Gamma function
In mathematics, the gamma function (denoted as Interpreter Interpreter (z){displaystyle Gamma (z)}Where Interpreter Interpreter {displaystyle Gamma } It's the Greek letter. gamma in capital), it is an application that extends the concept of factorial to real and complex numbers. The notation was proposed by Adrien-Marie Legendre. If the real part of the complex number z{displaystyle z} is positive, then the integral
- Interpreter Interpreter (z)=∫ ∫ 0∞ ∞ tz− − 1e− − tdt{displaystyle Gamma (z)=int _{0}^{infty }t^{z-1}e^{-t};dt}
converges absolutely; this integral can be extended to the entire complex plane, except to negative integers and to zero. Yeah. n한 한 Z+{displaystyle nin mathbb {Z} ^{+} then.
- Interpreter Interpreter (n)=(n− − 1)!{displaystyle Gamma (n)=(n-1)}
which shows us the relation of this function to the factorial. In fact, the gamma function extends the concept of factorial to any complex value of z{displaystyle z}. The gamma function appears in several probability distribution functions, so it is quite used both in probability and in statistics and in combination.
Definition
Notation Interpreter Interpreter (z){displaystyle Gamma (z)} is due to Legendre. If the real part of the complex number z{displaystyle z} is strictly positive 0right)}" xmlns="http://www.w3.org/1998/Math/MathML">(Re(z)▪0){displaystyle left({text{Re}(z)/20050right)}0right)}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9c2b4ef61a93b0e68922fd7d29e027490241b4f" style="vertical-align: -0.838ex; width:11.711ex; height:2.843ex;"/>, then the whole
- Interpreter Interpreter (z)=∫ ∫ 0∞ ∞ tz− − 1e− − tdt{displaystyle Gamma (z)=int _{0}^{infty }t^{z-1}e^{-t},dt}
converges absolutely and is known as a Euler integral of the second order. Using integration by parts, we obtain the following property:
- Interpreter Interpreter (z+1)=∫ ∫ 0∞ ∞ tze− − tdt=− − tze− − t日本語0∞ ∞ +∫ ∫ 0∞ ∞ ztz− − 1e− − tdt=z∫ ∫ 0∞ ∞ tz− − 1e− − tdt=zInterpreter Interpreter (z){displaystyle {begin{aligned}Gamma (z+1) stranger=int _{0^}{infty t^{z}{-t}{-t}{s-t-in}{s}{s-t}{s-t}{bigg}{biggs}{infty }{inftint
We can get Interpreter Interpreter (1){displaystyle Gamma (1)}:
- Interpreter Interpreter (1)=∫ ∫ 0∞ ∞ t1− − 1e− − tdt=∫ ∫ 0∞ ∞ e− − tdt=limb→ → ∞ ∞ − − e− − t日本語0b=0− − (− − 1)=1{display {begin{aligned}Gamma (1) fake=int _{0}^{infty }t^{1-1}e^{-t}dt fake=int _{0}{infty }{infty }{-t}{dt}{bigned }{b
Having to Interpreter Interpreter (1)=1=0!{displaystyle Gamma (1)=1=0} and Interpreter Interpreter (n+1)=nInterpreter Interpreter (n){displaystyle Gamma (n+1)=nGamma (n)} then.
- Interpreter Interpreter (n+1)=Interpreter Interpreter (1)( k=1nk)={Interpreter Interpreter (1)=1=0!,n=01⋅ ⋅ 2⋅ ⋅ 3 n=n!,n한 한 N↓ ↓ {displaystyle Gamma (n+1)=Gamma (1)left(prod _{k=1^}{n}kright)=left{begin{array}{ll}Gamma (1)=1=0}, strangern=01cdot 2cdot 3dotsb n=n=n!,{ninright}{inmathbb !
for all natural n{displaystyle n}.
The gamma function is a meromorphic function z한 한 C{displaystyle zin mathbb {C} } with simple poles in z=− − n(n=0,1,2,3,...... ){displaystyle z=-n,,(n=0,,1,,2,,3,,dots} and waste Res (Interpreter Interpreter (z),− − n)=(− − 1)nn!{displaystyle operatorname {Res} (Gamma (z),-n)={frac {(-1)^{n}{n}}}{n!}. These properties can be used to extend Interpreter Interpreter (z){displaystyle Gamma (z)} from its initial definition to the entire complex plane (except the points in which it is singular) by analytical continuation.
Alternate definitions
Definition of Euler as an infinite product
For everything m{displaystyle m} verified
- limn→ → ∞ ∞ n!(n+1)m(n+m)!=limn→ → ∞ ∞ (n+1)m(n+1) (n+m)=1{displaystyle lim _{nto infty }{frac {n!(n+1)^{m}}{(n+m)!}=lim _{nto infty }{(n+1)^{m} over (n+1)cdots (n+m)}=1}.
Yeah. m{displaystyle m} is not an integer then it is not possible to say if the previous equation is valid because in this section the factorial function has not yet been defined for integers. However, we can obtain an extension of the factorial function for not integers demanding that this relationship remain valid for an arbitrary complex number z{displaystyle z}:
- limn→ → ∞ ∞ n!(n+1)z(n+z)!=1{displaystyle lim _{nto infty }{frac {n+1)^{z}{(n+z)}}{(n+z)}}=1}.
By multiplying both sides by z!{displaystyle z} obtained
- z!=limn→ → ∞ ∞ n!z!(n+z)!(n+1)z=limn→ → ∞ ∞ (1 n)1(z+1) (z+n)(21⋅ ⋅ 32 nn− − 1n+1n)z= n=1∞ ∞ [chuckles]11+zn(1+1n)z]{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF00}{cHFFFFFFFF00}{cHFFFFFFFFFFFF00} {cHFFFFFFFF}{cHFFFFFFFFFF}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{c}{cH}{c}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{c}{cH00}{c}{c}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00}{c}{c}{c}{cH00}{cHFFFFFFFFFFFFFFFFFFFF
This infinite product converges for all complex numbers z{displaystyle z} except for negative integers in which it fails, as the recursive relationship m!=m(m− − 1)!{displaystyle m!=m(m-1)} back leads to a division between zero for value m=0{displaystyle m=0}. Post Interpreter Interpreter (n)=(n− − 1)!{displaystyle Gamma (n)=(n-1)}for gamma function, the preceding relationship gives rise to the definition:
- Interpreter Interpreter (z)=1z n=1∞ ∞ (1+1n)z1+zn,{displaystyle Gamma (z)={frac {1}{z}}prod _{n=1}^{infty }{frac {left(1+{frac {1}{n}}}{n}}}}{1+{frac {z}{n}}}}}}}}}},
valid for non-negative integers.
Weierstrass definition
The definition of gamma function due to Weierstrass is valid for all complex numbers z{displaystyle z} except for non-positive integer values
- Interpreter Interpreter (z)=e− − γ γ zz n=1∞ ∞ (1+zn)− − 1ez/n{displaystyle Gamma (z)={frac {e^{-gamma z}}{z}}}}prod _{n=1}^{infty }left(1+{frac {z}{n}}}{right)^{1}e^{z/n}}
where γ γ {displaystyle gamma } is the constant of Euler-Mascheroni.
In terms of generalized Laguerre polynomials
A representation of the incomplete gamma function in terms of the generalized Laguerre polynomials is
- Interpreter Interpreter (z,x)=xze− − x␡ ␡ n=0∞ ∞ Ln(z)(x)n+1{displaystyle Gamma (z,x)=x^{z}e^{-x}sum _{n=0}^{infty }{frac {L_{n}{(z)(x)}}}{n+1}}}}}}
which converges for -1}" xmlns="http://www.w3.org/1998/Math/MathML">Re(z)▪− − 1{displaystyle {text{Re}}(z) 2005-1}-1}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e94ea5a9f24529f0cec3a34981b8ce5864491f1d" style="vertical-align: -0.838ex; width:11.709ex; height:2.843ex;"/> and 0}" xmlns="http://www.w3.org/1998/Math/MathML">x▪0{displaystyle x 2005}0" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d24be5f0eb4a9173da6038badc8659546021d0" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;"/>.
Properties
General
Other important functional equations of the gamma function are Euler's reflection formula
- Interpreter Interpreter (1− − z)Interpreter Interpreter (z)=π π sen (π π z),z Z{displaystyle Gamma (1-z);Gamma (z)={pi over operatorname {sen} {(pi z)}},quad znotin mathbb {Z} }
what it implies
- Interpreter Interpreter (ε ε − − n)=(− − 1)n− − 1Interpreter Interpreter (− − ε ε )Interpreter Interpreter (1+ε ε )Interpreter Interpreter (n+1− − ε ε ){displaystyle Gamma (varepsilon -n)=(-1)^{n-1}{frac {Gamma (-varepsilon)Gamma (1+varepsilon)}{Gamma (n+1-varepsilon)}}}}}
and Legendre's doubling formula
- Interpreter Interpreter (z)Interpreter Interpreter (z+12)=21− − 2zπ π Interpreter Interpreter (2z).{displaystyle Gamma (z);Gamma left(z+{frac {1{2}}}}right)=2^{1-2z};{sqrt {pi }}};Gamma (2z).
The doubling formula is a special case of the multiplication theorem
- k=0m− − 1Interpreter Interpreter (z+km)=Interpreter Interpreter (z)Interpreter Interpreter (z+1m)Interpreter Interpreter (z+2m) Interpreter Interpreter (z+m− − 1m)=(2π π )m− − 12m12− − mzInterpreter Interpreter (mz).{displaystyle {begin}{aligned}prod _{k=0}^{m-1Gamma left(z+{frac}{m}{m}{m}{right}{fm}{fm}{fm}{fm}{fm}{fm}{fm)}{fm
A basic but very useful property of the gamma function, which can be obtained from the definition in terms of a limit is
- Interpreter Interpreter (z)! ! =Interpreter Interpreter (z! ! ) Interpreter Interpreter (z)Interpreter Interpreter (z! ! )한 한 R{displaystyle {overline {Gamma}}=Gamma ({overline {z}}})Longrightarrow Gamma (z)Gamma ({overline {z}}})in mathbb {R} }
in particular, z=a+bi{displaystyle z=a+bi}, this product is
- 日本語Interpreter Interpreter (a+bi)日本語2=日本語Interpreter Interpreter (a)日本語2 k=0∞ ∞ 11+b2(a+k)2{displaystyle leftATAGamma (a+bi)right ultimate{2}=leftATAGamma (a)rightficient
if the real part is an integer, this is a한 한 Z{displaystyle ain mathbb {Z} } then.
- 日本語Interpreter Interpreter (bi)日本語2=π π bsenh(π π b)日本語Interpreter Interpreter (12+bi)日本語2=π π cosh (π π b)日本語Interpreter Interpreter (1+bi)日本語2=π π bsenh(π π b)日本語Interpreter Interpreter (1+n+bi)日本語2=π π bsenh(π π b) k=1n(k2+b2)日本語Interpreter Interpreter (− − nbi)日本語2=π π bsenh(π π b) k=1n1k2+b2{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF00}{cHFFFFFFFF00} {cHFFFFFFFFFFFFFFFF}{cHFFFFFFFF}{cHFFFFFFFF}{cHFFFFFFFFFF}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{cH}{cHFFFFFFFFFFFFFFFFFFFFFFFF00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{cH00}{cH00}{cHFFFFFFFFFFFF00}{cHFFFFFFFF}{cHFFFFFFFFFFFFFFFFFF}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{cHFFFFFFFFFFFFFFFFFFFFFF
being n한 한 N{displaystyle nin mathbb {N} }.
Several useful limits for asymptotic approximations:
- limn→ → ∞ ∞ Interpreter Interpreter (n+α α )Interpreter Interpreter (n)nα α =1,limn→ → ∞ ∞ Interpreter Interpreter (n− − α α )Interpreter Interpreter (n+α α )Interpreter Interpreter (n− − β β )Interpreter Interpreter (n+β β )=1;α α ,β β 한 한 R{displaystyle lim _{nto infty }{frac {Gamma (n+alpha)}{Gamma (n)n^{alpha }}=1,quad lim _{nto infty }{frac {Gamma (n-bealpha)Gamma
Perhaps the best known value of the gamma function with non-integer argument is:
- Interpreter Interpreter (12)=π π ,{displaystyle Gamma left({frac {1}{2}}}right)={sqrt {pi }},,!}
Which can be obtained by doing z=1/2{displaystyle z=1/2} in the formula of reflection or in the formula of duplication, using the relationship of the gamma function with the beta function given below with x=and=1/2{displaystyle x=y=1/2} or by substitution u=t{displaystyle u={sqrt {t}}} in the integral definition of gamma function, with what is obtained a Gaussiana integral. In general, for non-negative values n{displaystyle n} you have:
- Interpreter Interpreter (12+n)=(2n)!4nn!π π =(2n− − 1)!!2nπ π =(n− − 12n)n!π π Interpreter Interpreter (12− − n)=(− − 4)nn!(2n)!π π =(− − 2)n(2n− − 1)!!π π {cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cH00FF00}{cH00FFFF00}{cH00FFFFFF00}{cHFFFFFFFFFF00}{cHFFFFFF00}{cHFFFFFFFFFF}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00}}{cH00}{cH00}{cH00}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFFFF00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00}{cH00}{cH00}{c}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
where n!!{displaystyle n!} denotes to double factorial n{displaystyle n}.
Derivative
The derivatives of the gamma function are given by the polygamma function, for example:
- Interpreter Interpreter ♫(z)=Interpreter Interpreter (z)END END 0(z).{displaystyle Gamma '(z)=Gamma (z)psi _{0}(z). !
For a positive integer m{displaystyle m}, the derivative of the gamma function can be calculated as follows
- Interpreter Interpreter ♫(m+1)=m!(− − γ γ +␡ ␡ k=1m1k){displaystyle Gamma '(m+1)=m!left(-gamma +sum _{k=1}^{m}{frac {1}{k}{k}}{right)}}}}
where γ γ {displaystyle gamma } denotes the constant of Euler-Mascheroni.
From the integral representation of the gamma function, it is obtained that n{displaystyle n}-the figure derived from gamma function is given by:
- dndxnInterpreter Interpreter (x)=∫ ∫ 0∞ ∞ tx− − 1e− − t(ln t)ndt{displaystyle {frac {d^{n}}{dx^{n}}}},Gamma (x)=int _{0}^{infty }t^{x-1}e^{-t}(ln t)^{n}dt}
Waste
The gamma function has an order 1 pole in z=− − n{displaystyle z=-n} for all non-negative integers. The residue at each pole is:
- Res (Interpreter Interpreter ,− − n)=(− − 1)nn!.{displaystyle operatorname {Res} (Gamma-n)={frac {(-1)^{n}}{n}}}}.
The Bohr-Mollerup theorem says that, among all the functions that generalize the factorial of the natural numbers to the real numbers, only the gamma function is logarithmically convex, that is, the natural logarithm of the gamma function is a convex function.
Representation as an integral
There are many formulas, besides the of second type Eulerto represent the gamma function as an integral. When the real part of z{displaystyle z} It's positive then.
- Interpreter Interpreter (z)=∫ ∫ 01(ln 1t)z− − 1dt{displaystyle Gamma (z)=int _{0}^{1}left(ln {frac {1}{t}}}right)^{z-1}dt}
When the real part of z{displaystyle z} is positive then the first comprehensive Binet formula for gamma function is
- ln Interpreter Interpreter (z)=(z− − 12)ln z− − z+12ln (2π π )+∫ ∫ 0∞ ∞ (12− − 1t+1et− − 1)e− − tztdt{displaystyle ln Gamma (z)=left(z-{frac {1{2}}}}{1⁄2}{frac}{1}{1}{2}{1}{1⁄2}{1⁄2}{c}{1⁄2}{1⁄2}{1⁄2}{1⁄1⁄2}}{1⁄2}{1⁄2}}{1⁄1⁄2}}{1⁄2}}}{1⁄1⁄2}}{1⁄2}{1⁄2}}{1⁄2}}{1⁄2}}{
the integral on the right can be interpreted as the Laplace Transform, that is
- ln (Interpreter Interpreter (z)(ez)z2π π z)=L(12t− − 1t2+1t(et− − 1))(z){displaystyle ln left(Gamma (z)left({frac {e{z}}}}right)^{z}{sqrt {2pi z}}right)={mathcal {L}}{left({frac}{1}{2t}{frac {1{1{1⁄2}{1⁄2}{1⁄2}{1⁄2}}}}{1⁄2}{1⁄2}{1⁄2}{1⁄2}{1⁄2}{1⁄2}{1⁄2}}}}{1⁄2}{1⁄2}{1⁄2}}{1⁄2}{1⁄2}{1⁄2}}}}{1⁄2}}}{1⁄2}{1⁄2}}{1⁄2}{1⁄2}{1⁄2}{1⁄2}}{1⁄1⁄2}}{
When the real part of z{displaystyle z} is positive then the second comprehensive Binet formula for gamma function is
- ln Interpreter Interpreter (z)=(z− − 12)ln z− − z+12ln (2π π )+2∫ ∫ 0∞ ∞ arctan (tz)e2π π t− − 1dt{displaystyle ln Gamma (z)=left(z-{frac {1{2}}}}right)ln z-z+{frac {1}{2}{2}}ln(2pi)+2int _{0^}{infty }{arctan left({frac}{
Fourier series expansion
The logarithm of the gamma function has the following development in Fourier series for <math alttext="{displaystyle 0<z0.z.1{displaystyle 0 ingredient1}<img alt="{displaystyle 0<z:
- ln Interpreter Interpreter (z)=(12− − z)(γ γ +ln 2)+(1− − z)ln π π − − ln sen (π π z)2+1π π ␡ ␡ n=1∞ ∞ ln nnsen (2π π nz){displaystyle ln Gamma (z)=left({frac {1}{2}-zright)(gamma +ln 2)+(1-z)ln pi -{frac}{operarname {sen}{2}{2}}{2}{2}{frac {1⁄1⁄2}{ft}{n}{n}{
which for a long time was attributed to Ernst Kummer who proved it in 1847. However, it was discovered that Carl Johan Malmsten proved it for the first time in 1842.
Raabe's formula
In 1840, Joseph Ludwig Raabe showed that
- ∫ ∫ aa+1ln Interpreter Interpreter (z)dz=ln (2π π )2+aln a− − a{displaystyle int _{a}^{a+1}ln Gamma (z)dz={frac {ln(2pi)}{2}}
for values 0}" xmlns="http://www.w3.org/1998/Math/MathML">a▪0{displaystyle a vocabulary0}0}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f34a80ea013edb56e340b19550430a8b6dfd7b9" style="vertical-align: -0.338ex; width:5.491ex; height:2.176ex;"/>.
In particular, when a=0{displaystyle a=0} We get
- ∫ ∫ 01ln Interpreter Interpreter (z)dz=ln (2π π )2{displaystyle int _{0}^{1}ln Gamma (z)dz={frac {ln(2pi)}{2}}}}}
Pi function
Gauss introduced an alternative notation for the gamma function called the Pi function, which in terms of the gamma function is:
- Русский Русский (z)=Interpreter Interpreter (z+1)=zInterpreter Interpreter (z)=∫ ∫ 0∞ ∞ e− − ttzdt{displaystyle Pi (z)=Gamma (z+1)=z;Gamma (z)=int _{0^{infty }e^{-t}t^{z}dt}
Thus, the relationship of the Pi function with the factorial is more natural than in the case of gamma function as for any non-negative integer n{displaystyle n}
- Русский Русский (n)=n!{displaystyle Pi (n)=n!}
The reflection formula takes the following form:
- Русский Русский (z)Русский Русский (− − z)=π π zsen (π π z)=1sinc (z){displaystyle Pi (z);Pi (-z)={frac {pi z{operatorname {sen}(pi z)}}}={frac {1}{operatorname {sinc} (z)}}}}}}
Where sinc{displaystyle {text{sinc}}} is the standardized sinc function, while the theorem of multiplication takes the form:
- Русский Русский (zm)Русский Русский (z− − 1m) Русский Русский (z− − m+1m)=((2π π )m2π π m)1/2m− − zРусский Русский (z).{displaystyle Pi left({frac {z}{m}right),Pi left({frac {z-1}{m}}}right)cdots Pi left({frac {z-m+1}{m}{m}{m}{m}{right}{bright}{(2p)}{x1⁄1⁄2}{x1⁄2}}{x1⁄2}}{x1⁄2}}}{x1⁄2}}}}}{x1⁄2}{x1⁄1⁄2}}{x1⁄1⁄2}}{x1⁄2}}{x1⁄2}}{x1⁄2}}{b1⁄2}}}{x1⁄2}}{x1⁄2}}}}}{x1⁄1⁄2}{x1⁄1⁄2}}}{x1⁄2}}{f}}}}}{b1⁄2}}}}{
Sometimes the following definition is found
- π π (z)=1Русский Русский (z),{displaystyle pi (z)={frac {1}{pi (z)}}},,!}
where π π (z){displaystyle pi (z)} is an entirely defined function for any complex number, since it has no poles. The reason for this is that the gamma function and therefore the Pi function have no zeros.
Relationship with other functions
- In the integral representation of the gamma function, both the upper and lower limit of the integration are fixed. The superior incomplete gamma function γ γ (a,x){displaystyle gamma (a,x)} lower Interpreter Interpreter (a,x){displaystyle Gamma (a,x)} are obtained by modifying the upper or lower integration limits respectively.
- Interpreter Interpreter (a,x)=∫ ∫ x∞ ∞ ta− − 1e− − tdt.{displaystyle Gamma (a,x)=int _{x}^{infty }t^{a},e^{-t},dt.,!}
- γ γ (a,x)=∫ ∫ 0xta− − 1e− − tdt.{displaystyle gamma (a,x)=int _{0}^{x}t^{a-1},e^{-t},dt.,!}
- The gamma function is related to the beta function by the following formula
- B(x,and)=Interpreter Interpreter (x)Interpreter Interpreter (and)Interpreter Interpreter (x+and).{displaystyle mathrm {B} (x,y)={frac {Gamma (x);Gamma (y)}{Gamma (x+y)}}{,!}
- The logarithmic derivative of the gamma function is the digomma function END END (0)(z){displaystyle psi ^{(0)}(z)}. Major derivatives are polygamma functions END END (n)(z){displaystyle psi ^{(n)}(z)}.
- END END (x)=END END 0(x)=Interpreter Interpreter ♫(x)Interpreter Interpreter (x){displaystyle psi (x)=psi ^{0}(x)={frac {Gamma '(x}{Gamma (x)}}}}}
- END END (n)(x)=(ddx)nEND END (x)=(ddx)n+1log Interpreter Interpreter (x){displaystyle psi ^{(n)}(x)=left({frac {d{dx}}}}right)^{n}psi (x)=left({frac {d}{dx}}}{n+1}log Gamma (x)}
- The analog of the gamma function on a finite body or a finite ring are the Gaussian sums, a type of exponential sum.
- The reverse gamma function is the reverse of the gamma function, which is an entire function.
- The gamma function appears in the integral definition of Riemann's zeta function γ γ (z){displaystyle zeta (z)}:
- γ γ (z)=1Interpreter Interpreter (z)∫ ∫ 0∞ ∞ uz− − 1eu− − 1du.{displaystyle zeta (z)={frac {1}{Gamma}}int _{0}^{infty }{frac {u^{z-1}}{e^{u}-1}}}}}{;mathrm {d} u,! !
Valid formula only if 1}" xmlns="http://www.w3.org/1998/Math/MathML">Re (z)▪1{displaystyle operatorname {Re} (z) 2005}1}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56497bbfa5e1795edfdbc22a6f0c52b271f70bfd" style="vertical-align: -0.838ex; width:9.901ex; height:2.843ex;"/>. It also appears in the functional equation γ γ (z){displaystyle zeta (z)}:
- π π − − z/2Interpreter Interpreter (z2)γ γ (z)=π π − − 1− − z2Interpreter Interpreter (1− − z2)γ γ (1− − z).{displaystyle pi ^{-z/2};Gamma left({frac {z}{2}}}}}right)zeta (z)=pi ^{-{frac {1-z}{2}}}}}{;Gamma left({frac {1-z}{2}{2}}{2}}right);zeta (1-z). !
Particular values
Some particular values of the gamma function are
- Interpreter Interpreter (− − 32)=4π π 3≈ ≈ 2,363Interpreter Interpreter (− − 12)=− − 2π π ≈ ≈ − − 3,545Interpreter Interpreter (12)=π π ≈ ≈ 1,772Interpreter Interpreter (1)=0!=1Interpreter Interpreter (32)=π π 2≈ ≈ 0,886Interpreter Interpreter (2)=1!=1Interpreter Interpreter (52)=3π π 4≈ ≈ 1,329Interpreter Interpreter (3)=2!=2Interpreter Interpreter (72)=15π π 8≈ ≈ 3,323Interpreter Interpreter (4)=3!=6##### ####################################################################################################
Approximations
The gamma function can be calculated numerically with arbitrary precision using the Stirling formula, the Lanczos approximation, or the Spouge approximation.
For arguments that are integer multiples of 1/24, the gamma function can be quickly evaluated using iterations of arithmetic geometric means (see Values of the gamma function).
Because both the gamma function and the factorial grow very rapidly for moderately large arguments, many computer programs include functions that return the logarithm of the gamma function. This grows more slowly, and in combinatorial calculations it is very useful, since you go from multiplying and dividing large values to adding or subtracting their logarithms.
Applications of the gamma function
Fraction Calculation
La n{displaystyle n}-thousand derived from axb{displaystyle ax^{b} (where n is a natural number) can be seen as follows:
- dndxn(axb)=(b− − n+1) (b− − 2)(b− − 1)baxb− − n=b!(b− − n)!axb− − n{displaystyle {frac {d^{n}}{dx^{n}}}}left(ax{b}right)=left(b-n+1right)cdots left(b-2right)left(b-1right)bax^{b-n}={frac {b}{b-nax}{b}{right}{b-nx}{b-nex!
Like n!=Interpreter Interpreter (n+1){displaystyle n!=Gamma (n+1)} then.
- dndxn(axb)=Interpreter Interpreter (b+1)Interpreter Interpreter (b− − n+1)axb− − n{displaystyle {frac {d^{n}}{dx^{n}}}}{left(ax^{b}right)={frac {Gamma left(b+1right)}{Gamma left(b-n+1right)}}}ax^{b-n}}}}
where n{displaystyle n} can be any number where gamma is defined or can be defined by limits. This way you can calculate for example the 1/2 derivative x{displaystyle x}Of x2{displaystyle x^{2}} and even a constant c=cx0{displaystyle c=cx^{0}:
- d12dx12(x)=2xπ π {displaystyle {frac {d^{frac {1}{2}}}}{dx^{frac {1}{1{2}}}}}}{left(xright)={frac {2{sqrt {x}}}{{sqrt {pi }}}}}}}}}}}}{
- d12dx12(x2)=8x33π π {displaystyle {frac {d^{frac {1}{2}}}}{dx^{frac {1}{1{2}}}}}}}{left(x^{2}right)={frac {8{sqrt {x^{3}}}}{3{sqrt {pi}}}}}}}}}}}}{
- d12dx12(c)=cπ π x{displaystyle {frac {d^{frac {1}{2}}}{dx^{frac {1}{1{2}}}}}}{left(cright)={frac {c}{{{{sqrt {p}}}{sqrt {x}}}}}}}}}}
Contenido relacionado
Levi-Civita symbol
Lucas-Lehmer test
Annex: Mathematical constants