Exponentiation
The exponentiation is an operation definable on an algebra over a complete normed field or Banach algebra (complete normed vector space that is also a ring) that generalizes the exponential function of the real numbers.
When a and b are two whole numbers the operation ab{displaystyle scriptstyle a^{b}} can be defined in elementary algebraic terms as equivalent to potency. However, a number of specific physical problems led to the attempt to generalize the formula prior to values of b Not whole. When b = 1/2 operation equals a square root. Finally the exponentiation tries to generalize the operation ab{displaystyle scriptstyle a^{b}} at values b Whatever. Usually such operation can be reduced to the calculation of the operation ebln (a){displaystyle scriptstyle e^{bln(a)}. This article generalizes this operation to cases where the exponent is not necessarily a real number, but a complex number, a quaternionic number or more generally an element of a Banach space.
Formal definition
Given an element of a Banach algebra, we have defined a commutative operation of addition and another of multiplication, which allows us to define the ring of polynomials on said algebra. In addition, by having a norm, a notion of convergence and therefore of limit can be defined for some formal power series. Under these conditions, the following operation can be defined:
eA=limn→ → ∞ ∞ ␡ ␡ k=0nAkk!=1+A+A22!+A33!+A44!+ {displaystyle e^{A}=lim _{nto infty }sum _{k=0}^{n}{A^{k} over k!}=1+A+{A^{2} over 2!}+{A^{3} over 3!}+{A^{4} over 4!}+cdots }
Note that:
- If the body on which the algebra is defined does not contain a R{displaystyle mathbb {R} } the previous limit could not converge, in fact the algebra could not be an algebra of Banach.
- If algebra is not a standard vector space there is no way to establish whether the previous limit converges.
Exponentiation of real numbers
Exponentiation of real numbers is done using the exponential function. Given a real number, its exponentiation is always well defined and has the following properties:
- ea+b=eaeb{displaystyle e^{a+b}=e^{a}e^{b};}
- eab=(ea)b{displaystyle e^{ab}=(e^{a})^{b};}
- monotony: bto e^{a}>e^{b}}" xmlns="http://www.w3.org/1998/Math/MathML">a▪b→ → ea▪eb{displaystyle a rigidbto e^{a}{a}bto e^{a}>e^{b}}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71f25d04dd0fd37b92605dd580ed0bccaa06c004" style="vertical-align: -0.338ex; width:16.245ex; height:2.676ex;"/>
- <math alttext="{displaystyle ageq 0to e^{a}geq 1,a=0to e^{a}=1,a<0to e^{a}a≥ ≥ 0→ → ea≥ ≥ 1,a=0→ → ea=1,a.0→ → ea.1{displaystyle ageq 0to e^{a}geq 1,a=0to e^{a}=1, a vis0to e^{a}{a}<img alt="{displaystyle ageq 0to e^{a}geq 1,a=0to e^{a}=1,a<0to e^{a}
- a;}" xmlns="http://www.w3.org/1998/Math/MathML">ea▪a{displaystyle e^{a} educationala;}a;}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9378079cda0df3b6dadbc9430a2843a240e6845b" style="vertical-align: -0.338ex; width:7.159ex; height:2.343ex;"/>
Exponentiation of complex numbers
Exponentiation of complex numbers is easily defined by power series just as it is for real numbers. Given a complex number separated into its real and imaginary parts z = a + bi its exponentiation turns out to be:
ez=ea+bi=ea(# b+iwithout b){displaystyle e^{z}=e^{a+bi}=e^{a}(cos b+isin b);}
The properties of exponentiation of complex numbers are similar to those of real numbers (although the properties involving order do not extend to complex numbers):
- ez1+z2=ez1ez2{displaystyle e^{z_{1}+z_{2}}=e^{z_{1}e^{z_{2}}}{2}}{;}
- ¬ ¬ consuming consuming z:ez=0{displaystyle neg exists z:e^{z}=0}
Exponentiation of quaternions
The exponentiation of quaternion numbers is computationally more complicated although it is unambiguously defined. Given a quaternion written in canonical form q = a + bi + cj + dk its exponentiation turns out to be:
eq=ea+bi+cj+dk=ea(# b2+c2+d2+without b2+c2+d2b2+c2+d2(bi+cj+dk)){displaystyle e^{q}=e^{a+bi+cj+dk}=e^{a}left(cos {sqrt {b^{2}+c^{2} +d^{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{c =}{2}{c =}{2}{2}{2}{2}{2}{2}{2}{c =}{2}{2}{c =}{2}{2}{2}{2}{2}{2}{c =}{c =}{2}{2}{2}{c =}{c =}{c =}{2}{c =}{c =}{2}{2}{2}{c =}{2}{c =}{2}{c =}{c =}{c
Since the product of quaternions is not commutative, it is not true that the exponentiation of a sum is equal to the product of exponentials of the addends. For example if we consider q1 = πi and q2 = πj we have:
{eiπ π =− − 1ejπ π =− − 1eiπ π +jπ π =# 2π π +without 2π π 2(i+j)I was. I was. eiπ π ejπ π =(− − 1)(− − 1)=1{displaystyle {begin{cases}e^{ipi }=-1e^{jpi }=-1e^{ipi +jpi }=cos {{sqrt {2}{2}{pi }{cH00FF}{cH00}{cH00FF}{cH00}{cH00}{cH00FFFFFFFFFF}}}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00FFFFFFFFFF}{cH00}{cH00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{cH00}}}{cH00}{cH00}{cH00}{cH00}{cH00FF}{cH00}{cH00}{cH00FF}{cH00FF}{cH00FF
The exponentiation of a quaternionic number with zero real part, allows to represent in a very convenient way the rotations in three dimensions in the same way that the exponentiation of a pure imaginary number allows to represent rotations in the plane.
Exponentiation of transfinite numbers
Given two finite sets M and Nsuch that the first contains m elements and the second n elements, one can think of how many mathematical functions can be defined between both. In the case of finite assemblies such as the previous ones, the number of functions is precisely mn{displaystyle scriptstyle m^{n}}. The problem can also arise in the case of inifinite assemblies whose cardinal is a transfinite number. So the operation α α β β {displaystyle scriptstyle alpha ^{beta }} where now α α {displaystyle scriptstyle alpha } and β β {displaystyle scriptstyle beta } are two transfinite cardinals defined as:
α α β β =card(FA→ → B),{α α =card(A),β β =card(B)FA→ → B={f日本語f:A→ → B!{displaystyle alpha ^{beta }={mbox{card}}}(F_{Ato B}),qquad {begin{cases}alpha ={mbox{card}{card}}{beta ={mbox{card}}{B)F_{Ato B}={
Some concrete examples turn out to be:
2Русский Русский 0=Русский Русский 1,Русский Русский 0Русский Русский 0=Русский Русский 1,Русский Русский b≤ ≤ Русский Русский n:bРусский Русский n=Русский Русский n+1{displaystyle 2^{aleph _{0}=aleph _{1},aleph _{0}^{aleph _{0}=aleph _{1}, forall bleq aleph _{n}:b^{aleph _{n}}}=aleph _{n+1}}
Matrix exponentiation
Real or complex square matrices can be interpreted as expressions in a given base of a linear application. This fact can be used to more easily compute the exponential of a matrix. Yeah. A represents the matrix of a certain linear application f:E→ → E{displaystyle f:Eto E} then the exponentiation of a matrix can be obtained from the canonical form of Jordan Jf of such endomorphism and the matrix change base C between the original base and the base of Jordan:
A=C− − 1JfC→ → eA=eC− − 1JfC=␡ ␡ k=0∞ ∞ (C− − 1JfC)kk!=␡ ␡ k=0∞ ∞ C− − 1(Jf)kCk!=C− − 1eJfC{displaystyle A=C^{1}J_{f}Cto e^{A}=e^{C^{1}{f}C}=sum _{k=0}{infty }{frac}{(C^{1}J_{f}{k}{k}{k}{k}{sum _{k= {f}{f}{f}{
The exponential of the Jordan canonical form is very simple, given a Jordan block BJ, submatrix nx n, which performs the linear map in one of the invariant subspaces associated with the Jordan map, we have:
BJ=[chuckles]λ λ 10 00λ λ 1 000λ λ 0 000 λ λ ]⇒ ⇒ eBJ=[chuckles]eλ λ eλ λ 1!eλ λ 2! eλ λ (n− − 1)!0eλ λ eλ λ 1! eλ λ (n− − 2)!00eλ λ eλ λ (n− − 3)! 000 eλ λ ]## ## ## ## ## ## ### ## ### ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ### ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ###### ## ### ##
Matrix exponentiation has these other properties similar to real numbers:
- Approval of the rule: eA ≤ ≤ e A {displaystyle ёe^{A}{A}organleq e^{associatedaassociated}}}
- Matrix identity: e0=I{displaystyle e^{0}=I;}
- Inverse: (eA)− − 1=e− − A{displaystyle (e^{A})^{-1}=e^{-A};}
- Trace-determining ratio: det(eA)=etr(A){displaystyle det(e^{A})=e^{{{mbox{tr}}(A)}}{;}
An important property of matrix exponentiation is that in general, unlike with real numbers, the exponentiation of a sum of matrices is not the product of matrix exponentials:
ABI was. I was. BA⇒ ⇒ eAeBI was. I was. eA+BI was. I was. eBeA{displaystyle ABneq BARightarrow e^{A}e^{B}neq e^{A+}Bneq e^{B}e^{A}}
Although when the commutator is canceled the equality is satisfied:
AB=BA eAeB=eA+B=eBeA{displaystyle AB=BAiff e^{A}e^{B}=e^{A+B}=e^{B}e^{A}}
Exponentiation of operators
The exponentiation of linear operators defined on a normed vector space is a generalization of the case of exponentiation of matrices. Since the fact that the vector space is normed implies that the space of operators is a Banach space.
The exponentiation of operators can be used to solve the Schrödinger equation:
H^ ^ 日本語END END (t) =i ▪ ▪ ▪ ▪ t日本語END END (t) {displaystyle {hat {H}}left️psi (t)rightrangle =ihbar {partial over partial t}left️psi (t)rightrangle }
A formal solution of this equation is obtained by exponentiation of the Hamiltonian operator:
日本語END END (t) =e− − i ∫ ∫ 0tH^ ^ dt日本語END END 0 {displaystyle left briefspsi (t)rightrangle =e^{-{frac {i}{hbar }{0}{0}^{t}{hat {H}}}}{left
However, in many cases the computation of the exponentiation of the Hamiltonian operator can be computationally very complex. In addition, since the Hamiltonian is normally an unbounded operator, the exponential could only be defined over a domain of the Hilbert space and then define an extension of the previously obtained operator.
Contenido relacionado
Essential chemical element
Simvastatin
Infrared spectroscopy