Hardness
The hardness is the opposition that materials offer to physical alterations such as penetration, abrasion and scratching.
Scales for industrial use
In metallurgy, hardness is measured using a durometer for the penetration test of an indenter. Depending on the type of point used and the range of loads applied, there are different scales, suitable for different ranges of hardness.
The interest in determining the hardness of steels lies in the existing correlation between hardness and mechanical resistance, being a cheaper and faster test method than the tensile test, which is why it is widely used.
Until the appearance of the first Brinell machine for determining hardness, it was measured qualitatively using a tempered steel file, which was the hardest material used in workshops.
The scales of current industrial use are the following:
- Brinell Hardness: Start as a tip a tempered steel ball or wolframio carbide. For hard materials, it is not accurate but easy to apply. Little precise with sheets less than 6 mm thick. It's a tough drive.
- Knoop Hardness: Measure the hardness in absolute scale values, and are valued with the depth of recorded signals on a mineral by means of a utensil with a diamond tip to which a standard force is exercised.
- Rockwell Hardness: A diamond cone (in some cases steel ball) is used as a tip. It is the most widespread, since hardness is obtained by direct measurement and is suitable for all types of materials. It is usually considered a non-destructive test due to the small size of the footprint.
- Surface Rockwell: There is a variant of the test, called superficial Rockwell, for the characterization of very thin pieces, such as shaver blades or layers of materials that have received some treatment of surface hardening.
- Rosiwal Hardness: It measures in absolute scales of hardness, it is expressed as resistance to abrasion measures in laboratory tests and based on the corindon with a value of 1000.
- Shore Hardness: Start a scleroscope. An indenter is dropped on the surface of the material and the rebound is seen. It is dimensional, but it consists of several scales. Bigger bounce, tougher. Applicable for surface quality control. It is an elastic method; not of penetration like others.
- Hardness Vickers: Start as a penetrator a diamond shaped like a quadrangular pyramid. For soft materials, Vickers values match those of the Brinell scale. Improvement of the Brinell test to perform hardness tests with sheets up to 2 mm thick.
- Webster Hardness: Start manual machines in measurement, being suitable for hard handling parts such as long extruded profiles. The value obtained is usually converted to Rockwell values.
Nanoindentation
Nanoindentation is a hardness test carried out at the nanometer length scale. A small point is used to indent the material under study. The imposed load and displacement are measured continuously with a resolution of micronewtons and subnanometers, respectively. The load and the displacement are measured simultaneously during the indentation process and for this reason it is also called “instrumented nanoindentation”. Nanoindentation techniques are important for the measurement of mechanical properties in microelectronic applications and for the deformation of micro- and nanoscale structures. The nanoindenters incorporate light microscopes to locate the area to be studied. However, unlike macro and microscale indentation methods, in the instrumented nanoindentation technique it is not possible to directly measure the area of the indentation.
Nano penetrator tips come in a variety of shapes. A common shape is known as a Berkovich indenter, which is a pyramid with 3 sides.Oliver and Pharr invented a method to calculate the projected indentation area Ac{displaystyle A_{c}} during maximum load. The first stage of a nanoindentation test involves developing indentations on a calibration pattern. The cast silica is a common calibration pattern, because it has homogeneous and well-characterized mechanical properties. The purpose of indenting the calibration standard is to determine the projected contact area of the penetrator tip Ac as a function of the depth of indentation. For a perfect Berkovich tip,
Ac=24.5⋅ ⋅ hc2{displaystyle A_{c}=24.5cdot h_{c}^{2},}
In general, however, the tip is not perfect, it wears down and changes shape with each use. Therefore, a calibration of the tip being used must be carried out regularly. To do this, it is necessary to find the function that relates the area Ac of the cross section of the indenter at maximum load with the distance from the tip hc that is in contact with the material being indented.
The total depth of the indentation h is the sum of the contact depth hc and the depth hs at the periphery of the indentation where the indenter does not make contact with the surface of the material, is say,
h=hc+hs{displaystyle h=h_{c}+h_{s}}
where,
hs={displaystyle h_{s}= ▪ PmaxS{displaystyle {frac {P_{max}}{S}}}
where Pmax is the maximum load and ▪ is a geometric constant equal to 0.75 for a Berkovich penetrator. S is the rigidity when downloading, which is calculated in the nanoindentation curve: S=dP/dh{displaystyle S=dP/dh}
The hardness of a material determined by the instrumented nanoindentation is then calculated as:
HIT=PmaxAc{displaystyle H_{IT}={frac {P_{max}}{A_{c}}}}}}}{
Hardness (determined by nanoindentation) is reported in units of GPa, and results from multiple indentations are usually averaged to increase accuracy.
This analysis allows the calculation of the elastic modulus and hardness during maximum load and is known as instrumented nanoindentation; however, an experimental technique known as dynamic nanoindentation is now commonly used. During this, a small oscillating charge is superimposed on the total charge on the sample. In this way, the sample is continuously elastically discharged as the total load increases. This allows continuous measurements of elastic modulus and stiffness as a function of indentation depth.
Scale used in mineralogy
In mineralogy, the Mohs scale is used, created by the German Friedrich Mohs in 1820, which measures the scratch resistance of materials.
Hardness | Material | Chemical composition |
---|---|---|
1 | Talco, (can be easily scratched with the nail) | Mg3Yeah.4O10(OH)2 |
2 | Yeso, (can be scratched with nail with more difficulty) | CaSO4·2H2O |
3 | Calcita, (can be scratched with a copper coin) | CaCO3 |
4 | Fluorite, (can be scratched with a knife) | CaF2 |
5 | Apatite, (can be slashed hard with a knife) | Ca5(PO)4)3(OH-Cl-F-) |
6 | Feldespato, (can be scratched with a steel blade) | KAlSi3O8 |
7 | Quartz. | Yes2 |
8 | Topaz, | Al2Yes4(OH-F-)2 |
9 | Corind, (only scratched by diamond) | Al2O3 |
10 | Diamond, (the hardest natural mineral) | C |
At a professional level, the Rosiwal and Knoop scales are used in mineralogy, since they allow the evaluation of means with an absolute quantification.
Equivalence between hardness scales
List of approximate equivalences for hardness scales of non-austenitic steels (in the range of the Rockwell C scale):
Equivalence | Factor |
---|---|
HBΔ Δ HV{displaystyle HBLeftrightarrow HV} | HB≈ ≈ 0,95HV{displaystyle HBapprox 0{,}95HV} |
HRBΔ Δ HB{displaystyle HRBLeftrightarrow HB} | HRB≈ ≈ 176− − 1165HB{displaystyle HRBapprox 176-{frac {1165}{sqrt {HB}}}}}} |
HRCΔ Δ HV{displaystyle HRCLeftrightarrow HV} | HRC≈ ≈ 116− − 1500HV{displaystyle HRCapprox 116-{frac {1500}{sqrt {HV}}}}}} |
HVΔ Δ HK{displaystyle HVLeftrightarrow HK} | HV≈ ≈ HK{displaystyle HVapprox HK} (for small loads) |
Rm≈ ≈ cHB{displaystyle R_{mapprox cHB} | |
Steel (Matriz-Fe Cúbica centred on the body) | 3.5 |
Cu and his alloys, tempered | 5.5 |
Cu and his alloys, deformed in cold | 4.0 |
Al and his alloys | 3.7 |
Dureza Rockwell C 150 kgf (HRC) | Dureza Vickers (HV) | Dureza Brinell, bola estándar de 10 mm, 3000 kgf (HBS) | Dureza Brinell, bola de carburo de 10 mm, 3000 kgf (HBW) | Dureza Knoop, 500 gf y mayor (HK) | Dureza Rockwell, escala A, 60 kgf (HRA) | Dureza Rockwell, escala D, 100 kgf (HRD) | Dureza superficial Rockwell, escala 15N, 15 kgf (HR 15-N) | Dureza superficial Rockwell, escala 30N, 30 kgf (HR 30-N) | Dureza superficial Rockwell, escala 45N, 45 kgf (HR 45-N) | Dureza escleroscopio | Dureza Rockwell C 150 kgf (HRC) |
---|---|---|---|---|---|---|---|---|---|---|---|
68 | 940 | … | … | 920 | 85,6 | 76,9 | 93,2 | 84,4 | 75,4 | 97,3 | 68 |
67 | 900 | … | … | 895 | 85,0 | 76,1 | 92,9 | 83,6 | 74,2 | 95,0 | 67 |
66 | 865 | … | … | 870 | 84,5 | 75,4 | 92,5 | 82,8 | 73,3 | 92,7 | 66 |
65 | 832 | … | -739 | 846 | 83,9 | 74,5 | 92,2 | 81,9 | 72,0 | 90,6 | 65 |
64 | 800 | … | -722 | 822 | 83,4 | 73,8 | 91,8 | 81,1 | 71,0 | 88,5 | 64 |
63 | 772 | … | -705 | 799 | 82,8 | 73,0 | 91,4 | 80,1 | 69,9 | 86,5 | 63 |
62 | 746 | … | -688 | 776 | 82,3 | 72,2 | 91,1 | 79,3 | 68,8 | 84,5 | 62 |
61 | 720 | … | -670 | 754 | 81,8 | 71,5 | 90,7 | 78,4 | 67,7 | 82,6 | 61 |
60 | 697 | … | -654 | 732 | 81,2 | 70,7 | 90,2 | 77,5 | 66,6 | 80,8 | 60 |
59 | 674 | … | 634 | 710 | 80,7 | 69,9 | 89,8 | 76,6 | 65,5 | 79,0 | 59 |
58 | 653 | … | 615 | 690 | 80,1 | 69,2 | 89,3 | 75,7 | 64,3 | 77,3 | 58 |
57 | 633 | … | 595 | 670 | 79,6 | 68,5 | 88,9 | 74,8 | 63,2 | 75,6 | 57 |
56 | 613 | … | 577 | 650 | 79,0 | 67,7 | 88,3 | 73,9 | 62,0 | 74,0 | 56 |
55 | 595 | … | 560 | 630 | 78,5 | 66,9 | 87,9 | 73,0 | 60,9 | 72,4 | 55 |
54 | 577 | … | 543 | 612 | 78,0 | 66,1 | 87,4 | 72,0 | 59,8 | 70,9 | 54 |
53 | 560 | … | 525 | 594 | 77,4 | 65,4 | 86,9 | 71,2 | 58,6 | 69,4 | 53 |
52 | 544 | -500 | 512 | 576 | 76,8 | 64,6 | 86,4 | 70,2 | 57,4 | 67,9 | 52 |
51 | 528 | -487 | 496 | 558 | 76,3 | 63,8 | 85,9 | 69,4 | 56,1 | 66,5 | 51 |
50 | 513 | -475 | 481 | 542 | 75,9 | 63,1 | 85,5 | 68,5 | 55,0 | 65,1 | 50 |
49 | 498 | -464 | 469 | 526 | 75,2 | 62,1 | 85,0 | 67,6 | 53,8 | 63,7 | 49 |
48 | 484 | 451 | 455 | 510 | 74,7 | 61,4 | 84,5 | 66,7 | 52,5 | 62,4 | 48 |
47 | 471 | 442 | 443 | 495 | 74,1 | 60,8 | 83,9 | 65,8 | 51,4 | 61,1 | 47 |
46 | 458 | 432 | 432 | 480 | 73,6 | 60,0 | 83,5 | 64,8 | 50,3 | 59,8 | 46 |
45 | 446 | 421 | 421 | 466 | 73,1 | 59,2 | 83,0 | 64,0 | 49,0 | 58,5 | 45 |
44 | 434 | 409 | 409 | 452 | 72,5 | 58,5 | 82,5 | 63,1 | 47,8 | 57,3 | 44 |
43 | 423 | 400 | 400 | 438 | 72,0 | 57,7 | 82,0 | 62,2 | 46,7 | 56,1 | 43 |
42 | 412 | 390 | 390 | 426 | 71,5 | 56,9 | 81,5 | 61,3 | 45,5 | 54,9 | 42 |
41 | 402 | 381 | 381 | 414 | 70,9 | 56,2 | 80,9 | 60,4 | 44,3 | 53,7 | 41 |
40 | 392 | 371 | 371 | 402 | 70,4 | 55,4 | 80,4 | 59,5 | 43,1 | 52,6 | 40 |
39 | 382 | 362 | 362 | 391 | 69,9 | 54,6 | 79,9 | 58,6 | 41,9 | 51,5 | 39 |
38 | 372 | 353 | 353 | 380 | 69,4 | 53,8 | 79,4 | 57,7 | 40,8 | 50,4 | 38 |
37 | 363 | 344 | 344 | 370 | 68,9 | 53,1 | 78,8 | 56,8 | 39,6 | 49,3 | 37 |
36 | 354 | 336 | 336 | 360 | 68,4 | 52,3 | 78,3 | 55,9 | 38,4 | 48,2 | 36 |
35 | 345 | 327 | 327 | 351 | 67,9 | 51,5 | 77,7 | 55,0 | 37,2 | 47,1 | 35 |
34 | 336 | 319 | 319 | 342 | 67,4 | 50,8 | 77,2 | 54,2 | 36,1 | 46,1 | 34 |
33 | 327 | 311 | 311 | 334 | 66,8 | 50,0 | 76,6 | 53,3 | 34,9 | 45,1 | 33 |
32 | 318 | 301 | 301 | 326 | 66,3 | 49,2 | 76,1 | 52,1 | 33,7 | 44,1 | 32 |
31 | 310 | 294 | 294 | 318 | 65,8 | 48,4 | 75,6 | 51,3 | 32,5 | 43,1 | 31 |
30 | 302 | 286 | 286 | 311 | 65,3 | 47,7 | 75,0 | 50,4 | 31,3 | 42,2 | 30 |
29 | 294 | 279 | 279 | 304 | 64,8 | 47,0 | 74,5 | 49,5 | 30,1 | 41,3 | 29 |
28 | 286 | 271 | 271 | 297 | 64,3 | 46,1 | 73,9 | 48,6 | 28,9 | 40,4 | 28 |
27 | 279 | 264 | 264 | 290 | 63,8 | 45,2 | 73,3 | 47,7 | 27,8 | 39,5 | 27 |
26 | 272 | 258 | 258 | 284 | 63,3 | 44,6 | 72,8 | 46,8 | 26,7 | 38,7 | 26 |
25 | 266 | 253 | 253 | 278 | 62,8 | 43,8 | 72,2 | 45,9 | 25,5 | 37,8 | 25 |
24 | 260 | 247 | 247 | 272 | 62,4 | 43,1 | 71,6 | 45,0 | 24,3 | 37,0 | 24 |
23 | 254 | 243 | 243 | 266 | 62,0 | 42,1 | 71,0 | 44,0 | 23,1 | 36,3 | 23 |
22 | 248 | 237 | 237 | 261 | 61,5 | 41,6 | 70,5 | 43,2 | 22,0 | 35,5 | 22 |
21 | 243 | 231 | 231 | 256 | 61,0 | 40,9 | 69,9 | 42,3 | 20,7 | 34,8 | 21 |
20 | 238 | 226 | 226 | 251 | 60,5 | 40,1 | 69,4 | 41,5 | 19,6 | 34,2 | 20 |
Equivalences of hardness and resistance
For unalloyed steels and cast irons, there is an approximate and direct relationship between the Vickers hardness and the yield strength, with the yield strength being approximately 3.3 times the Vickers hardness.
Rp0.2==3.3*HV
Elastic limit (approximately) | Dureza Brinell | Hardness Rockwell | Hardness Vickers | ||
---|---|---|---|---|---|
MPa | HB | HRC | HRA | HRB | HV |
- | - | 68 | 86 | - | 940 |
- | - | 67 | 85 | - | 920 |
- | - | 66 | 85 | - | 880 |
- | - | 65 | 84 | - | 840 |
- | - | 64 | 83 | - | 800 |
- | - | 63 | 83 | - | 760 |
- | - | 62 | 83 | - | 740 |
- | - | 61 | 82 | - | 720 |
- | - | 60 | 81 | - | 690 |
- | - | 59 | 81 | - | 670 |
2180 | 618 | 58 | 80 | - | 650 |
2105 | 599 | 57 | 80 | - | 630 |
2030 | 580 | 56 | 79 | - | 610 |
1955 | 561 | 55 | 78 | - | 590 |
1880 | 542 | 54 | 78 | - | 570 |
1850 | 517 | 53 | 77 | - | 560 |
1810 | 523 | 52 | 77 | - | 550 |
1740 | 504 | 51 | 76 | - | 530 |
1665 | 485 | 50 | 76 | - | 510 |
1635 | 473 | 49 | 76 | - | 500 |
1595 | 466 | 48 | 75 | - | 490 |
1540 | 451 | 47 | 75 | - | 485 |
1485 | 437 | 46 | 74 | - | 460 |
1420 | 418 | 45 | 73 | - | 440 |
1350 | 399 | 43 | 72 | - | 420 |
1290 | 380 | 41 | 71 | - | 400 |
1250 | 370 | 40 | 71 | - | 390 |
1220 | 376 | 39 | 70 | - | 380 |
1155 | 342 | 37 | 69 | - | 360 |
1095 | 323 | 34 | 68 | - | 340 |
1030 | 304 | 32 | 66 | - | 320 |
965 | 276 | 30 | 65 | - | 300 |
930 | 276 | 29 | 65 | 105 | 290 |
900 | 266 | 27 | 64 | 104 | 280 |
865 | 257 | 26 | 63 | 102. | 270 |
835 | 247 | 24 | 62 | 101 | 260 |
800 | 238 | 22 | 62 | 100 | 250 |
770 | 228 | 20 | 61 | 98 | 240 |
740 | 219 | - | - | 97 | 230 |
705 | 209 | - | - | 95 | 220 |
675 | 199 | - | - | 94 | 210 |
640 | 190 | - | - | 92 | 200 |
610 | 181 | - | - | 90 | 190 |
575 | 171 | - | - | 87 | 180 |
545 | 162 | - | - | 85 | 170 |
510 | 152 | - | - | 82 | 160 |
480 | 143 | - | - | 79 | 150 |
450 | 133 | - | - | 75 | 140 |
415 | 124 | - | - | 71 | 130 |
385 | 114 | - | - | 67 | 120 |
350 | 105 | - | - | 62 | 110 |
320 | 95 | - | - | 56 | 100 |
285 | 86 | - | - | 48 | 90 |
255 | 76 | - | - | - | 80 |
Contenido relacionado
Paul Dirac
Ole Romer
William crookes