Hardness

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar

The hardness is the opposition that materials offer to physical alterations such as penetration, abrasion and scratching.

Scales for industrial use

In metallurgy, hardness is measured using a durometer for the penetration test of an indenter. Depending on the type of point used and the range of loads applied, there are different scales, suitable for different ranges of hardness.

The interest in determining the hardness of steels lies in the existing correlation between hardness and mechanical resistance, being a cheaper and faster test method than the tensile test, which is why it is widely used.

Until the appearance of the first Brinell machine for determining hardness, it was measured qualitatively using a tempered steel file, which was the hardest material used in workshops.

The scales of current industrial use are the following:

Durometer
  • Brinell Hardness: Start as a tip a tempered steel ball or wolframio carbide. For hard materials, it is not accurate but easy to apply. Little precise with sheets less than 6 mm thick. It's a tough drive.
  • Knoop Hardness: Measure the hardness in absolute scale values, and are valued with the depth of recorded signals on a mineral by means of a utensil with a diamond tip to which a standard force is exercised.
  • Rockwell Hardness: A diamond cone (in some cases steel ball) is used as a tip. It is the most widespread, since hardness is obtained by direct measurement and is suitable for all types of materials. It is usually considered a non-destructive test due to the small size of the footprint.
  • Surface Rockwell: There is a variant of the test, called superficial Rockwell, for the characterization of very thin pieces, such as shaver blades or layers of materials that have received some treatment of surface hardening.
  • Rosiwal Hardness: It measures in absolute scales of hardness, it is expressed as resistance to abrasion measures in laboratory tests and based on the corindon with a value of 1000.
  • Shore Hardness: Start a scleroscope. An indenter is dropped on the surface of the material and the rebound is seen. It is dimensional, but it consists of several scales. Bigger bounce, tougher. Applicable for surface quality control. It is an elastic method; not of penetration like others.
  • Hardness Vickers: Start as a penetrator a diamond shaped like a quadrangular pyramid. For soft materials, Vickers values match those of the Brinell scale. Improvement of the Brinell test to perform hardness tests with sheets up to 2 mm thick.
  • Webster Hardness: Start manual machines in measurement, being suitable for hard handling parts such as long extruded profiles. The value obtained is usually converted to Rockwell values.

Nanoindentation

Nanoindentation is a hardness test carried out at the nanometer length scale. A small point is used to indent the material under study. The imposed load and displacement are measured continuously with a resolution of micronewtons and subnanometers, respectively. The load and the displacement are measured simultaneously during the indentation process and for this reason it is also called “instrumented nanoindentation”. Nanoindentation techniques are important for the measurement of mechanical properties in microelectronic applications and for the deformation of micro- and nanoscale structures. The nanoindenters incorporate light microscopes to locate the area to be studied. However, unlike macro and microscale indentation methods, in the instrumented nanoindentation technique it is not possible to directly measure the area of the indentation.

Nano penetrator tips come in a variety of shapes. A common shape is known as a Berkovich indenter, which is a pyramid with 3 sides.

Oliver and Pharr invented a method to calculate the projected indentation area Ac{displaystyle A_{c}} during maximum load. The first stage of a nanoindentation test involves developing indentations on a calibration pattern. The cast silica is a common calibration pattern, because it has homogeneous and well-characterized mechanical properties. The purpose of indenting the calibration standard is to determine the projected contact area of the penetrator tip Ac as a function of the depth of indentation. For a perfect Berkovich tip,

Ac=24.5⋅ ⋅ hc2{displaystyle A_{c}=24.5cdot h_{c}^{2},}

In general, however, the tip is not perfect, it wears down and changes shape with each use. Therefore, a calibration of the tip being used must be carried out regularly. To do this, it is necessary to find the function that relates the area Ac of the cross section of the indenter at maximum load with the distance from the tip hc that is in contact with the material being indented.

The total depth of the indentation h is the sum of the contact depth hc and the depth hs at the periphery of the indentation where the indenter does not make contact with the surface of the material, is say,

h=hc+hs{displaystyle h=h_{c}+h_{s}}

where,

hs={displaystyle h_{s}= PmaxS{displaystyle {frac {P_{max}}{S}}}

Scheme of the load-displacement curve for an instrumented nanoindentation

where Pmax is the maximum load and is a geometric constant equal to 0.75 for a Berkovich penetrator. S is the rigidity when downloading, which is calculated in the nanoindentation curve: S=dP/dh{displaystyle S=dP/dh}

The hardness of a material determined by the instrumented nanoindentation is then calculated as:

HIT=PmaxAc{displaystyle H_{IT}={frac {P_{max}}{A_{c}}}}}}}{

Hardness (determined by nanoindentation) is reported in units of GPa, and results from multiple indentations are usually averaged to increase accuracy.

This analysis allows the calculation of the elastic modulus and hardness during maximum load and is known as instrumented nanoindentation; however, an experimental technique known as dynamic nanoindentation is now commonly used. During this, a small oscillating charge is superimposed on the total charge on the sample. In this way, the sample is continuously elastically discharged as the total load increases. This allows continuous measurements of elastic modulus and stiffness as a function of indentation depth.

Scale used in mineralogy

In mineralogy, the Mohs scale is used, created by the German Friedrich Mohs in 1820, which measures the scratch resistance of materials.

Hardness Material Chemical composition
1Talco, (can be easily scratched with the nail)Mg3Yeah.4O10(OH)2
2Yeso, (can be scratched with nail with more difficulty)CaSO4·2H2O
3Calcita, (can be scratched with a copper coin)CaCO3
4Fluorite, (can be scratched with a knife)CaF2
5Apatite, (can be slashed hard with a knife)Ca5(PO)4)3(OH-Cl-F-)
6Feldespato, (can be scratched with a steel blade)KAlSi3O8
7Quartz.Yes2
8Topaz,Al2Yes4(OH-F-)2
9Corind, (only scratched by diamond)Al2O3
10Diamond, (the hardest natural mineral)C

At a professional level, the Rosiwal and Knoop scales are used in mineralogy, since they allow the evaluation of means with an absolute quantification.

Equivalence between hardness scales

List of approximate equivalences for hardness scales of non-austenitic steels (in the range of the Rockwell C scale):

Equivalence Factor
HBΔ Δ HV{displaystyle HBLeftrightarrow HV}HB≈ ≈ 0,95HV{displaystyle HBapprox 0{,}95HV}
HRBΔ Δ HB{displaystyle HRBLeftrightarrow HB}HRB≈ ≈ 176− − 1165HB{displaystyle HRBapprox 176-{frac {1165}{sqrt {HB}}}}}}
HRCΔ Δ HV{displaystyle HRCLeftrightarrow HV}HRC≈ ≈ 116− − 1500HV{displaystyle HRCapprox 116-{frac {1500}{sqrt {HV}}}}}}
HVΔ Δ HK{displaystyle HVLeftrightarrow HK}HV≈ ≈ HK{displaystyle HVapprox HK} (for small loads)
Rm≈ ≈ cHB{displaystyle R_{mapprox cHB}
Steel (Matriz-Fe Cúbica centred on the body) 3.5
Cu and his alloys, tempered 5.5
Cu and his alloys, deformed in cold 4.0
Al and his alloys 3.7
Dureza Rockwell C 150 kgf (HRC) Dureza Vickers (HV) Dureza Brinell, bola estándar de 10 mm, 3000 kgf (HBS) Dureza Brinell, bola de carburo de 10 mm, 3000 kgf (HBW) Dureza Knoop, 500 gf y mayor (HK) Dureza Rockwell, escala A, 60 kgf (HRA) Dureza Rockwell, escala D, 100 kgf (HRD) Dureza superficial Rockwell, escala 15N, 15 kgf (HR 15-N) Dureza superficial Rockwell, escala 30N, 30 kgf (HR 30-N) Dureza superficial Rockwell, escala 45N, 45 kgf (HR 45-N) Dureza escleroscopio Dureza Rockwell C 150 kgf (HRC)
68 940 920 85,6 76,9 93,2 84,4 75,4 97,3 68
67 900 895 85,0 76,1 92,9 83,6 74,2 95,0 67
66 865 870 84,5 75,4 92,5 82,8 73,3 92,7 66
65 832 -739 846 83,9 74,5 92,2 81,9 72,0 90,6 65
64 800 -722 822 83,4 73,8 91,8 81,1 71,0 88,5 64
63 772 -705 799 82,8 73,0 91,4 80,1 69,9 86,5 63
62 746 -688 776 82,3 72,2 91,1 79,3 68,8 84,5 62
61 720 -670 754 81,8 71,5 90,7 78,4 67,7 82,6 61
60 697 -654 732 81,2 70,7 90,2 77,5 66,6 80,8 60
59 674 634 710 80,7 69,9 89,8 76,6 65,5 79,0 59
58 653 615 690 80,1 69,2 89,3 75,7 64,3 77,3 58
57 633 595 670 79,6 68,5 88,9 74,8 63,2 75,6 57
56 613 577 650 79,0 67,7 88,3 73,9 62,0 74,0 56
55 595 560 630 78,5 66,9 87,9 73,0 60,9 72,4 55
54 577 543 612 78,0 66,1 87,4 72,0 59,8 70,9 54
53 560 525 594 77,4 65,4 86,9 71,2 58,6 69,4 53
52 544 -500 512 576 76,8 64,6 86,4 70,2 57,4 67,9 52
51 528 -487 496 558 76,3 63,8 85,9 69,4 56,1 66,5 51
50 513 -475 481 542 75,9 63,1 85,5 68,5 55,0 65,1 50
49 498 -464 469 526 75,2 62,1 85,0 67,6 53,8 63,7 49
48 484 451 455 510 74,7 61,4 84,5 66,7 52,5 62,4 48
47 471 442 443 495 74,1 60,8 83,9 65,8 51,4 61,1 47
46 458 432 432 480 73,6 60,0 83,5 64,8 50,3 59,8 46
45 446 421 421 466 73,1 59,2 83,0 64,0 49,0 58,5 45
44 434 409 409 452 72,5 58,5 82,5 63,1 47,8 57,3 44
43 423 400 400 438 72,0 57,7 82,0 62,2 46,7 56,1 43
42 412 390 390 426 71,5 56,9 81,5 61,3 45,5 54,9 42
41 402 381 381 414 70,9 56,2 80,9 60,4 44,3 53,7 41
40 392 371 371 402 70,4 55,4 80,4 59,5 43,1 52,6 40
39 382 362 362 391 69,9 54,6 79,9 58,6 41,9 51,5 39
38 372 353 353 380 69,4 53,8 79,4 57,7 40,8 50,4 38
37 363 344 344 370 68,9 53,1 78,8 56,8 39,6 49,3 37
36 354 336 336 360 68,4 52,3 78,3 55,9 38,4 48,2 36
35 345 327 327 351 67,9 51,5 77,7 55,0 37,2 47,1 35
34 336 319 319 342 67,4 50,8 77,2 54,2 36,1 46,1 34
33 327 311 311 334 66,8 50,0 76,6 53,3 34,9 45,1 33
32 318 301 301 326 66,3 49,2 76,1 52,1 33,7 44,1 32
31 310 294 294 318 65,8 48,4 75,6 51,3 32,5 43,1 31
30 302 286 286 311 65,3 47,7 75,0 50,4 31,3 42,2 30
29 294 279 279 304 64,8 47,0 74,5 49,5 30,1 41,3 29
28 286 271 271 297 64,3 46,1 73,9 48,6 28,9 40,4 28
27 279 264 264 290 63,8 45,2 73,3 47,7 27,8 39,5 27
26 272 258 258 284 63,3 44,6 72,8 46,8 26,7 38,7 26
25 266 253 253 278 62,8 43,8 72,2 45,9 25,5 37,8 25
24 260 247 247 272 62,4 43,1 71,6 45,0 24,3 37,0 24
23 254 243 243 266 62,0 42,1 71,0 44,0 23,1 36,3 23
22 248 237 237 261 61,5 41,6 70,5 43,2 22,0 35,5 22
21 243 231 231 256 61,0 40,9 69,9 42,3 20,7 34,8 21
20 238 226 226 251 60,5 40,1 69,4 41,5 19,6 34,2 20

Equivalences of hardness and resistance

For unalloyed steels and cast irons, there is an approximate and direct relationship between the Vickers hardness and the yield strength, with the yield strength being approximately 3.3 times the Vickers hardness.

Rp0.2==3.3*HV

Table of equivalencies for elastic boundary, Brinell -, Rockwell-, Vickers hardness.
Elastic limit (approximately) Dureza Brinell Hardness Rockwell Hardness Vickers
MPaHBHRCHRAHRBHV
--6886-940
--6785-920
--6685-880
--6584-840
--6483-800
--6383-760
--6283-740
--6182-720
--6081-690
--5981-670
21806185880-650
21055995780-630
20305805679-610
19555615578-590
18805425478-570
18505175377-560
18105235277-550
17405045176-530
16654855076-510
16354734976-500
15954664875-490
15404514775-485
14854374674-460
14204184573-440
13503994372-420
12903804171-400
12503704071-390
12203763970-380
11553423769-360
10953233468-340
10303043266-320
9652763065-300
9302762965105290
9002662764104280
8652572663102.270
8352472462101260
8002382262100250
770228206198240
740219--97230
705209--95220
675199--94210
640190--92200
610181--90190
575171--87180
545162--85170
510152--82160
480143--79150
450133--75140
415124--71130
385114--67120
350105--62110
32095--56100
28586--4890
25576---80

Contenido relacionado

Paul Dirac

Paul Adrien Maurice Dirac was a British electrical engineer, mathematician, and theoretical physicist who made a fundamental contribution to the development...

Ole Romer

Ole Christensen Rømer was a Danish astronomer, famous for being the first person to determine the speed of light in the year 1676 with an initial value of...

William crookes

William Crookes was an English chemist, one of the most important scientists in Europe of the XIX, both in the field of physics and chemistry. In 1863 he...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save