Gamma distribution

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Density function of a Gamma.

In probability theory and statistics, the gamma distribution is a distribution with two parameters that belongs to the continuous probability distributions. The exponential distribution, the Erlang distribution, and the χ² distribution are particular cases of the gamma distribution. There are two different parameterizations that are commonly used

  1. With shape parameter k{displaystyle k} and scale parameter θ θ {displaystyle theta }.
  2. With shape parameter α α =k{displaystyle alpha =k} and reverse scale parameter λ λ =1/θ θ {displaystyle lambda =1/theta }.

Definition

Notation

If a continuous random variable X{displaystyle X} It has gamma distribution with parameters 0}" xmlns="http://www.w3.org/1998/Math/MathML">α α ▪0{displaystyle alpha 한0}0}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edd4f784b6e8bb68fa774213ceacbab2d97825dc" style="vertical-align: -0.338ex; width:5.749ex; height:2.176ex;"/> and 0}" xmlns="http://www.w3.org/1998/Math/MathML">λ λ ▪0{displaystyle lambda 한0}0}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea25afc0351140f919cf791c49c1964b8b081de" style="vertical-align: -0.338ex; width:5.616ex; height:2.176ex;"/> Then we'll write X♥ ♥ Interpreter Interpreter (α α ,λ λ ){displaystyle Xsim Gamma (alphalambda)}.

Density Function

Yeah. X♥ ♥ Interpreter Interpreter (α α ,λ λ ){displaystyle Xsim Gamma (alphalambda)} then its density function is

fX(x)=λ λ (λ λ x)α α − − 1e− − λ λ xInterpreter Interpreter (α α ){displaystyle f_{X}(x)={frac {lambda (lambda x)^{alpha -1}e^{-lambda x}{Gamma (alpha)}}}}}}}

for 0}" xmlns="http://www.w3.org/1998/Math/MathML">x▪0{displaystyle x 2005}0" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d24be5f0eb4a9173da6038badc8659546021d0" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;"/> where

Interpreter Interpreter (α α )=∫ ∫ 0∞ ∞ tα α − − 1e− − tdt{displaystyle Gamma (alpha)=int _{0}^{infty }t^{alpha -1}e^{-t}dt}

is the gamma function and satisfies

  1. Interpreter Interpreter (2)=Interpreter Interpreter (1)=1{displaystyle Gamma (2)=Gamma (1)=1}
  2. For any 0}" xmlns="http://www.w3.org/1998/Math/MathML">α α ▪0{displaystyle alpha 한0}0}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edd4f784b6e8bb68fa774213ceacbab2d97825dc" style="vertical-align: -0.338ex; width:5.749ex; height:2.176ex;"/> is fulfilled Interpreter Interpreter (α α +1)=α α Interpreter Interpreter (α α ){displaystyle Gamma (alpha +1)=alpha Gamma (alpha)}
  3. Yeah. n한 한 Z+{displaystyle nin mathbb {Z} ^{+} then. Interpreter Interpreter (n+1)=n!{displaystyle Gamma (n+1)=n!}
  4. Interpreter Interpreter (12)=π π {displaystyle Gamma left({frac {1}{2}}{right)={sqrt {pi }}}}}
  5. Yeah. n한 한 Z+{displaystyle nin mathbb {Z} ^{+} then. Interpreter Interpreter (n2)=π π (n− − 1)!2n− − 1(n− − 12)!{displaystyle Gamma left({frac {n}{2}}}right)={frac {{sqrt {pi }(n-1)}{2^{n-1}left({frac {n-1}{2}}{2}}}}}{2}}}}}}}}}}}

Cumulative Density Function

The accumulated distribution function of a random variable X♥ ♥ Interpreter Interpreter (α α ,λ λ ){displaystyle Xsim Gamma (alphalambda)} is given by

FX(x)=∫ ∫ 0xλ λ (λ λ and)α α − − 1e− − λ λ andInterpreter Interpreter (α α )dand{displaystyle F_{X}(x)=int _{0}^{x}{frac {lambda (lambda y)^{alpha-1}e^{-lambda y}}{Gamma (alpha)}}}}{;dy}

Yeah. X{displaystyle X} is a random variable such that X♥ ♥ Interpreter Interpreter (n,λ λ ){displaystyle Xsim Gamma (n,lambda)} where n한 한 Z+{displaystyle nin mathbb {Z} ^{+} (i.e., X{displaystyle X} has a distribution of Erlang) then its accumulated distribution function is given by

FX(x)=1− − ␡ ␡ k=0n− − 1(λ λ x)kk!e− − λ λ x=␡ ␡ k=n∞ ∞ (λ λ x)kk!e− − λ λ x{displaystyle {begin{aligned}F_{X}(x) fake=1-sum _{k=0}{n-1}{frac {(lambda x){k}{k}{k}{x}{k}{lambda x}{k}{k={infty }{

Properties

Yeah. X{displaystyle X} is a random variable such that X♥ ♥ Interpreter Interpreter (α α ,λ λ ){displaystyle Xsim Gamma (alphalambda)} then. X{displaystyle X} satisfies some properties.

Media

The mean of the random variable X{displaystyle X} That's it.

E[chuckles]X]=α α λ λ {displaystyle {text{E}}[X]={frac {alpha }{lambda }}}}}

Variance

Variance of the random variable X{displaystyle X} That's it.

Var[chuckles]X]=α α λ λ 2{displaystyle {text{Var}}[X]={frac {alpha }{lambda ^{2}}}}}}}}

Moments

The n{displaystyle n}-the moment of the random variable X{displaystyle X} That's it.

E [chuckles]Xn]=α α (α α +1) (α α +n− − 1)λ λ n{displaystyle operatorname {E} [X^{n}]={frac {alpha +1)cdots (alpha +n-1)}{lambda ^{n}}}}}}

for n한 한 N{displaystyle nin mathbb {N} }.

Moment generating function

The moment generating function is given by

MX(t)=(λ λ λ λ − − t)α α {displaystyle M_{X}(t)=left({frac {lambda }{lambda -t}right)^{alpha }}}

for t}" xmlns="http://www.w3.org/1998/Math/MathML">λ λ ▪t{displaystyle lambda t}t}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06e1c46af304b4a4e76acd74280ba00c6709a2b3" style="vertical-align: -0.338ex; width:5.293ex; height:2.176ex;"/>.

Sum of Gammas

Yeah. Xi♥ ♥ Interpreter Interpreter (α α i,λ λ ){displaystyle X_{i}sim Gamma (alpha _{i},lambda)} for i=1,2,...... ,n{displaystyle i=1,2,dotsn} are independent random variables then

␡ ␡ i=1nXi♥ ♥ Interpreter Interpreter (␡ ␡ i=1nα α i,λ λ ){displaystyle sum _{i=1}^{n}X_{i}sim Gamma left(sum _{i=1}^{n}alpha _{i},lambda right)}

Scaling

Yeah. X♥ ♥ Interpreter Interpreter (α α ,λ λ ){displaystyle Xsim Gamma (alphalambda)} then for any 0}" xmlns="http://www.w3.org/1998/Math/MathML">c▪0{displaystyle c HCFC}0}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba126f626d61752f62eaacaf11761a54de4dc84" style="vertical-align: -0.338ex; width:5.268ex; height:2.176ex;"/>

cX♥ ♥ Interpreter Interpreter (α α ,λ λ /c){displaystyle cXsim Gamma left(alphalambda /cright)}

Mean Logarithmic

It can be shown that

E [chuckles]ln (X)]=END END (α α )− − ln (λ λ ){displaystyle operatorname {E} [ln(X)]=psi (alpha)-ln(lambda)}

where END END {displaystyle psi } It's the digomma function.

Calculation of Probabilities in R

R (programme language) can be used to find density function values f(x){displaystyle f(x)} and distribution function F(x){displaystyle F(x)} of a continuous random variable X♥ ♥ Interpreter Interpreter (α α ,λ λ ){displaystyle Xsim Gamma (alphalambda)}.

Density function

Stop. 0}" xmlns="http://www.w3.org/1998/Math/MathML">x▪0{displaystyle x 2005}0" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d24be5f0eb4a9173da6038badc8659546021d0" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;"/>, the Gamma distribution density function is given by

fX(x)=λ λ (λ λ x)α α − − 1e− − λ λ xInterpreter Interpreter (α α ){displaystyle f_{X}(x)={frac {lambda (lambda x)^{alpha -1}e^{-lambda x}{Gamma (alpha)}}}}}}}

then to evaluate the density function f(x){displaystyle f(x)} We use the following code

# d=density functiondgamma(x,α,λ)

Distribution Function

The cdf of the gamma distribution is given by

FX(x)=∫ ∫ 0xλ λ (λ λ and)α α − − 1e− − λ λ andInterpreter Interpreter (α α )dand{displaystyle F_{X}(x)=int _{0}^{x}{frac {lambda (lambda y)^{alpha-1}e^{-lambda y}}{Gamma (alpha)}}}}{;dy}

for 0}" xmlns="http://www.w3.org/1998/Math/MathML">x▪0{displaystyle x 2005}0" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d24be5f0eb4a9173da6038badc8659546021d0" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;"/>, you can use the following code to evaluate the accumulated distribution function F(x){displaystyle F(x)}

# p=probability distribution functionpgamma(x,α,λ)

Related Distributions

  • Yeah. X1,X2,...... ,Xn{displaystyle X_{1},X_{2},dotsX_{n}} are independent and identically distributed random variables such that Xi♥ ♥ Exp(λ λ ){displaystyle X_{i}sim {text{Exp}}(lambda)} then. ␡ ␡ i=1nXi♥ ♥ Interpreter Interpreter (n,λ λ ){displaystyle sum limits _{i=1}^{n}X_{i}sim Gamma left(n,lambda right)}, this distribution is known as Erlang distribution and is a particular case of gamma distribution when the parameter α α =n한 한 N{displaystyle alpha =nin mathbb {N} }.
  • Yeah. X♥ ♥ Interpreter Interpreter (1,λ λ ){displaystyle Xsim Gamma left(1,lambda right)} then. X♥ ♥ Exp(λ λ ){displaystyle Xsim {text{Exp}}(lambda)}.
  • Yeah. X♥ ♥ Interpreter Interpreter (n2,12){displaystyle Xsim Gamma left({frac {n}{2}}},{frac {1}{2}}}right)} with n한 한 N{displaystyle nin mathbb {N} } then. X♥ ♥ χ χ n2{displaystyle Xsim chi _{n}^{2}}.

Contenido relacionado

Survival rate

The survival rate is the percentage of patients who live a certain time after being diagnosed with a disease. This term is used mainly in cases of diseases...

Ricci scalar curvature

In mathematics, the scalar curvature of a surface is twice the familiar Gaussian curvature. For the highest dimensional Riemannian manifolds it is twice the...

Eratosthenes

Eratosthenes son of Aglaos, born in 276 BC. C. in Cyrene. He studied in Alexandria and for a time in Athens. He was a disciple of Ariston of Chios, of...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save