be established and sufficient to decide when this function is injective. The theorem of reverse function gives a condition not enough for a differentiable function to be locally injective:
detDfI was. I was. 0{displaystyle det Dmathbf {f} neq 0}
where:
- Df{displaystyle Dmathbf {f} } is the Jacobin matrix of the function.
- det(⋅ ⋅ ){displaystyle det(cdot)} is the determining function.
This condition is not a sufficient condition to guarantee the injectivity of the function (in fact, it is not a necessary condition either). To find sufficient conditions, the displacement vector associated with the function is defined as the following vector field:
u(x)=f(x)− − x한 한 Rn{displaystyle mathbf {u} (mathbf {x})=mathbf {f} (mathbf {x})-mathbf {x} in mathbb {R} ^{n}}
This function is interpreted as the difference between the initial position of a point and the final position of your image. It can be shown that there is a constant c(Ω Ω ){displaystyle scriptstyle c(Omega)} if it is fulfilled:
<math alttext="{displaystyle max _{mathbf {x} in {bar {Omega }}}|Dmathbf {u} (mathbf {x})|=sup _{mathbf {x} in Omega }|Dmathbf {u} (mathbf {x})|maxx한 한 Ω Ω ! ! Du(x) =supx한 한 Ω Ω Du(x) .c(Ω Ω )≤ ≤ 1{displaystyle max _{mathbf {x} in {bar {omega }}}}}{mathbf {u} (mathbf {x})positive=sup _{mathbf {x} in omega }mathbf {u} (mathbf {x1}posi}mathbf}mathbf {x1mathbf<img alt="{displaystyle max _{mathbf {x} in {bar {Omega }}}|Dmathbf {u} (mathbf {x})|=sup _{mathbf {x} in Omega }|Dmathbf {u} (mathbf {x})|
Where:
- Ω Ω ! ! {displaystyle {bar {omega}}}, is the topological closing of the domain Ω Ω {displaystyle Omega }.
Then the function is [globally] injective, it can be proved that c(Ω Ω )=1{displaystyle scriptstyle c(Omega)=1} if the domain Ω Ω {displaystyle scriptstyle Omega } is convex, while a non-convex domain requires <math alttext="{displaystyle c(Omega)c(Ω Ω ).1{displaystyle c(Omega)}<img alt="{displaystyle c(Omega).
Contenido relacionado
Π
Shell sorting
John horton conway