Help:Using LaTeX

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
TeX

MediaWiki uses AMS-LaTeX tags for math formulas. He AMS-LaTeX markup are derived from LaTeX, which in turn comes from TeX. AMS-LaTeX generates PNG images by default. there is also the option to use MathJax, which combines HTML and CSS to view the equations. MathJax can be selected from the menu preferences for User (Appearance).

The difference between TeX and LaTeX and the version implemented by MediaWiki is that, in the first two cases, the result final is a single document that includes the formulas and text in its totality, while in the latter the markup is filtered by the Texvc tools or, optionally, by MathJax, which in turn they redirect the output to TeX for final compilation.

Visually, MathJax provides better results. The quality of the typography is much higher and certain problems are eliminated, such as the different size of the formulas with respect to the surrounding text or lack of alignment. On the other hand, the javascript tool used by MathJax to interpret the mathematical expressions takes more time than Texvc.

General

__

Mathematical expressions written in TeX must be between the start and end tags:

≤2

≤2

To do this you can select the TeX code and click the button Math icon.png that appears in the button bar that is above the edit box (maybe in your browser not appear), or write the tags directly.

The alt attribute of TeX images (when hovering over the image the text displayed in the tooltip) is the wiki text from which it was generated, excluding start and end tags.

PNG images are generated in black on a non-transparent white background. These colors, as well as the font sizes and types, are independent of the browser settings and the CSS used. Font sizes and types will often differ from those used by the browser to display the HTML. The CSS selector for images is img.tex.

Expressions written in TeX can be part of a line of text, inserted in a table or occupy a space between paragraphs as desired, but it must be taken into account that the beginning and closing tags are not valid within the code Help:Editing for editing on Wikipedia and that TeX start and end tags cannot be nested.

If there is no TeX code between the start and end tags, or it is incorrect, an error message will be displayed:

≤2

Failed to render (syntax error): {displaystyle á }

Bug reports and requests should be sent to the Wikitech-l mailing list. Or they can also be directed to Mediazilla in MediaWiki extensions.

Force generation of PNG images

Expressions written in TeX are normally rendered in HTML format, if the result is a single line, without special symbols:

 And... exp u ln v lg v
and=Exp u+ln v+lg v{displaystyle y=exp u+ln v+lg v}

If within the expression there is a single sign that TeX has to render in PNG format, the entire expression will be rendered in PNG format.

 And... exp u ln v lg v ,
and=Exp u+ln v+lg v{displaystyle y=exp u+ln v+lg v,}

To force the formula to display as a PNG image, simply add , (small space) to the end of the formula (where it won't be rendered).

You can also use ,! (little space and negative space, which cancel) anywhere within TeX start and end tags. This does force the generation of the PNG.

This can be used to fix formulas that display incorrectly in HTML, causing a trailing underline, or to force an image to PNG when it would normally display in HTML.

For example:

 a^{c+2!
ac+2{displaystyle a^{c+2}}
 a^{c+2! ,
ac+2{displaystyle a^{c+2},}
 a^{,!c+2!
ac+2{displaystyle a^{,!c+2}}
 a^{b^{c+2!
abc+2{displaystyle a^{b^{c+2}}} (!Evil with the option “HTML if possible, if not PNG”!)
 a^{b^{c+2! ,
abc+2{displaystyle a^{b^{c+2}},} (!Evil with the option “HTML if possible, if not PNG”!)
 a^{b^{c+2! ,!
abc+2{displaystyle a^{b^{c+2}},!} (!Good. in all cases!)
 a^{b^{c+2!approx 5
abc+2≈ ≈ 5{displaystyle a^{b^{c+2}}approx 5} (due to approx, not required)
 a^{b^{,!c+2!
abc+2{displaystyle a^{b^{,c+2}}}
 int_-N***N! e^x, dx
∫ ∫ − − NNexdx{displaystyle int _{-N}^{N}e^{x},dx}
 int_-N***N! e^x, dx ,
∫ ∫ − − NNexdx{displaystyle int _{-N}^{N}e^{x},dx,}
 int_-N***N! e^x, dx ,!
∫ ∫ − − NNexdx{displaystyle int _{-N}^{N}e^{x},dx,!}

These examples have been tested with most of the formulas on this page, and they seem to work perfectly.

Style

Between the start and end tags of TeX you can put as many blank spaces and line breaks as you want without affecting the TeX code, thus being able to give it a neater and clearer appearance when edited (for example, a line break after each term or each row of a matrix).

We can consider the following tips to be a good style for editing mathematical formulas in TeX:

  1. If the expression is short, do it in one line.
  2. If done in several lines, in each line leave a coherent code fragment that forms a unit.
  3. Perform a bleeding, with blank spaces on the left, so that the same level of bleeding corresponds to the same level of nesting in the expression.
  4. In the tables and matrices, put the blank spaces necessary for the data to be sorted in rows and columns.

These tips are not mandatory but will make editing the expression easier and future proofreading and give it clarity.

Alignment with normal text flow

Due to the default CSS styling: image.text { vertical-align: middle; }

An inline expression like:

≤2
 leftarrow int_a***b! e^x , dx rightarrow≤2

It would be well aligned in the lining- ← ← ∫ ∫ abexdx→ → {displaystyle leftarrow int _{a}^{b}e^{x},dxrightarrow}- in which it is inserted.

If you need to align it another way, use <span style="vertical-align:-100%;"><math>...</math> </span> and play around with the vertical-align parameter until you get the desired result. However, the end result depends on the browser settings.

With vertical-align:10% it would look like this:

≥"vertical-align:10"%;"≤2
 leftarrow int_a***b! e^x , dx rightarrow≤2
Δ/span

Textline - ← ← ∫ ∫ abexdx→ → {displaystyle leftarrow int _{a}^{b}e^{x},dxrightarrow}- This is the text line.

With vertical-align:5% it would look like this:

cedes style="vertical-align:5%;"≤2
 leftarrow int_a***b! e^x , dx rightarrow≤2
Δ/span

Textline - ← ← ∫ ∫ abexdx→ → {displaystyle leftarrow int _{a}^{b}e^{x},dxrightarrow}- This is the text line.

With vertical-align:0% it would look like this:

≥"vertical-align:0%;"≤2
 leftarrow int_a***b! e^x , dx rightarrow≤2
Δ/span

Textline - ← ← ∫ ∫ abexdx→ → {displaystyle leftarrow int _{a}^{b}e^{x},dxrightarrow}- This is the text line.

With vertical-align:-5% it would look like this:

"vertical-align":-5%;"≤2
 leftarrow int_a***b! e^x , dx rightarrow≤2
Δ/span

Textline - ← ← ∫ ∫ abexdx→ → {displaystyle leftarrow int _{a}^{b}e^{x},dxrightarrow}- This is the text line.

The value of vertical-align can take positive or negative values, even greater than 100.

Special characteristics

__

The characters that can be used directly are the lowercase letters:

 abcdefghijklmnopqrstuvwxyz
abcdefghijklmnorpqrstuvwxandz{displaystyle abcdefghijklmnopqrstuvwxyz}

capital letters:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle ABCDEFGHIJKLMNOPQRSTUVWXYZ}

punctuation marks:

;:'
,.;:♫{displaystyle;:'}

and the signs:

 !$%
!?$ $ % % {displaystyle}?

the numbers:

 0123456789
0123456789{displaystyle 0123456789}

and the mathematical signs:

 []() config = +-*/
<math alttext="{displaystyle []()=+-*/|}" xmlns="http://www.w3.org/1998/Math/MathML">[chuckles]]()▪+− − ↓ ↓ /日本語{displaystyle []() confidants=+-*<img alt="[]()=+-*/|" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae024f4f225b1140ce100ea4329c1f8fb841c704" style="vertical-align: -0.838ex; width:17.438ex; height:2.843ex;"/>

If a special character is included within the TeX expression, a PNG image will be produced:

 abcdefghijklmnopqrstuvwxyz ,
abcdefghijklmnorpqrstuvwxandz{displaystyle abcdefghijklmnopqrstuvwxyz,}
 ABCDEFGHIJKLMNOPQRSTUVWXYZ ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle ABCDEFGHIJKLMNOPQRSTUVWXYZ,}
;:' ,
,.;:♫{displaystyle;:',}
 !$% ,
!?$ $ % % {displaystyle}?
 0123456789 ,
0123456789{displaystyle 0123456789,}
 []() config = +-*/ ,
<math alttext="{displaystyle []()=+-*/|,}" xmlns="http://www.w3.org/1998/Math/MathML">[chuckles]]()▪+− − ↓ ↓ /日本語{displaystyle []() config=+-*/associated,}<img alt="[]()=+-*/|," aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/966f1908c317286dc6a1fe9865534154bab1309f" style="vertical-align: -0.838ex; width:17.825ex; height:2.843ex;"/>

The letters of the Spanish alphabet: ñ, Ñ, á, é, í, ó, ú, ü, Á, É, Í, Ó, Ú, Ü, can always be obtained as a PNG image, like this:

 tilde{n! tilde{N! acute{a! acute{e! acute{imath! acute{or! acute{u! ddot{u! acute{A! acute{E! acute{I! acute{O! acute{U! ddot{U!
n~ ~ N~ ~ a♪ ♪ e♪ ♪ ı ı ♪ ♪ or♪ ♪ u♪ ♪ u! ! A♪ ♪ E♪ ♪ I♪ ♪ O♪ ♪ U♪ ♪ U! ! {cHFFFF}{cH00FF}{cHFF}{cHFF}{cHFF}{cH}{cH}{cHFF}{cHFF}{cH}{cH}{cH}{cH}{cH}{cH}{cH}{cH}{cHFF}}{cH}{cH}{cH}{cH}{cH}}{cH}{cH}{cH}{cH}{cH}{cH}}{cH}{cHFF}}{cH}{cH}{cH}{cH}}}}{cH}{cHFF}{cHFF}{cHFF}{cH}{cH}}{cH}{cH}{cH}{cH}{cH}}}{

the characters ºª~{}#&, cannot be included in TeX either, they have to be done like this:

 {cHFFFF}{cH00FF}or
 {cHFFFF}{cH00FF}a
 lnot sim setminus   # And
ora¬ ¬ ♥ ♥ {!# # " & {displaystyle}{o}{o}{o}{}{lnot sim setminus {}{}#And }

The signs: , {, } and & not only cannot be represented directly, but have a meaning within TeX,

: points to a reserved word, a reserved word is an instruction that TeX processed giving rise to a PNG image, according to the instruction in question, in TeX all the reserved words begin with .
{: marks the beginning of a section of values.
!: marks the end of a section of values.
": indicates a column jump in a table or matrix.
_: generates a sub-index after a section of values.
^: generates a superscript after a section of values.

The signs: Ç, ç, ¡, ¿, _, ^, ", @ and cannot occur in a TeX expression.

Accents and diacritical marks

They are used according to the convention palabrareservada{vocal}according to the examples of the table. Also these accents can be used with consonants, as in the case of: s♪ ♪ ,s! ! {displaystyle {acute {s}},;{check {s}}}}.

a acute{a! grave{a! check{a!hat{a! widehat{a! tilde{a! breve{a!bar{a! vec{a! ddot{a! dot{a!
aa♪ ♪ a` ` a! ! a^ ^ a^ ^ a~ ~ a♥ ♥ a! ! a→ → a! ! a! ! {displaystyle aquad {acute {a}quad {grave {a}quad {a}{check {a}quad {a} {a}{quad {a}} {a}}}{quad {a}}{quad {a} {a}}{quad {a}} {quad} {a} {cd} {cd}

Underline, Overline

 overrightarrow{abcdefg! overleftarrow{abcdefg! overline{abcdefg! underline{abcdefg! overbrace{abcdefg! underbrace{abcdefg! widehat{abcdefg! widetilde{abcdefg!
abcdefg→ → abcdefg← ← abcdefg! ! abcdefg_ _ abcdefg abcdefg abcdefg^ ^ abcdefg~ ~ {displaystyle {overrightarrow {abcdefg}};{overleftarrow {abcdef}g;{overline {abcdefg};{underline {abcdefg}}}}{;overbrace {abcdefg} ;underbrace {abcdefg}{abcdefg}{;

In all cases, for the expression to appear with larger characters, it must be closed with ,.

Strike Out or Cancel

The expression can be crossed out or canceled as follows:

 {Expresiacute{or!n! cancel {Expresiacute{or!n! bcancel {Expresiacute{or!n! xcancel {Expresiacute{or!n! cancelto {Correcciacute{or!n! {Expresiacute{or!n!
Expresior♪ ♪ nExpresior♪ ♪ nExpresior♪ ♪ nExpresior♪ ♪ nExpresior♪ ♪ nCorrreccior♪ ♪ n{displaystyle} {Expresi{acute {o}n}quad {quad {Expresi{acute {o}n}}}{quad {Expresi{acute} {o}{o}}{acute}{ccer} {expresi} {expresi}{acute {o}{ccer}{o
 {color{Red!cancel color{black!Expresiacute{or!n! {color{Red!bcancel color{black!Expresiacute{or!n! {color{Red!xcancel color{black!Expresiacute{or!n! {color{Red!cancelto color{blue!Correcciacute{or!n! color{black!Expresiacute{or!n!
Expresior♪ ♪ nExpresior♪ ♪ nExpresior♪ ♪ nExpresior♪ ♪ nCorrreccior♪ ♪ n{cHFFFF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cHFF} {cHFF}{cH00}{cH00FF}{cH00FF}{cH00}{cH00}{cH00FF}{cH00}{cH00}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}}{cH00FF}{cH00FF}{cH00FF}{cH00}{cH00FF}{cH00FF} {cH00FF}{cH00FF}{cH00FF}{cH00FF}{cHFF} {cH00FF}{cH00} {cH00FF

Subscript and Superscript

 a_1
a^2
a_1^2
a_1+2***2-1! {cHFFFF}1^2 A_3^4
 b+1***b-2!A_3+b***b-4! sideset{cHFFFFFF}1^2***3^4!sum_a^b
a1a2a12a1+22− − 112A34b+1b− − 2A3+bb− − 4␡ ␡ 12␡ ␡ 34ab{displaystyle a_{1}quad a^{2}quad a_{1}{2}{2}{2}{2-1}{quad {quad {1}{1}{2}{2}}{3}{3}{4}{4}{4}{b+1}{b}{b2}{1⁄4}{1⁄4}{quad}{1}{1⁄4}{quad}{quad}{1}{1⁄4}{1⁄4}{quad}{1⁄4}{1⁄4}{1⁄4}{quad}}{quad}{quad}{b =}{quad}{b =1}{1⁄4}}{b =1}{b =1}{1⁄4}{quad}{1}{1⁄4}{1}{1}{quad}{1⁄2}{3}{1⁄2}{3}{quad

Number of lines

You can put one or two lines of text, signs or expressions:

 Level ; of ; l acute{imath! baby quad {first ; l acute{imath! baby atop Second ; l acute{imath! baby! quad stackrel{Up! { l acute{imath! baby ! quad overset{Up! { l acute{imath! baby ! quad underset{Down! { l acute{imath! baby !
Niveldelı ı ♪ ♪ neaprimeralı ı ♪ ♪ neasegundalı ı ♪ ♪ nealı ı ♪ ♪ neaarribalı ı ♪ ♪ neaarribalı ı ♪ ♪ neaabajor{cHFFFF}{cHFFFF}{cHFFFF}{cHFFFF}{cHFFFF}{cHFFFF}{cHFFFF}{cH00FF} {cHFFFF}{cHFF}{cHFF}{cHFF}{cHFFFF}{cHFF}{cHFF}{cHFFFF}{cHFF}{cHFF}{cH00}{cH00}{cHFF}{cHFF}{cH00}{cHFF}{cHFF}{cHFF}{cHFF}{cH00}{cHFFFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cHFF}{cH

Spaced

__

Note that TeX adjusts most of the spacing automatically, but sometimes manual control is needed.

  • Opple space
 a qquad b
ab{displaystyle aqquad b}
  • Quadruple space
 a quad b
ab{displaystyle aquad b}
  • Text space
 a  b
ab{displaystyle a b}
  • Text space without conversion PNG
 a mbox{ ! b
ab{displaystyle a{mbox{}b}
  • Large space
 a ; b
ab{displaystyle a;b}
  • Medium space
 a  b
ab{displaystyle a b}
  • Small space
 a , b
ab{displaystyle a,b}
  • No space
 a
ab{displaystyle ab,}
  • Negative space
 a ! b
ab{displaystyle ab}

Functions

__

Standard functions

 deg x sgn x operatorname{abc! , z
deg x+sgn x+abcz{displaystyle deg x+operatorname {sgn} x+operatorname {abc} ,z}
 exp u ln v lg v log w log_n w
Exp u+ln v+lg v+log w+logn w{displaystyle exp u+ln v+lg v+log w+log _{n}w,}
 ker x deg x gcd x Pr x
ker x+deg x+gcdx+Prx{displaystyle ker x+deg x+gcd x+Pr x,}
 det x hom x arg x dim x
detx+hom x+arg x+dim x{displaystyle det x+hom x+arg x+dim x,}

Fractions

 {2 over 4!; quad x =
a_0 {1 over a_1 + {1 over a_2 {1 over a_3 + {1 over ddots!
24;x=a0+1a1+1a2+1a3+1 {displaystyle {2 over 4};quad x=a_{0}+{1 over a_{1}+{1 over a_{2}+{1 over a_{3}+{1 over ddots }}}}}}}
  • Normal fruits
 frac{24!; quad x = a_0 frac{1a_1 + frac{1a_2 frac{1a_3+ frac{1ddots!
24;x=a0+1a1+1a2+1a3+1 {displaystyle {frac {2}{4}}};quad x=a_{0}+{frac {1}{a_{1}+{frac {1}{a_{2}+{frac {1}{a_{3+}{frac {1}{ddots }}}}}{,
  • Short fruits
 tfrac{24!; quad x = a_0 tfrac{1a_1 + tfrac{1a_2 tfrac{1a_3+ tfrac{1ddots!
24;x=a0+1a1+1a2+1a3+1 {displaystyle {tfrac {2}{4}}};quad x=a_{0} +{tfrac {1}{a_{1}+{tfrac {1}{a_{2}}{tfrac {1}{a_{1}{1}{1}{tfrac {1}{ddots}}}}}}}}}}}}}}}}{1}}}}}}}}}}}}}}}}}}}}{1}}}}}}{1}{1}}}}}}}}}}}{1}}{1}{1}{1}}}}{1}{1}}}}}}}{1}}}}}}}}{1}}}}}}}}}}}}}}}}}}{1}}}}}}{
  • Average fractions
 dfrac{24!; quad x = a_0 dfrac{1a_1 + dfrac{1a_2 dfrac{1a_3+ dfrac{1ddots!
24;x=a0+1a1+1a2+1a3+1 {displaystyle {dfrac {2}{4}}};quad x=a_{0} +{dfrac {1}{a_{1}+{dfrac {1}{a_{2}}}{dfrac {1}{a_{1}{1}{1}{1}{dfrac}}}}}}}}}{1}}}}}}{1}}}}}{dfrac}}}}}}}}}}}}}}}{1}}}}}}{1}}}}}}}{1}}}}}}{1}{1}{1}}}}}{dfrac}}}}}}}}}}}}}}}}}}{1}}}}}}}}}}}}{1}}{1}}}}}}{1}{1}}}{d
  • Long fruits
 cfrac{24!; quad x = a_0 cfrac{1a_1 + cfrac{1a_2 cfrac{1a_3+ cfrac{1ddots!
24;x=a0+1a1+1a2+1a3+1 {displaystyle {cfrac {2}{4}};quad x=a_{0}+{cfrac {1}{a_{1}+{cfrac {1}{a_{2}+{cfrac {1}{1}{a_{3+}{cfrac {1}{ddots }}}}}}{,

Binomial Coefficients

 {n choose k! quad binom{nk! quad dbinom{nk! quad tbinom{nk! quad
(nk)(nk)(nk)(nk){displaystyle {n choose k}quad {binom {n}{k}}quad {dbinom {n}{n}{k}}quad {tbinom {n}{n}{k}}}}quad }

Roots

 sqrt{2!approx 1.4; a= sqrt{b^2 + c^2!; x + 2y =b^n longrightarrow b=sqrt[n] {x + 2y!
2≈ ≈ 1.4;a=b2+c2;x+2and=bnΔ Δ b=x+2andn{displaystyle {sqrt {2}}approx 1.4;quad a={sqrt {b^{2}+c^{2}}}};quad x+2y=b^{n}longrightarrow b={sqrt[{n}{x+2y}}{,!}

Trigonometric functions

 text{Seno!: y = sin x
Seno:and=without x{displaystyle {text{Seno}}:y=sin x}
 text{Cosine!: y = cos x
Cosine:and=# x{displaystyle {text{Coseno}:y=cos x}
 text{Tangente!: y = tan x
Tangente:and=So... x{displaystyle {text{Tangente}}:y=tan x}
 text{Cosic!: y = csc x
Cosic:and=csc x{displaystyle {text{Cosecting}}:y=csc x}
 text{Secante!: y = sec x
Secante:and=sec x{displaystyle {text{Secante}:y=sec x}
 text{Cotangent!: y = cot x
Cotangent:and=cot x{displaystyle {text{Cotangente}:y=cot x}

Inverse Trigonometric Functions

 text{Arcoseno!: y = arcsin x
Arcoseno:and=arcsin x{displaystyle {text{Arcoseno}}:y=arcsin x}
 text{Arcosene!: y = arccos x
Arcosene:and=arccos x{displaystyle {text{Arcocoseno}:y=arccos x}
 text{Arcotangente!: y = arctan x
Arcotangente:and=arctan x{displaystyle {text{Arcotangente}}:y=arctan x}
 text{Archcosectant!: y = arccsc x
Archcosectant:and=arccsc x{displaystyle {text{Arcocosecting}}:y=operatorname {arccsc} x}
 text{Arcosectant!: y = arcsec x
Arcosectant:and=arcsec x{displaystyle {text{Arcosecting}}:y=operatorname {arcsec} x}
 text{Arcotangente!: y = arccot x
Arcotangente:and=arccot x{displaystyle {text{Arcocotangente}:y=operatorname {arccot} x}

Hyperbolic functions

 text{hyperbacute{or!.!: y = sinh x
Hyperbolic:and=sinh x{displaystyle {text{ hyperbolic}}:y=sinh x}
 text{Cosine hyperbacute{or!.!: y = cosh x
Hyperbolic dose:and=cosh x{displaystyle {text{hyperbolic}}:y=cosh x}
 text{Tangente hyperbacute{or!lica!: y = tanh x
Hyperbolic Tangente:and=Soh x{displaystyle {text}:y=tanh x}
 text{Cotangent hyperbacute{or!lica!: y = coth x
Hyperbolic:and=coth x{displaystyle {text {hyperblic}}:y=coth x}

Limits

 lim f(x) = a
 limsup f(x) = a
 liminf f(x) = a
 overline{lim! f(x) = a
 underline{lim! f(x) = a
limf(x)=a,lim supf(x)=a,lim inff(x)=a,lim! ! f(x)=a,lim_ _ f(x)=a{displaystyle lim f(x)=a;,quad limsup f(x)=a;,quad liminf f(x)=a;,quad {overline {lim }}f(x)=a;,quad {underline {lim }f(x)=a}
 lim_x  a!f(x)= b
 lim_x  a^+!f(x)= b
 lim_x  a^-!f(x)= b
 underset {x  a^+! {L acute{imath!m! ; f(x) = b
limx→ → af(x)=b,limx→ → a+f(x)=b,limx→ → a− − f(x)=b,Lı ı ♪ ♪ mx→ → a+f(x)=b{displaystyle lim _{xto a}f(x)=b;,quad lim _{xto a^{+}}f(x)=b;,quad lim _{xto a^{-}}f(x)=b;,quad {underset {xto a^{+}{L{acute {imath}
 min q max R inf s sup t
minq+maxr+infs+supt{displaystyle min q+max r+inf s+sup t,}

Modular Arithmetic

 s_k equiv 0 pmod{m!
sk≡ ≡ 0(modm){displaystyle s_{k}equiv 0{pmod {m}},}
 s_k equiv 0 quad left(operatorname{m acute{or! d ,! m right)
sk≡ ≡ 0(mor♪ ♪ d m){displaystyle s_{k}equiv 0quad left(operatorname {m{acute {o}d,} mright)}
 a bmod b
amodb{displaystyle a{bmod {b},}
 aoperatorname{, m acute{or! d ,!b
amor♪ ♪ d b{displaystyle aoperatorname {,m{acute {o}d,}b}

Recursive or range-defined functions

 f(n) =
 begin{cases! 1 " mbox{Yeah. !f(n-1) cdot n " mbox{Yeah. ! n  0
 end{cases!
0end{cases}}}" xmlns="http://www.w3.org/1998/Math/MathML">f(n)={1Yeah.n=0f(n− − 1)⋅ ⋅ nYeah.n▪0{displaystyle f(n)={begin{cases}1 stranger{mbox{si }n=0f(n-1)cdot n stranger{mbox{si }}n offset }}}}}}}0end{cases}}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1751ac85d43655b896829df11395edd41973e601" style="vertical-align: -2.505ex; width:31.757ex; height:6.176ex;"/>
 sgn (x) =
 begin{cases! 1 " mbox{Yeah. ! x  0 0 " mbox{Yeah. ! x = 0  -1 " mbox{Yeah. ! x; 0
 end{cases!
0\0&{mbox{si }}x=0\-1&{mbox{si }}xsgn (x)={1Yeah.x▪00Yeah.x=0− − 1Yeah.x.0{displaystyle operatorname {sgn}(x)={begin{cases}1 fake{mbox{si }x dictionary0\0 fake{mbox{si }}}x=0-1 fake{mbox{si }}{cH00FF}}}}0\0&{mbox{si }}x=0\-1&{mbox{si }}x
 sgn (x) =
 left  begin{arrayrcl!1 " Yeah. " x  0 0 " Yeah. " x = 0  -1 " Yeah. " x; 0
 end{array! right.
0\0&si&x=0\-1&si&xsgn (x)={1six▪00six=0− − 1six.0{displaystyle operatorname {sgn}(x)=left{{{begin{array}{r}}{r}1 hypossi fakex pendants0 fakessi nightmarex=0-1 hyposysyx{end{array}}{right. !0\0&si&x=0\-1&si&x
 f_I =
 left  begin{arraylccl!Yeah. " i = 0 " longrightarrow " 0 Yeah. " i = 1 " longrightarrow " 1  Yeah. " i ▪ 1 " longrightarrow " f_(i-2)! + f_(i-1)! end{array! right.
1&longrightarrow &f_{(i-2)}+f_{(i-1)}end{array}}right.}" xmlns="http://www.w3.org/1998/Math/MathML">fi={sii=0Δ Δ 0sii=1Δ Δ 1sii▪1Δ Δ f(i− − 2)+f(i− − 1){displaystyle f_{i}=left{begin{array}{lccl}si exposei=0 fakelongrightarrow &0si exposei=1 fakelongrightarrow &1si fake i fake1longrightarrow &f_{(i-2)}+f_{(i-1)}end{array}right. !1&longrightarrow &f_{{(i-2)}}+f_{{(i-1)}}end{array}}right." aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0736b4dc8c98dda401b38a9c37a9a6139525f454" style="vertical-align: -4.023ex; margin-bottom: -0.315ex; width:39.062ex; height:9.843ex;"/>

Derivatives

 nabla partial x
dx
 dot x
 ddot and
dy/dx
 frac{dydx! frac{partial^2 zpartial x,partial and!
► ► ,▪ ▪ x,dx,x! ! ,and! ! ,dand/dx,danddx,▪ ▪ 2z▪ ▪ x▪ ▪ and{displaystyle nabla ;,quad partial x;,quad dx;,quad {dot {x}};,quad {ddot {y}}}}{quad dy/dx;,quad {fracd}{dx}}{,{quad {partial}{

Derivatives with an apostrophe

 x', y''
x♫,and♫{displaystyle x'y',!}

Derivatives with an apostrophe

 x^and^{prim!
x♫ ♫ ,and♫ ♫ ♫ ♫ {displaystyle x^{prim },y^{prim prim },}

Integrals

 I = int_a***b! f(x) , dx
 quad longrightarrow quadI = F(x)
 Big ]_a***b! quad longrightarrow quadI = F(b) - F(a)
I=∫ ∫ abf(x)dxΔ Δ I=F(x)]abΔ Δ I=F(b)− − F(a){displaystyle I=int _{a}^{b}f(x),dxquad longrightarrow quad I=F(x){Big ]}_{a}^{b}quad longrightarrow quad I=F(b)-F(a)}
 I = int_2***3! frac{1x^2! , dx
 quad longrightarrow quadI =
 left.
 frac{-2x^3! ; right ]_2***3! quad longrightarrow quadI = frac{-22^3! - frac{-23^3! quad longrightarrow quadI = frac{-19108!
I=∫ ∫ 231x2dxΔ Δ I=− − 2x3]23Δ Δ I=− − 223− − − − 233Δ Δ I=− − 19108{displaystyle I=int _{2}{3}{frac {1}{x^{2}}}}}}{,dxquad longrightarrow quad I=left.{frac}{x^}{3}{3}{2}{2}{2}{2}{2}{2}{quad quad
 intlimits_A***B! f(x) , dx
∫ ∫ ABf(x)dx{displaystyle int limits _{A}^{B}f(x),dx}
 int_A***B! f(x) , dx
∫ ∫ ABf(x)dx{displaystyle int _{A}^{B}f(x),dx}
 iintlimits_A***B! f(x,y) , dx , dy
∫ ∫ ABf(x,and)dxdand{displaystyle iint limits _{A}^{B}f(x,y),dx,dy}
 iint_A***B! f(x,y) , dx , dy
∫ ∫ ABf(x,and)dxdand{displaystyle iint _{A}^{B}f(x,y),dx,dy}
 iiintlimits_A***B! f(x,y,z) , dx , dy , dz
∫ ∫ ABf(x,and,z)dxdanddz{displaystyle iiint limits _{A}^{B}f(x,y,z),dx,dy,dz}
 iiint_A***B! f(x,y,z) , dx , dy , dz
∫ ∫ ABf(x,and,z)dxdanddz{displaystyle iiint _{A}^{B}f(x,y,z),dx,dy,dz}
 iiiintlimits_A***B! f(x,y,z,t) , dx , dy , dz , dt
∫∫ ∫∫ ABf(x,and,z,t)dxdanddzdt{displaystyle iiiint limits _{A}^{B}f(x,y,z,t),dx,dy,dz,dt}
 iiiint_A***B! f(x,y,z,t) , dx , dy , dz , dt
∫∫ ∫∫ ABf(x,and,z,t)dxdanddzdt{displaystyle iiiint _{A}^{B}f(x,y,z,t),dx,dy,dz,dt}
 ointlimits_A! f(e) , of
♫ ♫ Af(e)de{displaystyle oint limits _{A}f(e),de}
 oint_A! f(e) , of
♫ ♫ Af(e)de{displaystyle oint _{A}f(e),de}

Sets

__
  empty emptyset varnothing
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {displaystyle emptyset ;emptyset ;emptyset ;varnothing }
 a in mbox{A! qquad mbox{A! ni a qquad a notin mbox{A! qquad a notin mbox{A!
a한 한 AA aa Aa A{displaystyle ain {mbox{A}}qquad {mbox{A}ni aqquad anot in {mbox{A}}qquad anotin {mbox{A}}{,!}
 mbox{A! subset mbox{B! qquad mbox{C! subseteq mbox{B! qquad mbox{C! supset mbox{R! qquad mbox{S! supseteq mbox{P!
A BC BC▪ ▪ RS P{displaystyle {mbox{A}}subset {mbox{B}}}qquad {mbox{mbox{B}{mbox{B}}qquad {mbox{mbox{C}}}{supset {mbox{R}}}{qquad {mbox {mbox {mbox{P}}}}}}}}}}{supseq
 mbox{A! = mbox{B! cap mbox{C! qquad mbox{D! = mbox{K!  mbox{N! ,!
A=B CD=K N{displaystyle {mbox{A}}={mbox{B}{cap {mbox{C}}}qquad {mbox{D}}={mbox{K}}}{cHFF}{mbox{N}}{,cH00}}
 sqsubset ; sqsubseteq ; sqsupset ; sqsupseteq ; sqcap ; sqcup
{displaystyle sqsubset ;sqsubseteq ;sqsupset ;sqsupseteq ;sqcap ;sqcup ,!}

Logical

__
 forall exists nexists land wedge lor vee lnot neg setminus smallsetminus
Русский Русский consuming consuming ∧ ∧ ∧ ∧ ¬ ¬ ¬ ¬ {displaystyle forall ;exists ;nexists ;land wedge ;lor ;vee ;lnot ;neg ;setminus ;smallsetminus ,!}

Groups

__

Sums

 A= sum_i=1?n a_i
A=␡ ␡ i=1nai{displaystyle A=sum _{i=1}{n}a_{i},!}

Producers

 X= prod_i=1?n x_i
X= i=1nxi{displaystyle X=prod _{i=1}{n}x_{i},!}

Coproducts

 X= coprod_i=1?n x_i
X= i=1nxi{displaystyle X=coprod _{i=1}{n}x_{i},!}

Joins

 A= bigcup_i=1***k! A_i ;; quad A= biguplus_i=1***k! A_i ;; quad A= bigsqcup_i=1***k! A_i
A= i=1kAi;A= i=1kAi;A= i=1kAi{displaystyle A=bigcup _{i=1}{k}A_{i};quad A=biguplus _{i=1}^{k}A_{i};quad A=bigsqcup _{i=1}{k}A_{i},!}

Intersection

 A= bigcap_i=1***k! A_i
A= i=1kAi{displaystyle A=bigcap _{i=1}{k}A_{i},!}

Disjunction

 P= bigvee_i=1***k! p_i
p= i=1kpi{displaystyle p=bigvee _{i=1}{k}p_{i},!}

Conjunction

 P= bigwedge_i=1***k! p_i
p= i=1kpi{displaystyle p=bigwedge _{i=1}{k}p_{i},!}

Tables, matrices and multilines

__

Tables

The structure begin{array} must be followed, between braces, by one letter per column l, c or r, depending on whether you want the data in the column to be aligned to the right, center, or left, you can insert a single or double vertical bar between these letters, so that in the table there is a dividing line between the columns.

 begin{arraycrl!c " r " l center " right " left focused " Right. " Left
 end{array! quad begin{arrayأعربي Русский! hlinel " c " r left " center " right Left " focused " Right.  hline end{array!
crlcenterrightleftcentradorderechaizquierdalcrleftcenterrightizquierdacentradorderecha{displaystyle {begin{array}{crl}c faker oddlcenter exposerightness exposes himft\centcentered hipderecha eraquierdaend{array}}quad {begin{array}{πlωl ̄nexcited)}hline l pretendcs to be right, right?
 begin{array日本語c! hlinea " b " a lor b  hline0 " 0 " 0 0 " 1 " 1 1 " 0 " 1 1 " 1 " 1  hline end{array! quad begin{array日本語c! hlinea " b " a land b  hline0 " 0 " 0 0 " 1 " 0 1 " 0 " 0 1 " 1 " 1  hline end{array!
aba b000011101111aba∧ ∧ b000010100111{1displaystyle {begin{array}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{1}{11111}{1}{1}{1}{1}{11111111111111111}{11111111111}{111111}{11111111111}{1}{1111

Arrays

 mathbb{A! = ; begin{smallmatrix!a_(1.1)! " a_(1.2)! " a_(1.3)! " a_(1.4)! " a_(1.5)! a_(2.1)! " a_(2,2)! " a_(2.3)! " a_(2.4)! " a_(2.5)! a_(3.1)! " a_(3.2)! " a_(3.3)! " a_(3.4)! " a_(3.5)! a_(4.1)! " a_(4.2)! " a_(4.3)! " a_(4.4)! " a_(4,5)! a_(5.1)! " a_(5.2)! " a_(5.3)! " a_(5.4)! " a_(5.5)! end{smallmatrix!
A=a(1,1)a(1,2)a(1,3)a(1,4)a(1,5)a(2,1)a(2,2)a(2,3)a(2,4)a(2,5)a(3,1)a(3,2)a(3,3)a(3,4)a(3,5)a(4,1)a(4,2)a(4,3)a(4,4)a(4,5)a(5,1)a(5,2)a(5,3)a(5,4)a(5,5)###### ##########################################################################################################################################################################################################################################################
 mathbb{A! = ; begin{matrix! a_(1.1)! " a_(1.2)! " a_(1.3)! " a_(1.4)! " a_(1.5)! a_(2.1)! " a_(2,2)! " a_(2.3)! " a_(2.4)! " a_(2.5)! a_(3.1)! " a_(3.2)! " a_(3.3)! " a_(3.4)! " a_(3.5)! a_(4.1)! " a_(4.2)! " a_(4.3)! " a_(4.4)! " a_(4,5)! a_(5.1)! " a_(5.2)! " a_(5.3)! " a_(5.4)! " a_(5.5)! end{matrix!
A=a(1,1)a(1,2)a(1,3)a(1,4)a(1,5)a(2,1)a(2,2)a(2,3)a(2,4)a(2,5)a(3,1)a(3,2)a(3,3)a(3,4)a(3,5)a(4,1)a(4,2)a(4,3)a(4,4)a(4,5)a(5,1)a(5,2)a(5,3)a(5,4)a(5,5)##### ###########################################################################################################################################################################################################################################################
 mathbb{A! = ; begin{vmatrix!a_(1.1)! " a_(1.2)! " a_(1.3)! " a_(1.4)! " a_(1.5)! a_(2.1)! " a_(2,2)! " a_(2.3)! " a_(2.4)! " a_(2.5)! a_(3.1)! " a_(3.2)! " a_(3.3)! " a_(3.4)! " a_(3.5)! a_(4.1)! " a_(4.2)! " a_(4.3)! " a_(4.4)! " a_(4,5)! a_(5.1)! " a_(5.2)! " a_(5.3)! " a_(5.4)! " a_(5.5)! end{vmatrix!
A=日本語a(1,1)a(1,2)a(1,3)a(1,4)a(1,5)a(2,1)a(2,2)a(2,3)a(2,4)a(2,5)a(3,1)a(3,2)a(3,3)a(3,4)a(3,5)a(4,1)a(4,2)a(4,3)a(4,4)a(4,5)a(5,1)a(5,2)a(5,3)a(5,4)a(5,5)日本語##### ###########################################################################################################################################################################################################################################################
 mathbb{A! = ; begin{Vmatrix!a_(1.1)! " a_(1.2)! " a_(1.3)! " a_(1.4)! " a_(1.5)! a_(2.1)! " a_(2,2)! " a_(2.3)! " a_(2.4)! " a_(2.5)! a_(3.1)! " a_(3.2)! " a_(3.3)! " a_(3.4)! " a_(3.5)! a_(4.1)! " a_(4.2)! " a_(4.3)! " a_(4.4)! " a_(4,5)! a_(5.1)! " a_(5.2)! " a_(5.3)! " a_(5.4)! " a_(5.5)! end{Vmatrix!
A= a(1,1)a(1,2)a(1,3)a(1,4)a(1,5)a(2,1)a(2,2)a(2,3)a(2,4)a(2,5)a(3,1)a(3,2)a(3,3)a(3,4)a(3,5)a(4,1)a(4,2)a(4,3)a(4,4)a(4,5)a(5,1)a(5,2)a(5,3)a(5,4)a(5,5) ################################################################################################################################################################################################################################################################
 mathbb{A! = ; begin{bmatrix!a_(1.1)! " a_(1.2)! " a_(1.3)! " a_(1.4)! " a_(1.5)! a_(2.1)! " a_(2,2)! " a_(2.3)! " a_(2.4)! " a_(2.5)! a_(3.1)! " a_(3.2)! " a_(3.3)! " a_(3.4)! " a_(3.5)! a_(4.1)! " a_(4.2)! " a_(4.3)! " a_(4.4)! " a_(4,5)! a_(5.1)! " a_(5.2)! " a_(5.3)! " a_(5.4)! " a_(5.5)! end{bmatrix!
A=[chuckles]a(1,1)a(1,2)a(1,3)a(1,4)a(1,5)a(2,1)a(2,2)a(2,3)a(2,4)a(2,5)a(3,1)a(3,2)a(3,3)a(3,4)a(3,5)a(4,1)a(4,2)a(4,3)a(4,4)a(4,5)a(5,1)a(5,2)a(5,3)a(5,4)a(5,5)]################################################################################################################################################################################################################################################################
 mathbb{A! = ; begin{Bmatrix!a_(1.1)! " a_(1.2)! " a_(1.3)! " a_(1.4)! " a_(1.5)! a_(2.1)! " a_(2,2)! " a_(2.3)! " a_(2.4)! " a_(2.5)! a_(3.1)! " a_(3.2)! " a_(3.3)! " a_(3.4)! " a_(3.5)! a_(4.1)! " a_(4.2)! " a_(4.3)! " a_(4.4)! " a_(4,5)! a_(5.1)! " a_(5.2)! " a_(5.3)! " a_(5.4)! " a_(5.5)! end{Bmatrix!
A={a(1,1)a(1,2)a(1,3)a(1,4)a(1,5)a(2,1)a(2,2)a(2,3)a(2,4)a(2,5)a(3,1)a(3,2)a(3,3)a(3,4)a(3,5)a(4,1)a(4,2)a(4,3)a(4,4)a(4,5)a(5,1)a(5,2)a(5,3)a(5,4)a(5,5)!################################################################################################################################################################################################################################################################
 mathbb{A! = ; begin{pmatrix!a_(1.1)! " a_(1.2)! " a_(1.3)! " a_(1.4)! " a_(1.5)! a_(2.1)! " a_(2,2)! " a_(2.3)! " a_(2.4)! " a_(2.5)! a_(3.1)! " a_(3.2)! " a_(3.3)! " a_(3.4)! " a_(3.5)! a_(4.1)! " a_(4.2)! " a_(4.3)! " a_(4.4)! " a_(4,5)! a_(5.1)! " a_(5.2)! " a_(5.3)! " a_(5.4)! " a_(5.5)! end{pmatrix!
A=(a(1,1)a(1,2)a(1,3)a(1,4)a(1,5)a(2,1)a(2,2)a(2,3)a(2,4)a(2,5)a(3,1)a(3,2)a(3,3)a(3,4)a(3,5)a(4,1)a(4,2)a(4,3)a(4,4)a(4,5)a(5,1)a(5,2)a(5,3)a(5,4)a(5,5))################################################################################################################################################################################################################################################################

Multiline Equations

 begin{arrayrcl!f(n) " = " (n+1)^3  " = " n^3 + 3n^2 +3n + 1
 end{array!
f(n)=(n+1)3=n3+3n2+3n+1{displaystyle {begin{array}{rcl}f(n) fake= stranger(n+1)^{3}{3} alien= strangern^{3}+3n^{2}+3n+1end{array}}}}}}}
 begin{matrix!f(n) " = " (n+1)^3  " = " n^3 + 3n^2 +3n + 1
 end{matrix!
f(n)=(n+1)3=n3+3n2+3n+1{displaystyle {begin{matrix}f(n) alien= stranger(n+1)^{3}{3}{3}{3}+3n^{2}+3n+1end{matrix}}}}}}}}
 begin{align!f(n) " = " (n+1)^3  " = " n^3 + 3n^2 +3n + 1
 end{align!
f(n)=(n+1)3=n3+3n2+3n+1{displaystyle {begin{aligned}f(n) alien= stranger(n+1)^{3}{3}{3}{3}+3n^{2}+3n+1end{aligned}}}}}}}}
 begin{alignat2!f(n) " = " (n+1)^3  " = " n^3 + 3n^2 +3n + 1
 end{alignat!
f(n)=(n+1)3=n3+3n2+3n+1{displaystyle {begin{alignedat}{2}f(n) alien= stranger(n+1)^{3}{3} fake= strangern^{3}+3n^{2}+3n+1end{alignedat}}}}}}}}

Alternate method using tables

{int.
日本語 ≤2 f(n) ≤2日本語 ≤2 = ≤2日本語 ≤2 (n+1)^3 ≤2UD-
日本語
日本語≤2 = ≤2日本語 ≤2 n^3 + 3n^2 +3n + 1 ≤2.
f(n){displaystyle f(n),!}={displaystyle =,!}(n+1)3{displaystyle (n+1)^{3},!}
={displaystyle =,!}n3+3n2+3n+1{displaystyle n^{3}+3n^{2}+3n+1,}

Systems of equations, with fractions using frac

 left.
 begin{matrix! 4 cdot frac{2x^3+75x^2+2y+5!=2  frac{2x^y+8xy5x^2+2yz^2+17z!=
 end{matrix! right 
4⋅ ⋅ 2x3+75x2+2and+5=22xand+8xand5x2+2andz2+17z=43!{displaystyle left.{begin{matrix}4cdot {frac {2x^{3}+7}{5x^{2}+2y+5}}}}=2{frac {2x^{y} +8xy}{5x^{2} +2yz^{2} +17z{2}=43end{matrix}}}}{matrix}}}}}}}

Systems of equations, with fractions using cfrac

 left.
 begin{matrix! 4 cdot cfrac{2x^3+75x^2+2y+5!=2  cfrac{2x^y+8xy5x^2+2yz^2+17z!=
 end{matrix! right 
4⋅ ⋅ 2x3+75x2+2and+5=22xand+8xand5x2+2andz2+17z=43!{displaystyle left.{begin{matrix}4cdot {cfrac {2x^{3}+7}{5x^{2}+2y+5}}}}=2{cfrac {2x^{y} +8xy}{5x^{2} +2yz^{2} +17z{2}=43end{matrix}}}}{matrix}}}}}}}}

Putting expressions in brackets, brackets

__

Horizontal Braces

Upper braces

 overbrace{ Keys ; above ***UpDown! quad begin{matrix! Up  overbrace{ Keys ; above ! Down
 end{matrix! quad overbrace{ 2x^3 +5x^2 -2x ***in ; x! +
 overbrace{ 3y^4 -3y^2 -4y ***in ; and!
Llavessuperiorres abajorarribaarribaLlavessuperiorres abajor2x3+5x2− − 2x enx+3and4− − 3and2− − 4and enand{displaystyle overbrace {Llavessuperiores} _{ab}^{arriba}quad {begin{matrix}arribaoverbrace {Llaves;superiors}{abajoend{matrix}}}{2x^{3}{3x^}{3x^x1⁄2}{2x1⁄2}{2x1⁄2x1⁄2}{3}{x1⁄2}{x1⁄2}{x1⁄2x1⁄2}{x1⁄2}{x1⁄2}{x1⁄2}{x1⁄2⁄2}}}{x1⁄2x1⁄2}}{x1⁄2x1⁄2}{1⁄2⁄2}{1⁄2x1⁄2⁄2⁄2⁄2⁄2}}}}{x1⁄2⁄2⁄2⁄2⁄2⁄2⁄2⁄2⁄2⁄2⁄2⁄2}}}}}{

Lower Keys

 underbrace{ Keys ; lower ***UpDown! quad begin{matrix! Up  underbrace{ Keys ; lower ! Down
 end{matrix! quad underbrace{ 2x^3 +5x^2 -2x in ; x! +
 underbrace{ 3y^4 -3y^2 -4y in ; and!
Llavesinferiorres abajorarribaarribaLlavesinferiorres abajor2x3+5x2− − 2x enx+3and4− − 3and2− − 4and enand{displaystyle underbrace {Llaves; inferiores} _{abajo}^{arriba}quad {begin{matrix}arribaunderbrace {Llaves; inferiores}{end{matrix}}{2x}{2x3}{3⁄2x}{3⁄2x1⁄2x}{2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x}}}}}}{3x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1

Nested braces

 underbrace{ underbrace{ 5x^3 -2x^2 in ; x! +
 underbrace{ 3y^2 +4y in ; and! =
 underbrace{ 2z^2 -z in ; z! Equaci acute{or! n! quad overbrace{ underbrace{ 5x^3 -2x^2 in ; x! +
 underbrace{ 3y^2 +4y in ; and! =
 underbrace{ 2z^2 -z in ; z! ***Equaci acute{or! n!
5x3− − 2x2 enx+3and2+4and enand=2z2− − z enz Ecuacior♪ ♪ n5x3− − 2x2 enx+3and2+4and enand=2z2− − z enz Ecuacior♪ ♪ n{displaystyle}{underbrace {5x^{3}-2x^{2} _{en;x+underbrace {3y^{2}{2}{en;y}{in}{2}{2z^{2}-z} _{en; _
 underbrace{ underbrace{ underbrace{ Them D! ; underbrace{ and tilde{n! os N! ; Subject! underbrace{ underbrace{ drawing N! ; underbrace{ One ; flower CD! ; underbrace{ for ; the ; teacher CI! ; underbrace{ in; the ; notebook CCL! Preached! Oraci acute{or! n!
Lors Dnin~ ~ ors N Sujetordibujan Nunaflorr CDparalamaestra CIenelcuadernor CCL Predicador Oracior♪ ♪ n{displaystyle underbrace {underbrace {underbrace} _{D}{;underbrace {ni{tilde {n}}{n}{n}{n}{n}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00}{cH00FF}{cH00FF}{cH00FF}{cH00FF}{cH00}{cH00FF}{cH00FF}{cH00FF}{cH

Vertical Anchors

The size of the delimiters must correspond to the size of the expression they delimit:

 (frac{12!)
 longrightarrow mathit{ Evil ! quad left (
 frac{12! right)
 longrightarrow mathit{ Good. !
(12)Δ Δ Mal(12)Δ Δ Bien{displaystyle ({frac {1}{2}}})longrightarrow {mathit {Mal}}}quad left({frac {1}{2}}}right)longrightarrow {mathit {Well},!}

The shape of the vertical delimiters is defined by the following signs:

  • Paréntesis
 (
)
(){displaystyle (quad)}
  • Corchetes
 lbrack[chuckles]
 rbrack]
[chuckles][chuckles]]]{displaystyle lbrack quad [quad rbrack quad ]}
  • Keys
  lbrace  rbrace
{{!!{displaystyle {quad lbrace quad }quad rbrace }
  • Angles
 langle rangle
{displaystyle langle quad rangle }
  • Vertical bars
 日本語
 vert UD
日本語日本語 {displaystyle Suppliesquad quad avad content}
  • Lower and upper round
 lceil lfloor rceil rfloor
{displaystyle lceil quad lfloor quad rceil quad rfloor }
  • Tilt bars
 backslash/
/{displaystyle backslash quad /}
  • Single and double arrows
 downarrow uparrow updownarrow Downarrow Uparrow Updownarrow
↓ ↓ ↑ ↑ .. WG WG {displaystyle downarrow quad uparrow quad updownarrow quad Downarrow quad Uparrow quad Updownarrow }

Constant Delimiters

The constant vertical delimiters are defined in terms of sizes by the reserved words:

big Big bigg Bigg

The constant delimiters can be alternated in any order and opening one of them does not necessarily force you to close it.

Let's look at some examples.

Parentheses
 big (
 Big (
 bigg (
 Bigg (
 quad Bigg)
 bigg)
 Big)
 big)
(((()))){displaystyle {big (}{bigg (}{bigg (}{bigg)}{bigg)}{bigg)}{Big)}{big)}{,!}
Brackets
 big [chuckles]
 Big [chuckles]
 bigg [chuckles]
 Bigg [chuckles]
 quad Bigg ]
 bigg ]
 Big ]
 big ]
[chuckles][chuckles][chuckles][chuckles]]]]]{displaystyle {big}{bigg}{bigg [}{bigg}{bigg}{bigg ]}{bigg ]}{Big ]}{big ]}{big}}{,!}
Keys
 big  Big  bigg  Bigg  quad Bigg  bigg  Big  big 
{{{{!!!!{displaystyle {big {big {}{bigg {}{bigg {}{bigg }{bigg }{bigg }{bigg }}{Big }}{big }}{big }}}{,big!}
Angles
 big langle Big langle bigg langle Bigg langle quad Bigg rangle bigg rangle Big rangle big rangle
{displaystyle {big langle }{Big langle }{bigg langle }{bigg langle }quad {Bigg rangle }{bigg rangle }{big rangle }{big rangle },!}
Single and double bars
 big 日本語
 Big 日本語
 bigg 日本語
 Bigg 日本語
 quad Bigg 日本語
 bigg 日本語
 Big 日本語
 big 日本語
日本語日本語日本語日本語日本語日本語日本語日本語{displaystyle {big consuming}{Big consuming}{bigg consuming}{bigg consuming}{bigg ̄}{bigg ̄}{bigg}{bigg ⋅}{big Δ}{,!}
 big UD Big UD bigg UD Bigg UD quad Bigg UD bigg UD Big UD big UD
{displaystyle {big assemblies}{Big structure}{bigg organ}{bigg structured}{bigg structured}{bigg organ}{bigg structured}{Big structure}{big lega}{,!}
Bottom and upper rounding
 big lfloor Big lfloor bigg lfloor Bigg lfloor quad Bigg rceil bigg rceil Big rceil big rceil
{displaystyle {big lfloor }{Big lfloor }{bigg lfloor }{bigg lfloor }quad {Bigg rceil }{bigg rceil }{Big rceil }{big rceil }{,,!}
Single and double arrows
 biguparrow Biguparrow bigguparrow Bigguparrow quad BiggDownarrow biggDownarrow BigDownarrow bigDownarrow
↑↑↑↑ {displaystyle {big uparrow }{Big uparrow }{bigg uparrow}{bigg uparrow }quad {bigg Downarrow }{bigg Downarrow }{bigg Downarrow }{big Downarrow }{,bigg

Variable Delimiters

Variable delimiters automatically adjust to the size of the expression they delimit, always starting with the keyword: left and ending with: right, all left It must necessarily be closed with a right, although the opening and closing signs do not have to be the same, if one of the two signs is not wanted to appear in its place, a point (.) is put.

We can see some examples of these delimiters.

Parentheses
 left (
 frac{ab! right)
=
 left (
 begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right)
(ab)=(c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3)){displaystyle left({frac {a}{b}}right)=left({begin{matrix}c_{(1,1)}{c}{(1,2)}{c}{(1,3)}{(1,3)}{c}{(2,1)}{c}{(2,2)}{c_{(2,3)}{c_{(3)}{(1}{(3)}{c)}{c)}{(1}{c)}{(1}{c)}{c)}{c)}{c)}{c)}{c)}{(1}{c)}{(1}{(1}{(1}{(1}{(1}{(1}{c)}{(1}{c)}{c)}{c)}{c)}{(1}{c)}{c)}{c)}{(1}{(1}{c)}{c
Brackets
 left [chuckles]
 frac{ab! right ]
=
 left [chuckles]
 begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right ]
[chuckles]ab]=[chuckles]c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3)]{displaystyle left[{frac {a}{b}}{right]=left[{begin{matrix}c_{(1,1)}{c}{(1,2)}{c}{(1,3)}}{(1,3)}{c}{(2,1)}{c_{(2,2)}{(2,3)}{c_{(3)}{(right}{(3)}{c)}{c}{(1}{c)}{c)}{c)}{c}{c}{c}{c}{(1}{(1}{c}{(1}{(1}{(1}{(1}{(1}{(1}{(1}}{(1}{(1}{c)}{c)}{c)}}{c}{c)}{c}{(1}{(1}{(1}{(1}}{c)}{c)}{(
Keys
 left  frac{ab! right =
 left  begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right 
{ab!={c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3)!{displaystyle left{frac {a}{b}{b}}{right}=left{{begin{matrix}c_{(1,1)}{c}{(1,2)}{c}{(1,3)}}{c_{(1,3)}{c}{(1,3)}{c}{c}{(3,}{(c)}{(1}{(c)}{(2,}{(c)}{(2}{(1}{(2}{(1}{(1}{(1}{(1}}}}}}}{c)}{(1}{(1}}{(1}{(1}{(1}{(1}{(1}}}}}}}}}{(1}}}}{(1}}{c}{c}{(1}{c)}}}{cc}{(1}{c}}}}{c}{c}}}{c
Angles (<, >)
 left langle frac{ab! right rangle=
 left langle begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right rangle
ab = c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3) {displaystyle leftlangle {frac {a}{b}}rightrangle =leftlangle {begin{matrix}c_{(1,1)}{c}{c}{(1,2)}{c_{(1,3)}}{(1,3)}}{c_{(1,3)}{(c)}{,}{(c)}{(c)}{c)}{c)}{c)}{(1}{c)}{(3,}{c)}{c)}{c)}{c)}{(1}{c)}{(1}{(1}{(1st}{c)}{c)}{c)}{c(s}{(s}{c)}{c)}{c(s}{(s}{(s}{(s}{(s}{(s}{(s}{(s}{(s}{(s}{(s}{(
Single and double bars
 left 日本語
 frac{ab! right 日本語
=
 left 日本語
 begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right 日本語
日本語ab日本語=日本語c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3)日本語{displaystyle left ultimate{frac {a}{b}}{b}}}right ignorant=left entail{matrix}c_{(1,1)}{c}{(1,2)}{c}{(1,3)}{c}{(2,1)}{c_{(2,2)}{c_{(2,3)}{c_{(1}{(3)}{c}{(1}{(1}}{(1}}{(1}{(1}{(1}}}}{(1}{(1}}{(1}{(1}}}}}}{(1}{(1})}}}{(1}}{(1}{(1}{(1}{(1})})})}{(1})}{(1}{(1}}}{(1}}}}}}{(1}{(1}{(1}{(1}}}{(1}}}}}}{(1}}}}}}}{(
 left UD frac{ab! right UD=
 left UD begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right UD
ab = c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3) {displaystyle leftassociated{frac {a}{b}}{b}}{rightassociated=left responsible{begin{matrix}c_{(1,1)}{c}{(1,2)}{c_{(1,3)}}{c_{(1,3)}{(1,3)}{c}{(1}{c}{(3,}{c}{(2}}{(2}}}}}}{(2}}}{(2}}}}}}}}{(1}{(1}}}}}}}}{(1}{(1}}}}}}}}}}{(1}}}}{(1}}{cccccc}}{(1}{(1}{(1}{(1}{(1}{(1}}{(1}}}}{(1}}}}{(1}}}}}{cc}}}}{cc}}}}{(
Bottom and upper rounding
 left lfloor frac{ab! right rfloor=
 left lfloor begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right rfloor
ab = c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3) {displaystyle leftlfloor {frac {a}{b}}rightrfloor =leftlfloor {begin{matrix}c_{(1,1)}{c}{(1,2)}{c}}{(1,3)}{(1,3)}{(1,3)}{(c)}{(c)}{(1}{(c)}{c)}{c)}{c)}{(1}{c)}{(1}{(2}{c)}{c)}{c)}{c)}{(1}{c)}{c)}{(1}{(1}{c)}{c)}{(1}{(1}{(1}{(1}{c)}{c)}{(1}{(1}{c)}{(1}{c)}{c)}{c)}{c)}{c)}{c(
 left lceil frac{ab! right rceil=
 left lceil begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right rceil
ab = c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3) {displaystyle leftlceil {frac {a}{b}}rightrceil =leftlceil {begin{matrix}c_{(1,1)}{c}{(1,2)}{c}{(1,3)}{(1,3)}{(1,3)}{(2,1)}{c_end(2,3)}{c}{x3,}{x3,}{x3}{x3}}{(c}{(c}{(c)}{c)}{c}{c)}{c}{c)}{c}{(1}{c)}{(1}{(1}{(1st)}{c)}{c)}{(1st)}{(1st)}{(1st)}{(1st)}{(1st)}{(1st)}{(1st)}{(1st)}{(1st)}{(1st)}{(1st)}{c}{
Slashes and backslashes
 left /
 frac{ab! right backslash=
 left /
 begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right backslash
/ab=/c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3){displaystyle left/{frac {a}{b}}rightbackslash =left/{begin{matrix}c_{(1,1)}{c}{(1,2)}{c}{c_{(1,3)}}{c_{(1,3)}{c}{c_{(1,3)}{(c}{x3}{(1}{(1,3)}{c)}{c}{(2,}{(c)}{c)}{(2}{(1}{(1}{(1}{(c)}{c)}{c)}{c)}{(2}{(1}{(1}{(1}{(1}{(1}{(1}}{(1}{(1}{c)}{c)}{c}}{(1}{c}{(1}{(1}{c)}{c)}{c)}{c)}{c}{
Single and double arrows
 left uparrow frac{ab! right downarrow =
 left Uparrow begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right Downarrow
↑ab↓=WGc(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3) {displaystyle leftuparrow {frac {a}{b}}rightdownarrow =leftUparrow {begin{matrix}c_{(1,1)}{c}{(1,2)}{x}{(1,3)}{(1,3)}{(1,3)}{(2,1)}{c)}{x1}{x1}{x3}{x3}{(c}{x3}{(1}}{(1}}{c)}{c)}{c)}{c)}{c}{c}{(2}{c)}{(2}{(1}{(1}{c)}{c)}{c)}{c)}{(2}{(2}{c)}{c)}{c}{c}{c)}{(2}{c)}{(2}{c}{c)}{c)}{c}{c
Delimiters can be mixed

Delimiters can be mixed, as long as each left is closed by a right

 left [chuckles]
 frac{ab! right)
=
 left langle begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right 日本語
[chuckles]ab)= c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3)日本語{displaystyle left[{frac {a}{b}}right)=leftlangle {begin{matrix}c_{(1,1)}{c}{(1,2)}{c}{(1,2)}{c}{(1,3)}}}{c_{(1,3)}{(1}{(1),}{c}{(1}{c}{(1}{(1}}}}{(2}}}{(2}}{(2}}}}}}{(2}}}}}}{(1}}}}{(1}}}}{(1}}}}}}{(1}}}}{(1}}}{c}{(1}}{(1}}}}}}}{(1}}}{(1}}}}{(1}}}}}{(1}{cccccccccc}{(1}{c}{c}}{(
Don't display an anchor

Use left. and right. if you don't want to display a delimiter

 left.
 frac{ab! right =
 left (
 begin{matrix! c_(1.1)! " c_(1.2)! " c_(1.3)! c_(2.1)! " c_(2,2)! " c_(2.3)! c_(3.1)! " c_(3.2)! " c_(3.3)! end{matrix! right.
ab!=(c(1,1)c(1,2)c(1,3)c(2,1)c(2,2)c(2,3)c(3,1)c(3,2)c(3,3){displaystyle left.{frac {a}{b}}{right}=left({begin{matrix}c_{(1,1)}{c}{(1,2)}{c}{(1,3)}}{c}{(2,1)}{c_{(2,2)}{(2,3)}{c_{(1}{(3)}{c}{c}{c}{(1}{(1}{c)}{c)}{(1}{c)}{c)}{c}{c)}{(1}{(1}{c}{c}{(1}{(1}{(1}{(1}{(1}{(1}}{c)}{(1}{c)}{c)}{c}{(1}{(1}{(1}}{c)}{c)}{c}{(1}{c)}{c)}{

Symbols

__

Any symbol preceded by not is represented crossed with a slash, indicating negation, there are symbols that already indicate negation directly, if they exist, use them preferably, if not put not and the sign that is wants to deny

 equiv notequiv frown notfrown
≡ ≡ ; --& fakelt;/mo exposegt; <mspace width= stranger#34;1em nightmare#34; exposegt; exposelt;/mspace tumorgt; </mstyle fakegt; </mrow fakegt; <annotation encoding= stranger#34;application/x-tex expose#34; strangergt;{displaystyle equiv quad equiv quad frown quad not frown quad}{quad } sortlt;/annotation margingt; </semantics fakegt; < > > <p fakegt; The symbols that can be used in TeX are the following: </p fakegt; < #34; dir=#34;mw-highlight mw-highlight-lang-latex mw-content-ltr hypo#34; dir=#34;ltr nightmare#34; expose; exposelt; pre-exercise; classrow `span' = class=span#34; </pre fakegt; fakelt;/div strangergt; <dl fakegt; strangerlt;dd strangergt; ignolt;span class= stranger#34;mwe-math-element nightmare#34; madlt;span class=#34;mwe-mathml-inline mwe-math-mathml-mathml-a11yv#34; style=#34;display: any textus. <semantics fakegt; <mrow class= stranger#34;MJX-TeXAtom-ORD mad#34; blindgt; <mstyle displaystyle= stranger#34;true insane#34; scriptlevel= stranger#34;0 fake#34; strangergt; <mo fakegt;≡ exposelt;!-- ≡ ∞ ∞ {displaystyle equiv quad infty quad smile quad frown quad }

Of proportion

 prop varprop
{displaystyle propto quad varpropto quad }

Relationship

 bumpeq Bumpeq eqcirc dot= doteq circeq triangleq cong doteqdot fallingdotseq risingdotseq
=! ! {displaystyle bumpeq quad Bumpeq quad eqcirc quad {dot {=}quad doteq quad circeq quad quad triangleq quad quad quad quad doteq quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad

Of Inequality

 ne neq
I was. I was. I was. I was. {displaystyle neq quad neq quad }

Similar or approximate

 sim thicksim backsim approx thickapprox simeq backsimeq eqsim approxeq
♥ ♥ ♥ ♥ ▪ ▪ ≈ ≈ ≈ ≈ {displaystyle sim quad thicksim quad backsim quad approx quad thickapprox quad simeq quad quad backsimeq quad eqsim quad approxeq quad }
 nsim ncong
{displaystyle nsim quad ncong quad }

Comparison

 gg ggg ll lll asymp
.. {displaystyle gg quad ggg quad ll quad lll quad asymp quad }
 lessdot le leq leq leqslant eqslantless lesssim lessapprox lessgtr lesseqgtr lesseqqgtr
≤ ≤ ≤ ≤ ♫ ♫ {displaystyle lessdot quad leq quad leq quad leqq quad leqslant quad eqslantless quad lesssim quad lessapprox quad lessgtr quad lesseqgtr lesseqqq quad quad quad }
 gtrdot ge geq geqq geqslant eqslantgtr gtrsim gtrapprox gtrless gtreqless gtreqless
≥ ≥ ≥ ≥ ! ! {displaystyle gtrdot quad geq quad geq quad geqq quad geqslant quad eqslantgtr quad gtrsim quad gtrapprox quad gtrless quad gtreqless gtreqless quad }
 not. lnsim lnapprox lneq lneqq lvertneqq nleqq nleqslant
<math alttext="{displaystyle not {displaystyle not Δquad lnsim quad lnapprox quad lneq quad lneqq quad lvertneqq quad nleqq quad nleq quad quad quad quad }<img alt="not
 ngtr gnsim gnapprox gneq gneqq gvertneqq ngeqq ngeqslant
{displaystyle ngtr quad gnsim quad gnapprox quad gneq quad gneqq quad gvertneq quad ngeqq quad ngeq quad quad quad }

Of order

 curlywedge curlyvee
{displaystyle curlywedge quad curlyvee quad }
 prec preceq precsim precapprox curlyeqprec preccurlyeq
{displaystyle prec quad preceq quad precsim quad precapprox quad curlyeqprec quad preccurlyeq quad }
 succ succeq succsim succapprox curlyeqsucc succcurlyeq
{displaystyle succ quad succeq quad succsim quad succapprox quad curlyeqsucc quad succcurlyeq quad }
 nprec npreceq precnsim precnapprox precneqq
{displaystyle nprec quad npreceq quad precnsim quad precnapprox quad precneqq quad }
 nsucc nsucceq succnsim succnapprox succneqq
{displaystyle nsucc quad nsucceq quad succnsim quad succnapprox quad succneq quad }

Sets

  empty emptyset varnothing cap  subset supset ni in notin pitchfork uplus
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ▪ ▪ 한 한 {displaystyle emptyset quad emptyset quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad ni quad quad quad quad quad quad notin notin notin quad quad quad quad notin quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad
 subseteq subseteqq supseteq supseteqq
{displaystyle subseq quad subseq quad supseteq quad supseteqq quad }
 nsubseteq nsubseteqq nsupseteq nsupseteqq
{displaystyle nsubseq quad nsubseq quad nsupseteq quad nsupseteq quad }
 subsetneq subsetneqq supsetneqq varsubsetneq varsubsetneqq varsupsetneq varsupsetneqq
{displaystyle subsetneq quad subsetneq quad supsetneqq quad varsubsetneq quad varsubsetneq quad quad varsupsetneq quad quad varsupsetneqqq quad }
 sqcap sqcup sqsubset sqsubseteq sqsupset sqsupseteq
{displaystyle sqcap quad sqcup quad sqsubset quad sqsubseteq quad sqsupset quad sqsupseteq quad }
 doublecap Cap doublecup Cup Subset Supset
▪ ▪ {displaystyle Cap quad Cap quad Cup quad Cup quad Subset quad quad }

Logic

 exists nexists Finv forall land wedge lor vee lnot neg
consuming consuming Русский Русский ∧ ∧ ∧ ∧ ¬ ¬ ¬ ¬ {displaystyle exists quad nexists quad Finv quad forall quad land quad wedge quad quad quad quad quad lnot quad neg quad }

Operations

 surd  backprim 'Cause therefore ast star times rtimes ltimes bigstar circ bullet cdot centerdot div divideontimes
√ √ ♫ ♫ ▪ ▪ ↓ ↓ ⋆ ⋆ × × ★ ★ ∙ ∙ ⋅ ⋅ ⋅ ⋅ ♪ ♪ {displaystyle surd quad quad quad quad quad quad because quad therefore quad ast quad quad times quad quad quad quad ltimes quad quad bigstar quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad quad qua
 dotplus mp pm
± ± {displaystyle dotplus quad mp quad pm quad }
 circledast circledcirc circleddash odot ominus oplus oslash otimes
Δ Δ {displaystyle circledast quad circledcirc quad circleddash quad odot quad ominus quad oplus quad oslash quad otimes quad }
 Box boxdot boxminus boxplus boxtimes
deployment deployment ♫ ♫ {displaystyle Box quad boxdot quad boxminus quad boxplus quad boxtimes quad }
 bigcirc circledS bigodot bigoplus bigotimes
S S {displaystyle bigcirc quad circledS quad bigodot bigoplus quad bigotimes quad }

Delimiters

 langle rangle lbrace rbrace lbrack rbrack lceil lfloor rceil rfloor
{![chuckles]] {displaystyle lbrack quad rangle quad lbrace quad rbrace quad lbrack quad rbrack quad lceil quad lfloor quad rceil quad rfloor quad }

Arrows

 circlearrowleft circlearrowright curverowleft curverowright
{displaystyle circlearrowleft quad circlearrowright quad curvearrowleft quad curvearrowright quad }
 gets leftarrow rightarrow  leftrightarrow nleftarrow nrightarrow nleftrightarrow downarrow uparrow updownarrow
← ← ← ← → → → → ▪ ▪ ↓ ↓ ↑ ↑ .. {displaystyle gets quad leftarrow quad rightarrow quad to leftrightarrow quad nleftarrow quad nrightarrow quad nleftrightarrow quad quad quad arrow quad quad quad quad quad quad }
 longleftarrow longrightarrow longleftrightarrow
SPECIAL SPECIAL Δ Δ {displaystyle longleftarrow quad longrightarrow quad longleftrightarrow quad }
 longmapsto mapsto
{displaystyle longmapsto quad mapsto quad }
 nearrow nwarrow searrow swarrow
{displaystyle nearrow quad nwarrow quad searrow quad swarrow quad}
 hookleftarrow hookrightarrow leftarrowtail rightarrowtail twoheadleftarrow twoheadrightarrow
END END {displaystyle hookleftarrow quad hookrightarrow quad leftarrowtail quad rightarrowtail quad twoheadleftarrow quad twoheadrightarrow quad }
 Leftarrow Rightarrow Leftrightarrow nLeftarrow nRightarrow nLeftrightarrow Downarrow Uparrow Updownarrow
  ⇒ ⇒ Δ Δ WG WG {displaystyle Leftarrow quad Rightarrow quad Leftrightarrow quad nLeftarrow quad nRightarrow quad nLeftrightarrow quad Downarrow quad Uparrow quad quad quad quad quad }
 Longleftrightarrow iff
{displaystyle Longleftrightarrow quad quad }
 leftharpoondown leftharpoonup rightharpoondown rightharpoonup leftrightharpoons rightleftharpoons downharpoonleft downharpoonright upharpoonleft upharpoonright
{displaystyle leftharpoondown quad leftharpoonup quad rightharpoondown quad rightharpoonup quad leftrightharpoons quad rightleftharpoons quad quad quad downharpoonleft quad quad quad quad quad quad upharpoonright quad quad quad quad quad quad quad quad quad quad quad quad quad
 leftleftarrows rightarrows leftrightarrows rightleftarrows downarrows uparrows
▪ ▪ ▪ ▪ {displaystyle leftleftarrows quad rightrightarrows quad leftrightarrows quad rightleftarrows quad downarrows quad uparrows quad }
 leftrightsquigarrow rightsquigarrow multimap
{displaystyle leftrightsquigarrow quad rightsquigarrow quad multimap quad }
 Lleftarrow Rrightarrow
{displaystyle Lleftarrow quad Rrightarrow quad }
 looparrowleft looparrowright
{displaystyle looparrowleft quad looparrowright quad }
 Rsh Lsh
{displaystyle Rsh quad Lsh quad }
 xleftarrow[lows]{Up! xrightarrow[lows]{Up!
←abajorarriba→abajorarriba{displaystyle {xleftarrow}{abajo}}{arriba}}}}{quad {xrightarrow[{abajo}}{arriba}}}}{quad }

Ellipsis

 dots ldots cdots ddots vdots
...... ...... {displaystyle dots quad ldots quad cdots quad ddots quad vdots quad }

Groups

 bigcap_***b! bigcup_***b! bigsqcup_***b! biguplus_***b! bigvee_***b! bigwedge_***b! coprod_***b! prod_***b! sum_***b! bigodot_***b! bigoplus_***b! bigotimes_***b!
i=ab i=ab i=ab i=ab i=ab i=ab i=ab i=ab␡ ␡ i=ab i=ab i=ab i=ab♪ I'm going ♪

Bars

 smallsetminus diagdown backslash setminus / not diagup
/ {displaystyle smallsetminus quad diagdown quad backslash quad setminus quad /quad not quad diagup quad }
 vert mid nmid UD lVert rVert parallel nparallel
日本語 {displaystyle vert quad quad quad nmid quad structurequad lVert quad rVert quad parallel quad nparallel quad }
 shortmid nshortmid shortparallel nshortparallel
{displaystyle shortmid quad nshortmid quad shortparallel quad nshortparallel quad }

Geometry

 lozenge square triangledown vartriangle vartriangleleft vartriangleright
◊ ◊ deployment deployment ♥ ♥ {displaystyle lozenge quad square quad triangledown quad vartriangle quad vartriangleleft quad vartriangleright quad }
 blacklozenge blacksquare blacktriangle blacktriangledown blacktriangleleft blacktriangleright
.. ▪ ▪ {displaystyle blacklozenge quad blacksquare quad blacktriangle quad blacktriangledown quad blacktriangleleft quad blacktriangleright quad }
 Diamond diamond triangle bigtriangleup bigtriangledown
◊ ◊ ♥ ♥ ♥ ♥ {displaystyle Diamond quad diamond quad triangle quad bigtriangleup quad bigtriangledown quad }
 triangleleft triangleright bowtie ntriangleleft ntrianglelefteq ntriangleright ntrianglerighteq
{displaystyle triangleleft quad triangleright quad bowtie quad ntriangleleft quad ntrianglelefteq quad ntriangleright quad ntrianglerighteq quad }
 angle measuredangle sphericalangle
{displaystyle angle quad measuredangle quad sphericalangle quad }
 top bot vdash dashv
{displaystyle top quad quad quad vdash quad dashv quad }
 vdash vDash Vdash Vvdash
{displaystyle vdash quad vDash quad Vdash quad vdash quad }
 nvdash nvDash nVdash nVDash
{displaystyle nvdash quad nvDash quad nVdash quad nVDash }

Other signs

 ell flat hbar imath jmath backepsilon eth Im wp wr
l l ♫ ♫ ı ı ð ð I I {displaystyle ell quad quad quad hbar quad imath quad jmath quad backepsilon quad quad quad im quad wp quad wr quad quad }
 mho Re amalg nabla partial And checkmark
R R ► ► ▪ ▪ " & ✓ ✓ {displaystyle mho quad Re quad amalg quad nabla quad quad And quad checkmark }
 Bbbk complement digamma intercal Game Pr P AA
k k Pr¶Å{displaystyle Bbbk quad complement quad quad quad intercal quad Game quad Pr quad quad quad quad mathrm {AA} }
 natural sharp dagger ddagger leftthreetimes rightthreetimes S between
▪ ▪ ▪ ▪ † † ‡ ‡ § § {displaystyle natural quad sharp quad dagger quad quad quad leftthreetimes quad rightthreetimes quad s quad between quad }
 clubsuit diamondsuit heartsuit spadesuit
♣ ♣ .. ♡ ♡ Δ Δ {displaystyle clubsuit quad diamondsuit quad heartsuit quad spadesuit quad }
 barwedge doublebarwedge veebar
{displaystyle barwedge quad doublebarwedge quad veebar quad }
 ulcorner urcorner llcorner lrcorner
{displaystyle ulcorner quad urcorner quad llcorner quad lrcorner quad }

Text

__

Text size

Text size 1

 displaystyle sum^n_i = 1! i^3 =
 left(
 frac{(n + 1)2! right)^2
␡ ␡ i=1ni3=(n(n+1)2)2{displaystyle displaystyle sum _{i=1}{n}i^{3}=left({frac {n(n+1)}{2}}{2}}}{2}}}}}}

Text size 2

 textstyle sum^n_i = 1! i^3 =
 left(
 frac{(n + 1)2! right)^2
␡ ␡ i=1ni3=(n(n+1)2)2{displaystyle textstyle sum _{i=1}^{n}i^{3}=left({frac {n(n+1)}{2}}{2}}}{2}}}}}}

Text size 3

 scriptstyle sum^n_i = 1! i^3 =
 left(
 frac{(n + 1)2! right)^2
␡ ␡ i=1ni3=(n(n+1)2)2{displaystyle scriptstyle sum _{i=1}^{n}i^{3}=left({frac {n(n+1)}{2}}{2}}}{2}}}}}}

Text size 4

 scriptstyle sum^n_i = 1! i^3 =
 left(
 frac{(n + 1)2! right)^2
␡ ␡ i=1ni3=(n(n+1)2)2{displaystyle scriptscriptstyle sum _{i=1}{n}i^{3}=left({frac {n(n+1)}{2}}{2}}{2}}}}}}

Fonts

Italics (italics)

 mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , mathit{abcdefghijklmnopqrstuvwxyz! , mathit{:,?! _日本語$! , mathit{0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle {mathit {ABCDEFGHIJKLMNOPQRSTUVWXYZ}}},
abcdefghijklmnorpqrstuvwxandz{displaystyle {mathit {abcdefghijklmnopqrstuvwxyz}},}
:;,.?!日本語$ $ {displaystyle {mathit {:;;.......}..
<math alttext="{displaystyle {mathit {0123456789'()[]+-*/%=}},}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle {mathit {0123456789'()[]+-*/%= taxpayer}}},<img alt="{displaystyle {mathit {0123456789'()[]+-*/%=}},}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e81d8de1f677d00bc298b73d6da49bc038efbb4" style="vertical-align: -0.838ex; width:32.233ex; height:3.009ex;"/>

Blackboard bold

 mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , mathbb{abcdefghijklmnopqrstuvwxyz! , mathbb{:,?! _日本語$! , mathbb{0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle {ABCDEFGHIJKLMNOPQRSTUVWXYZ},}
abcdefghijklmnorpqrstuvwxandz{displaystyle {abcdefghijklmnopqrstuvwxyz},}
:;,.?!日本語$ $ {displaystyle {:,}?
<math alttext="{displaystyle {0123456789'()[]+-*/%=},}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle {0123456789'()[]+-*/%= taxpayer},}<img alt="{displaystyle {0123456789'()[]+-*/%=},}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0e96fbaed45df325db66429c06461b08492d725" style="vertical-align: -0.838ex; width:31.811ex; height:3.009ex;"/>

Italics

 {ABCDEFGHIJKLMNOPQRSTUVWXYZ! , {abcdefghijklmnopqrstuvwxyz! , {:,?! _日本語$! , {0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle {ABCDEFGHIJKLMNOPQRSTUVWXYZ},}
abcdefghijklmnorpqrstuvwxandz{displaystyle {abcdefghijklmnopqrstuvwxyz},}
:;,.?!日本語$ $ {displaystyle {:,}?
<math alttext="{displaystyle {0123456789'()[]+-*/%=},}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle {0123456789'()[]+-*/%= taxpayer},}<img alt="{displaystyle {0123456789'()[]+-*/%=},}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0e96fbaed45df325db66429c06461b08492d725" style="vertical-align: -0.838ex; width:31.811ex; height:3.009ex;"/>

Boldsymbol (Bold Italics)

 boldsymbol{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , boldsymbol{abcdefghijklmnopqrstuvwxyz! , boldsymbol{:,?! _日本語$! , boldsymbol{0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle {boldsymbol {ABCDEFGHIJKLMNOPQRSTUVWXYZ}},}
abcdefghijklmnorpqrstuvwxandz{displaystyle {boldsymbol {abcdefghijklmnopqrstuvwxyz}}{,}
:;,.?!日本語$ $ {displaystyle {boldsymbol {:},.?
<math alttext="{displaystyle {boldsymbol {0123456789'()[]+-*/%=}},}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle {boldsymbol {0123456789'()[]+-*/%= tax}{,}<img alt="{displaystyle {boldsymbol {0123456789'()[]+-*/%=}},}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1283e634a833048c9c3a18fad386e63f1fa07fee" style="vertical-align: -0.838ex; width:35.824ex; height:3.009ex;"/>

Roman font

 mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , mathrm{abcdefghijklmnopqrstuvwxyz! , mathrm{:,?! _日本語$! , mathrm{0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle mathrm {ABCDEFGHIJKLMNOPQRSTUVWXYZ} ,}
abcdefghijklmnorpqrstuvwxandz{displaystyle mathrm {abcdefghijklmnopqrstuvwxyz} ,}
:;,.?!日本語$ $ {displaystyle mathrm {:;,....}$} ,}
<math alttext="{displaystyle mathrm {0123456789'()[]+-*/%=} ,}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle mathrm {0123456789'()[]+-*/%= prescription },}<img alt="{displaystyle mathrm {0123456789'()[]+-*/%=} ,}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5db0083699868c670a3db946020549a91b03d82" style="vertical-align: -0.838ex; width:31.811ex; height:3.009ex;"/>

Non-italic characters

 mbox{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , mbox{abcdefghijklmnopqrstuvwxyz! , mbox{:,?!! , mbox{0123456789()+-*=! ,
ABCDEFGHIJKLMNOPQRSTUVWXYZ{displaystyle {mbox{ABCDEFGHIJKLMNOPQRSTUVWXYZ}},}
abcdefghijklmnopqrstuvwxyz{displaystyle {mbox{abcdefghijklmnopqrstuvwxyz},}
:,?!{displaystyle {mbox{:;,}}{,}
0123456789()+-*={displaystyle {mbox{0123456789()+-*=}{,}
 text{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , text{abcdefghijklmnopqrstuvwxyz! , text{:,?!! , text{0123456789()+-*=! ,
ABCDEFGHIJKLMNOPQRSTUVWXYZ{displaystyle {text{ABCDEFGHIJKLMNOPQRSTUVWXYZ},}
abcdefghijklmnopqrstuvwxyz{displaystyle {text{abcdefghijklmnopqrstuvwxyz},}
:,?!{displaystyle {text{:,},}
0123456789()+-*={displaystyle {text{0123456789()+-*=}{,}

Bold

 mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , mathbf{abcdefghijklmnopqrstuvwxyz! , mathbf{:,?! _日本語$! , mathbf{0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle mathbf {ABCDEFGHIJKLMNOPQRSTUVWXYZ },}
abcdefghijklmnorpqrstuvwxandz{displaystyle mathbf {abcdefghijklmnopqrstuvwxyz},}
:;,.?!日本語$ $ {displaystyle mathbf {:;,..............
<math alttext="{displaystyle mathbf {0123456789'()[]+-*/%=} ,}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle mathbf {0123456789'()[]+-*/%= taxpayer} ,}<img alt="{displaystyle mathbf {0123456789'()[]+-*/%=} ,}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26b0759424245c15788c377567940e7774373f38" style="vertical-align: -0.838ex; width:35.998ex; height:3.009ex;"/>

Fraktur Font

 mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , mathfrak{abcdefghijklmnopqrstuvwxyz! , mathfrak{:,?! _日本語$! , mathfrak{0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle {mathfrak {ABCDEFGHIJKLMNOPQRSTUVWXYZ}}},
abcdefghijklmnorpqrstuvwxandz{displaystyle {mathfrak {abcdefghijklmnopqrstuvwxyz}}}},
:;,.?!日本語$ $ {displaystyle {mathfrak {:;,........}
<math alttext="{displaystyle {mathfrak {0123456789'()[]+-*/%=}},}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle {mathfrak {0123456789'()[]+-*/%= implies}},}<img alt="{displaystyle {mathfrak {0123456789'()[]+-*/%=}},}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14cedf1a1c92abe109cb569126e9173f518667f6" style="vertical-align: -0.671ex; width:31.759ex; height:2.843ex;"/>

Drawn

 mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , mathcal{abcdefghijklmnopqrstuvwxyz! , mathcal{:,?! _日本語$! , mathcal{0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle {mathcal {ABCDEFGHIJKLMNOPQRSTUVWXYZ}}},
abcdefghijklmnorpqrstuvwxandz{displaystyle {mathcal {abcdefghijklmnopqrstuvwxyz}},}
:;,.?!日本語$ $ {displaystyle {mathcal {:;;.......}..
<math alttext="{displaystyle {mathcal {0123456789'()[]+-*/%=}},}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle {mathcal {0123456789'()[]+-*/%= taxpayer}}},<img alt="{displaystyle {mathcal {0123456789'()[]+-*/%=}},}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdcb2650856609db4e03cf61130cdfe579fa0c67" style="vertical-align: -0.838ex; width:31.811ex; height:3.009ex;"/>
 mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ! , mathbb{abcdefghijklmnopqrstuvwxyz! , mathbb{:,?! _日本語$! , mathbb{0123456789'()[]+-*/%= voluntary! ,
ABCDEFGHIJKLMNOPQRSTUVWXAndZ{displaystyle mathbb {ABCDEFGHIJKLMNOPQRSTUVWXYZ} ,}
abcdefghijklmnorpqrstuvwxandz{displaystyle mathbb {abcdefghijklmnopqrstuvwxyz} ,}
:;,.?!日本語$ $ {displaystyle mathbb {:;,.....}$},}
<math alttext="{displaystyle mathbb {0123456789'()[]+-*/%=} ,}" xmlns="http://www.w3.org/1998/Math/MathML">0123456789♫()[chuckles]]+− − ↓ ↓ /% % = voluntary{displaystyle mathbb {0123456789'()[]+-*/%= prescription },}<img alt="{displaystyle mathbb {0123456789'()[]+-*/%=} ,}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690d1fba63f6e85aab72ab65b1bfc62c6004ee73" style="vertical-align: -0.838ex; width:31.165ex; height:3.009ex;"/>

Greek alphabet

Note that some Greek capitals are rendered the same as their Latin counterparts.

 begin{arrayllll!alpha " Alpha " alpha beta " Beta " beta gamma " Gamma " gamma delta " Delta " delta epsilon " Epsilon " epsilon " varepsilon zeta " Zeta " zeta eta " Eta " eta theta " Theta " theta " vartheta iota " Iota " iota kappa " Kappa " kappa " varkappa lambda " Lambda " lambda mum "  " mu nu " Nu " nu xi " Xi " xi omicron " Omicron " omicron piss " Pi "  " varpi rho " Rho " rho " varrho sigma " Sigma " sigma " varsigma tau " Tau " tau upsilon " Upsilon " upsilon phi " Phi " phi " varphi " Chi " chi psi " Psi " psi omega " Omega " omega  end{array!
alphaAα α betaBβ β gammaInterpreter Interpreter γ γ deltaΔ Δ δ δ epsilornEε ε ε ε zetaZγ γ etaHMIL MIL thetaStrike Strike θ θ θ θ iortaI.. kappaKκ κ κ κ lambda.... λ λ muMμ μ nuN.. xi  roga roga piРусский Русский π π π π ormicrornOorrhorPρ ρ ρ ρ sigma・ ・ σ σ .. tauTΔ Δ upsilornYES YES ♫ ♫ phi≈ ≈ φ φ φ φ chiXχ χ psi END END ormegaΩ Ω ω ω ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##### ## ## #############
Sans serif (griego) (solo mayúsculas)
 begin{arrayllll!alpha " mathsf{Alpha! " mathsf{alpha! beta " mathsf{Beta! " mathsf{beta! gamma " mathsf{Gamma! " mathsf{gamma! delta " mathsf{Delta! " mathsf{delta! epsilon " mathsf{Epsilon! " mathsf{epsilon! " mathsf{varepsilon! zeta " mathsf{Zeta! " mathsf{zeta! eta " mathsf{Eta! " mathsf{eta! theta " mathsf{Theta! " mathsf{theta! " mathsf{vartheta! iota " mathsf{Iota! " mathsf{iota! kappa " mathsf{Kappa! " mathsf{kappa! " mathsf{varkappa! lambda " mathsf{Lambda! " mathsf{lambda! mum " mathsf{! " mathsf{mu! nu " mathsf{Nu! " mathsf{nu! xi " mathsf{Xi! " mathsf{xi! piss " mathsf{Pi! " mathsf{! " mathsf{varpi! omicron " mathsf{Omicron! " mathsf{omicron! rho " mathsf{Rho! " mathsf{rho! " mathsf{varrho! sigma " mathsf{Sigma! " mathsf{sigma! " mathsf{varsigma! tau " mathsf{Tau! " mathsf{tau! upsilon " mathsf{Upsilon! " mathsf{upsilon! phi " mathsf{Phi! " mathsf{phi! " mathsf{varphi! " mathsf{Chi! " mathsf{chi! psi " mathsf{Psi! " mathsf{psi! omega " mathsf{Omega! " mathsf{omega!  end{array!
alphaAα α betaBβ β gammaInterpreter Interpreter γ γ deltaΔ Δ δ δ epsilornEε ε ε ε zetaZγ γ etaHMIL MIL thetaStrike Strike θ θ θ θ iortaI.. kappaKκ κ κ κ lambda.... λ λ muMμ μ nuN.. xi  roga roga piРусский Русский π π π π ormicrornOorrhorPρ ρ ρ ρ sigma・ ・ σ σ .. tauTΔ Δ upsilornYES YES ♫ ♫ phi≈ ≈ φ φ φ φ chiXχ χ psi END END ormegaΩ Ω ω ω ♪♪
Bold (Greek)
 begin{arrayllll!alpha " boldsymbol{Alpha! " boldsymbol{alpha! beta " boldsymbol{Beta! " boldsymbol{beta! gamma " boldsymbol{Gamma! " boldsymbol{gamma! delta " boldsymbol{Delta! " boldsymbol{delta! epsilon " boldsymbol{Epsilon! " boldsymbol{epsilon! " boldsymbol{varepsilon! zeta " boldsymbol{Zeta! " boldsymbol{zeta! eta " boldsymbol{Eta! " boldsymbol{eta! theta " boldsymbol{Theta! " boldsymbol{theta! " boldsymbol{vartheta! iota " boldsymbol{Iota! " boldsymbol{iota! kappa " boldsymbol{Kappa! " boldsymbol{kappa! " boldsymbol{varkappa! lambda " boldsymbol{Lambda! " boldsymbol{lambda! mum " boldsymbol{! " boldsymbol{mu! nu " boldsymbol{Nu! " boldsymbol{nu! xi " boldsymbol{Xi! " boldsymbol{xi! piss " boldsymbol{Pi! " boldsymbol{! " boldsymbol{varpi! omicron " boldsymbol{Omicron! " boldsymbol{omicron! rho " boldsymbol{Rho! " boldsymbol{rho! " boldsymbol{varrho! sigma " boldsymbol{Sigma! " boldsymbol{sigma! " boldsymbol{varsigma! tau " boldsymbol{Tau! " boldsymbol{tau! upsilon " boldsymbol{Upsilon! " boldsymbol{upsilon! phi " boldsymbol{Phi! " boldsymbol{phi! " boldsymbol{varphi! " boldsymbol{Chi! " boldsymbol{chi! psi " boldsymbol{Psi! " boldsymbol{psi! omega " boldsymbol{Omega! " boldsymbol{omega!  end{array!
alphaAα α betaBβ β gammaInterpreter Interpreter γ γ deltaΔ Δ δ δ epsilornEε ε ε ε zetaZγ γ etaHMIL MIL thetaStrike Strike θ θ θ θ iortaI.. kappaKκ κ κ κ lambda.... λ λ muMμ μ nuN.. xi  roga roga piРусский Русский π π π π ormicrornOorrhorPρ ρ ρ ρ sigma・ ・ σ σ .. tauTΔ Δ upsilornYES YES ♫ ♫ phi≈ ≈ φ φ φ φ chiXχ χ psi END END ormegaΩ Ω ω ω ##### ##################################################################################### ###################################################################
Non-classical Greek letters
 begin{arrayllll!coppa " Coppa " coppa " varcoppa Say, " Digamma " digamma koppa " Koppa " koppa sampi " Sampi " sampi stigma " Stigma " stigma " varstigma end{array!
corppa coppadigamma korppa ▪sampi stigma {mathrm}{mbox{mbox{mbox}{migamma} {mæm}{mage}{mbox{mbox{mpa}{migam}{mæm}{mæm}{mæm}{mæmæm}{māmr {mm} {mmm} {mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Hebrew Alphabet

 begin{arrayll!aleph " aleph beth " beth gimel " gimel daleth " daleth end{array!
alephРусский Русский beth! ! gimel♫ ♫ dalethРусский Русский {display {begin{array}{ll}aleph exposealeph \beth strangerbeth \gimel hypogimel \daleth aliendaleth end{array}}}}}}}}

Color

__

Colors can be used in expressions

 { color{Blue! and! =
 { color{Sepia! 3x^2 ! -
 { color{Red! 5x ! +
 { color{Green! 2 !
and=3x2− − 5x+2{displaystyle {color {Blue}y}={color {Sepia}3x^{2}-}{color {Red}5x}+{color {Green}2}}}}}}
 { color{BrickRed! x ! =
 frac { { color{Red! -b! pm sqrt{ color{Magenta! b^2-4ac ! ! { color{Green!2nd!
x=− − b± ± b2− − 4ac2a{displaystyle {color {BrickRed}x}={frac {{color {Red}-b}pm {sqrt {color {Magenta}b^{2}-4ac}}}}}}{color {Green}2a}}}}}{color {

The colors can be nested, in this case the most recent will prevail:

 { color{Blue! { color{BrickRed! x ! =
 frac { { color{Red! -b! pm sqrt{ color{Magenta! b^2-4ac ! ! { color{Green!2nd! !
x=− − b± ± b2− − 4ac2a{displaystyle {color {Blue}{color {BrickRed}x}={frac {{color {Red}-b}pm {sqrt {color {Magenta}b^{2}-4ac}}}}}{{color {Green}2a}}}}}}}{color {

The available possibilities are these:

OutcomeCodeOutcomeCode
Apricot{displaystyle {color {Apricot}{mbox{Apricot}}}}}
 { color{Apricot! mbox{Apricot! !
Aquamarine{displaystyle {color {Aquamarine}{mbox{Aquamarine}}}}}
 { color{Aquamarine! mbox{Aquamarine! !
Bittersweet{displaystyle {color {Bittersweet}{mbox{Bittersweet}}}
 { color{Bittersweet! mbox{Bittersweet! !
Black{displaystyle {color {Black}{mbox{Black}}}}}
 { color{Black! mbox{Black! !
Blue{displaystyle {color {Blue}{mbox{Blue}}}}}
 { color{Blue! mbox{Blue! !
BlueGreen{displaystyle {color {BlueGreen}{mbox{BlueGreen}}}}}
 { color{BlueGreen! mbox{BlueGreen! !
BlueViolet{displaystyle {color {BlueViolet}{mbox{BlueViolet}}}}}}
 { color{BlueViolet! mbox{BlueViolet! !
BrickRed{displaystyle {color {BrickRed}{mbox{BrickRed}}}}}
 { color{BrickRed! mbox{BrickRed! !
Brown{displaystyle {color {Brown}{mbox{Brown}}}}}
 { color{Brown! mbox{Brown! !
BurntOrange{displaystyle {color {BurntOrange}{mbox{BurntOrange}}}
 { color{BurntOrange! mbox{BurntOrange! !
CadetBlue{displaystyle {color {CadetBlue}{mbox{CadetBlue}}}}}
 { color{CadetBlue! mbox{CadetBlue! !
CarnationPink{displaystyle {color {CarnationPink}{mbox{CarnationPink}}
 { color{CarnationPink! mbox{CarnationPink! !
Cerulean{displaystyle {color {Cerulean}{mbox{Cerulean}}}}
 { color{Cerulean! mbox{Cerulean! !
CornflowerBlue{displaystyle {color {CornflowerBlue}{mbox{CornflowerBlue}}}}}
 { color{CornflowerBlue! mbox{CornflowerBlue! !
Cyan{displaystyle {color {Cyan}{mbox{Cyan}}}}}}
 { color{Cyan! mbox{Cyan! !
Dandelion{displaystyle {color {Dandelion}{mbox{Dandelion}}}}}
 { color{Dandelion! mbox{Dandelion! !
DarkOrchid{displaystyle {color {DarkOrchid}{mbox{DarkOrchid}}
 { color{DarkOrchid! mbox{DarkOrchid! !
Emerald{displaystyle {color {Emerald}{mbox{Emerald}}}}}}
 { color{Emerald! mbox{Emerald! !
ForestGreen{displaystyle {color {ForestGreen}{mbox{ForestGreen}}}
 { color{ForestGreen! mbox{ForestGreen! !
Fuchsia{displaystyle {color {Fuchsia}{mbox{Fuchsia}}}}}
 { color{Fuchsia! mbox{Fuchsia! !
Goldenrod{displaystyle {color {Goldenrod}{mbox{Goldenrod}}}}}
 { color{Goldenrod! mbox{Goldenrod! !
Gray.{displaystyle {color {Gray}{mbox{Gray}}}}}{
 { color{Gray.! mbox{Gray.! !
Green{displaystyle {color {Green}{mbox{Green}}}}}
 { color{Green! mbox{Green! !
GreenYellow{displaystyle {color {GreenYellow}{mbox{GreenYellow}}}}}
 { color{GreenYellow! mbox{GreenYellow! !
JungleGreen{displaystyle {color {JungleGreen}{mbox{JungleGreen}}}}}
 { color{JungleGreen! mbox{JungleGreen! !
Lavender{displaystyle {color {Lavender}{mbox{Lavender}}}}}
 { color{Lavender! mbox{Lavender! !
LimeGreen{displaystyle {color {LimeGreen}{mbox{LimeGreen}}
 { color{LimeGreen! mbox{LimeGreen! !
Magenta{displaystyle {color {Magenta}{mbox{Magenta}}}}}}
 { color{Magenta! mbox{Magenta! !
Mahogany{displaystyle {color {Mahogany}{mbox{Mahogany}}}}}
 { color{Mahogany! mbox{Mahogany! !
Maroon{displaystyle {color {Maroon}{mbox{Maroon}}}}}
 { color{Maroon! mbox{Maroon! !
Melon{displaystyle {color {Melon}{mbox{Melon}}}}}
 { color{Melon! mbox{Melon! !
MidnightBlue{displaystyle {color {MidnightBlue}{mbox{MidnightBlue}}}}}
 { color{MidnightBlue! mbox{MidnightBlue! !
Mulberry{displaystyle {color {Mulberry}{mbox{Mulberry}}}}}}
 { color{Mulberry! mbox{Mulberry! !
NavyBlue{displaystyle {color {NavyBlue}{mbox{NavyBlue}}
 { color{NavyBlue! mbox{NavyBlue! !
OliveGreen{displaystyle {color {OliveGreen}{mbox{OliveGreen}}}
 { color{OliveGreen! mbox{OliveGreen! !
Orange{displaystyle {color {Orange}{mbox{Orange}}}}}{displaystyle {color}{Orange}{mbox{Orange}}}}}{
 { color{Orange! mbox{Orange! !
OrangeRed{displaystyle {color {OrangeRed}{mbox{OrangeRed}}}}}
 { color{OrangeRed! mbox{OrangeRed! !
Orchid{displaystyle {color {Orchid}{mbox{Orchid}}}}}
 { color{Orchid! mbox{Orchid! !
Peach{displaystyle {color {Peach}{mbox{Peach}}}}}}
 { color{Peach! mbox{Peach! !
Periwinkle{displaystyle {color {Periwinkle}{mbox{Periwinkle}}}
 { color{Periwinkle! mbox{Periwinkle! !
PineGreen{displaystyle {color {PineGreen}{mbox{PineGreen}}}
 { color{PineGreen! mbox{PineGreen! !
Plum{displaystyle {color {Plum}{mbox{Plum}}}}}}
 { color{Plum! mbox{Plum! !
ProcessBlue{displaystyle {color {ProcessBlue}{mbox{ProcessBlue}}}}}
 { color{ProcessBlue! mbox{ProcessBlue! !
Purple{displaystyle {color {Purple}{mbox{Purple}}}}}}
 { color{Purple! mbox{Purple! !
RawSienna{displaystyle {color {RawSienna}{mbox{RawSienna}}
 { color{RawSienna! mbox{RawSienna! !
Red{displaystyle {color {Red}{mbox{Red}}}}}
 { color{Red! mbox{Red! !
RedOrange{displaystyle {color {RedOrange}{mbox{RedOrange}}}}}}
 { color{RedOrange! mbox{RedOrange! !
RedViolet{displaystyle {color {RedViolet}{mbox{RedViolet}}}
 { color{RedViolet! mbox{RedViolet! !
Rhodamine{displaystyle {color {Rhodamine}{mbox{Rhodamine}}}}}
 { color{Rhodamine! mbox{Rhodamine! !
RoyalBlue{displaystyle {color {RoyalBlue}{mbox{RoyalBlue}}}}}}
 { color{RoyalBlue! mbox{RoyalBlue! !
RoyalPurple{displaystyle {color {RoyalPurple}{mbox{RoyalPurple}}}}}}
 { color{RoyalPurple! mbox{RoyalPurple! !
RubineRed{displaystyle {color {RubineRed}{mbox{RubineRed}}
 { color{RubineRed! mbox{RubineRed! !
Salmon{displaystyle {color {Salmon}{mbox{Salmon}}}}}}
 { color{Salmon! mbox{Salmon! !
SeaGreen{displaystyle {color {SeaGreen}{mbox{SeaGreen}}
 { color{SeaGreen! mbox{SeaGreen! !
Sepia{displaystyle {color {Sepia}{mbox{Sepia}}}}}
 { color{Sepia! mbox{Sepia! !
SkyBlue{displaystyle {color {SkyBlue}{mbox{SkyBlue}}
 { color{SkyBlue! mbox{SkyBlue! !
SpringGreen{displaystyle {color {SpringGreen}{mbox{SpringGreen}}}}}
 { color{SpringGreen! mbox{SpringGreen! !
Tan{displaystyle {color {Tan}{mbox{Tan}}}}}}
 { color{Tan! mbox{Tan! !
TealBlue{displaystyle {color {TealBlue}{mbox{TealBlue}}}
 { color{TealBlue! mbox{TealBlue! !
Thistle{displaystyle {color {Thistle}{mbox{Thistle}}}}}{displaystyle {color {Thistle}{mbox{mbox{Thistle}}}}}}}}}{
 { color{Thistle! mbox{Thistle! !
Turquoise{displaystyle {color {Turquoise}{mbox{Turquoise}}
 { color{Turquoise! mbox{Turquoise! !
Violet{displaystyle {color {Violet}{mbox{Violet}}}}}}
 { color{Violet! mbox{Violet! !
VioletRed{displaystyle {color {VioletRed}{mbox{VioletRed}}
 { color{VioletRed! mbox{VioletRed! !
White{displaystyle {color {White}{mbox{White}}}}}
 { color{White! mbox{White! !
WildStrawberry{displaystyle {color {WildStrawberry}{mbox{WildStrawberry}}}}}}
 { color{WildStrawberry! mbox{WildStrawberry! !
Yellow{displaystyle {color {Yellow}{mbox{Yellow}}}}}
 { color{Yellow! mbox{Yellow! !
YellowGreen{displaystyle {color {YellowGreen}{mbox{YellowGreen}}}}}
 { color{YellowGreen! mbox{YellowGreen! !
YellowOrange{displaystyle {color {YellowOrange}{mbox{YellowOrange}}}
 { color{YellowOrange! mbox{YellowOrange! !

Examples

__
 x = 5
x=5{displaystyle x=5,}
 日本語 = 5
日本語x日本語=5{displaystyle Șx.
 2 times left(2-xright) = 9 - 3x
2× × (2− − x)=9− − 3x{displaystyle 2times left(2-xright)=9-3x,}
 4 - 2x = 9 - 3x
4− − 2x=9− − 3x{displaystyle 4-2x=9-3x,}
 -2x + 3x = 9 - 4
− − 2x+3x=9− − 4{displaystyle -2x+3x=9-4,}
 2 times left(2-xright) =
 left(2-xright) times left(frac{9-3x2-x! right)
2× × (2− − x)=(2− − x)× × (9− − 3x2− − x){displaystyle 2times left(2-xright)=left(2-xright)times left({frac {9-3x}{2-x}}}{2-x}}}}}}}
 2 times left(2-xright) =
 frac{left(2-xright) times left(9-3xright)2-x!
2× × (2− − x)=(2− − x)× × (9− − 3x)2− − x{displaystyle 2times left(2-xright)={frac {left(2-xright)times left(9-3xright)}{2-x}}}{,}
 2 = left(frac{9-3x2-x! right)
2=(9− − 3x2− − x){displaystyle 2=left({frac {9-3x}{2-x}}}right)!}
 2 = left(frac{left(3-xright) times 32-x! right)
2=((3− − x)× × 32− − x){displaystyle 2=left({frac {left(3-xright)times 3}{2-x}right),}
 2 = left(3-xright) times left(frac{32-x! right)
2=(3− − x)× × (32− − x){displaystyle 2=left(3-xright)times left({frac {3}{2-x}right),}
 left(3-xright) times left(frac{23-x! right) =
 left(3-xright) times left(frac{32-x! right)
(3− − x)× × (23− − x)=(3− − x)× × (32− − x){displaystyle left(3-xright)times left({frac {2}{3-x}}}right)=left(3-xright)times left({frac {3}{2-x}}{right}right,}
 frac{53-x! = frac{32-x!
53− − x=32− − x{displaystyle {frac {5}{3-x}}}={frac {3}{2-x}}}},
 sum_i=1?(i = frac{n+12! n
␡ ␡ i=1ni=n+12n{displaystyle sum _{i=1}{n}i={frac {n+1}{2}}n,}
 sideset {cHFFFFFF}llcorner^ulcorner***lrcorner^urcorner! {operatorname{ simeq 3{,!14159265!
π π 3,14159265 π π 3,14159265 {displaystyle sideset {_{llcorner }{ulcorner }}{_{lrcorner }{urcorner }}{operatorname {pi simeq 3{,}14159265} }}}}
 overline{overline{VI! overline{CCXXXIV! {DLXVII! =
6_1! 234_.! 567
VI! ! ! ! CCXXXIV! ! DLXVII=61234.567{displaystyle {overline {overline {VI}}{overline {CCXXXIV} {DLXVII}=6_{1}}234_{.}567}
 SO_2 + NO_2
 longrightarrow ;NO + SO_3
SO2+NO2Δ Δ NO+SO3{displaystyle SO_{2}+NO_{2}longrightarrow ;NO+SO_{3}}}}
 overbrace{ underbrace{ sin(x) cos(y) T_1! underbrace{+ 35 ,x T_2! underbrace{- x^3 and^4 T_3! ***First ; member!=
 overbrace{ underbrace{ log(2xx)^(3)^{2y! T_1! underbrace{- x^3 (y^2 -5) T_2! ***Second ; member!
without (x)# (and) T1+35xand T2− − x3and4 T3 Primermiembror=log (2x3)e2and T1− − x3(and2− − 5) T2 Segundormiembror{displaystyle overbrace {underbrace {sin(x)cos(y)} I'm sorry.
 underbrace{ underbrace{ underbrace{ color{Red! sin(x) cos(y)  color{Red! T_1! +
 underbrace{ color{Blue! 35 ,x  color{Blue! T_2! -
 underbrace{ color{Green! x^3 and^4  color{Green! T_3! First ; member!=
 underbrace{ underbrace{ color{Magenta! log(2xx)^(3)^{2y!  color{Magenta! T_1! -
 underbrace{ color{OrangeRed! x^3 (y^2 -5)  color{OrangeRed! T_2! Second ; member! Equaci acute{or! n!
without (x)# (and) T1+35xand T2− − x3and4 T3 Primermiembror=log (2x3)e2and T1− − x3(and2− − 5) T2 Segundormiembror Ecuacior♪ ♪ n{cHFFFFFF}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FFFF00}{cH00FF00FF00}{cH00FF00FF00}{cH00FF00}{cH00}{cH00FF00FF00FF00FF00}{cH00}{cH00FF00FF00FF00FF00FF00}{cH00FF00FF00FF00FF00FF00FF00FF00}{cH00FF00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00}{cH00FF00}{cH00}{cH00FF00FF00FF}{cH00FF00}{cH
 { color{Sepia! underset{Oraci acute{or! n! {underline{ underset{Subject! {underline{ underset{D! {underline{ Them ! ; underset{N! {underline{ and tilde{n! os ! ! ; underset{Preached! {underline{ underset{N! {underline{ drawing ! ; underset{CD! {underline{ One ; flower ! ; underset{CI! {underline{ for ; the ; teacher ! ; underset{CCL! {underline{ in; the ; notebook ! ! ! !
Lors_ _ Dnin~ ~ ors_ _ N_ _ Sujetordibujan_ _ Nunaflorr_ _ CDparalamaestra_ _ CIenelcuadernor_ _ CCL_ _ Predicador_ _ Oracior♪ ♪ n{cHFFFFFF}{cH00FF}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00}{cH00FF00FF00}{cH00FF00FF00}{cH00FF00}{cH00}{cH00FF00FF00FF00FF00FF00}{cH00}{cH00FF00FF00FF00}{cH00FF00FF00FF00FF00FF00FF00FF00FF00}{cH00FF00FF00FF00}{cH00FF00}{cH00}{cH00FF00}{cH00}{cH00FF00}{cH00}{cH00FF00FF00}{cH00FF00}{cH00
 cfrac { cfrac{5x^3 + 2x^2 - 3x-5x^2 + 6x + 3! ! { cfrac{2x^2 + 3x -2! ! = cfrac { (5xx)^3 + 2x^2 - 3x-5)(x -2) ! { (xx)^2 + 6x +3)(2x^2 + 3) ! = cfrac{5x^4+8x^3-7x^2+x+102x^4+12x^3+9x^2+18x+9!
5x3+2x2− − 3x− − 5x2+6x+32x2+3x− − 2=(5x3+2x2− − 3x− − 5)(x− − 2)(x2+6x+3)(2x2+3)=5x4+8x3− − 7x2+x+102x4+12x3+9x2+18x+9{displaystyle {cfrac {5x^{3} +2x^{2}{2x3}{x3}{x3}{x2x2}{2x2}{2x2}}{x2}}{x2}}{x1⁄2}{x1⁄2}{x1⁄2}{x1⁄2}{x1⁄2}}{x1⁄2x1⁄2x1⁄2x1⁄2⁄2}}}{x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2⁄2}}}}{x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2⁄2x1⁄2x1⁄2x1⁄2⁄2}{2}{2}}{2}{2x1⁄2⁄2}}}}{x1⁄2x1⁄2x1⁄2x1⁄2⁄2x1⁄2⁄2}}}{3⁄2⁄2}}}}}}{
 left.
 begin{matrix! vec{v! = cfrac{dvec{rdt! =
V_0x!hat{imath!+(V)_0y!-gt)hat{jmath!  vec{r!= ===============================================================================================================================================================================================================================================================_0hat{imath! + and_0hat{jmath! end{matrix! right  longrightarrow quad vec{r! =
(V)_0x! ; {t! +_0), hat{imath! +
 left(- frac{12! g {t^2! +
V_0y! ; t+ and_0 right) , hat{jmath!
v→ → =dr→ → dt=V0xı ı ^ ^ +(V0and− − gt) ^ ^ r→ → (0)=x0ı ı ^ ^ +and0 ^ ^ !Δ Δ r→ → =(V0xt+x0)ı ı ^ ^ +(− − 12gt2+V0andt+and0) ^ ^ {cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFFFF}{cHFFFFFF}{cHFFFF}{cHFFFFFF}{cH00}{cH00}{cHFFFFFFFF}{cHFFFFFF}{cH00}{cH00}{cH00}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFF00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00FFFFFFFFFFFFFFFFFF00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
 { color{Green! left.
 begin{arrayrcl! cfrac{dvec{rdt! = " vec{v! " =
 { color{Red! V_0x! hat{imath! ! +
 { color{Blue!(V)_0y!-gt)hat{jmath! !  " vec{r!(0) " =
 { color{Red!x_0 hat{imath! ! +
 { color{Blue!and_0 hat{jmath! ! end{array! right  longrightarrow quad vec{r! =
 { color{Red!(V)_0x! ; {t! +_0) , hat{imath! ! +
 { color{Blue!left(- frac{12! g {t^2! + V_0y! ; t+ and_0 right) , hat{jmath! ! !
dr→ → dt=v→ → =V0xı ı ^ ^ +(V0and− − gt) ^ ^ r→ → (0)=x0ı ı ^ ^ +and0 ^ ^ !Δ Δ r→ → =(V0xt+x0)ı ı ^ ^ +(− − 12gt2+V0andt+and0) ^ ^ {cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFF}{cHFFFFFF}{cHFFFF}{cHFFFFFF}{cHFFFF}{cHFF}{cHFFFF}{cHFFFF}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cHFFFFFFFFFFFF}{cH00}{cHFFFFFFFFFF}{cH00}{cHFFFFFFFF}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00FFFFFFFFFFFFFFFFFF}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{
__

In Spanish

  • CervanTeX, Hispanic-speaking TeX users group (broken link)
  • TheTeX for inexperiences (broken link)
  • Tutorial Latex Formulas.

In English

  • PDF document on TeX
  • List of TeX entities
  • AMS-LaTeX

In Japanese

  • Allows to compile an online document in TeX

Contenido relacionado

Scalable Vector Graphics

The scalable vector graphics or resizable vector graphics is a format for two-dimensional vector graphics, both static and animated, in the extensible markup...

Net on tree

The tree network is a network topology in which the nodes are arranged in the form of a tree. From a topological perspective, it is similar to a series of...

Expert system

An expert system is a computer system that emulates reasoning by acting as an expert would do in any area of...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save