Effective value

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Effective value (V)RMS) of a sinusoidal wave

The root mean square value of an electrical quantity is called effective value. The concept of effective value is used especially to study periodic waveforms, despite being applicable to all waveforms, constant or not. It is sometimes referred to by the foreign term RMS (from English, root mean square).

Definition

The effective value of the intensity i(t) is the mean square value:

Ief=1T∫ ∫ t0t0+Ti2(t)dt{displaystyle I_{rm {ef}}={sqrt {{1 over {T}{int limits _{t_{0}}}{t_{n0}+T}{i^{2}{i}{2}{,dt}}}}}}}}}

where:

T{displaystyle T} It's the signal period.

Similarly, the effective value of the voltage is:

Vef=1T∫ ∫ t0t0+Tv2(t)dt{displaystyle V_{rm {ef}}={sqrt {{1 over {T}{int limits _{t_{0}}}^{t_{0}+T}{v^{2}(t)}{,dt}}}}}}}}

Physical meaning

The physical meaning of the effective value is to designate the value of a rigorously constant current that, when circulating on a certain ohmic resistance, would produce the same calorific effects as said variable current. In this way, a parallelism is established between any type of variable current and the direct current that simplifies the calculations with the latter.

Sometimes it is important to know the average power dissipated in an electrical resistor when the current is not constant. The average power dissipated is:

Pmed=1Δ Δ t∫ ∫ t0t0+Δ Δ tv(t)i(t)dt{displaystyle P_{rm {med}}={1 over {delta }t{int _{t_{0}}}^{t_{0}+{Delta }t}{v(t)}{,dt}}}

When said current is periodic, and taking into account Ohm's law:

Pmed=1T∫ ∫ t0t0+TRi2(t)dt{displaystyle P_{rm {med}}={1 over {T}}{int _{t_{0}}{t_{0}+T}{R i^{2}(t)}}{,dt}}}}}}

Which, by the definition of effective value, is the same as:

Pmed=Ief2R{displaystyle P_{rm {med}}=I_{rm {ef}}{2} R!

RMS value for common waveforms

For periodic waveforms where there is a defined frequency, the effective value is independent of that frequency.

Wave formFormulaEffective value
Wave dc labels.svg
Continuous current, constantand=A0{displaystyle y=A_{0},}A0{displaystyle A_{0},}
Wave sine labels.svg
Sinusoidal waveand=A1without (2π π ft){displaystyle y=A_{1}sin(2pi ft),}A12{displaystyle {frac {A_{1}}{sqrt {2}}}}}
Wave sine modified labels.svg
Modified sinusoidal wave<math alttext="{displaystyle y={begin{cases}0&operatorname {frac} (ft)<0.25\A_{1}&0.25<operatorname {frac} (ft)<0.5\0&0.5<operatorname {frac} (ft)0.75end{cases}}}" xmlns="http://www.w3.org/1998/Math/MathML">and={0frac (ft).0.25A10.25.frac (ft).0.500.5.frac (ft).0.75− − A1frac (ft)▪0.75{displaystyle y={begin{cases}0 fakeoperatorname {frac} (ft){0.25A_{1}{1}{operatortorname {frac} (ft)}{5 fake0.5}{operatorname {frac}{ft}{.75-A_{1}{1⁄operatorname {frac}{<img alt="{displaystyle y={begin{cases}0&operatorname {frac} (ft)<0.25\A_{1}&0.25<operatorname {frac} (ft)<0.5\0&0.5<operatorname {frac} (ft)0.75end{cases}}}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d16f59a57400dc035bc5d8425cda7efa44eca38c" style="vertical-align: -5.171ex; width:35.048ex; height:11.509ex;"/>A12{displaystyle {frac {A_{1}}{sqrt {2}}}}}
Wave square labels.svg
Square wave<math alttext="{displaystyle y={begin{cases}A_{1}&operatorname {frac} (ft)0.5end{cases}}}" xmlns="http://www.w3.org/1998/Math/MathML">and={A1frac (ft).0.5− − A1frac (ft)▪0.5{displaystyle y={begin{cases}A_{1} strangeroperatorname {frac} (ft)≤5-A_{1} alienoperatorname {frac} (ft) offset0.5end{cases}}}}}}<img alt="{displaystyle y={begin{cases}A_{1}&operatorname {frac} (ft)0.5end{cases}}}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1147faa4b66211cbbc8a687d4231611e29b27a9" style="vertical-align: -2.505ex; width:27.493ex; height:6.176ex;"/>A1{displaystyle A_{1},}
Wave square dc labels.svg
Square wave with continuous component<math alttext="{displaystyle y=A_{0}+{begin{cases}A_{1}&operatorname {frac} (ft)0.5end{cases}}}" xmlns="http://www.w3.org/1998/Math/MathML">and=A0+{A1frac (ft).0.5− − A1frac (ft)▪0.5{displaystyle y=A_{0}+{begin{cases}A_{1} dreamoperatorname {frac} (ft){0.5-A_{1}{1}{operatorname {frac} (ft) offset0.5end{cases}}}}}<img alt="{displaystyle y=A_{0}+{begin{cases}A_{1}&operatorname {frac} (ft)0.5end{cases}}}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/219d36fb43253cd700ae68385b4c6ab2d40d5541" style="vertical-align: -2.505ex; width:33.13ex; height:6.176ex;"/>A02+A12{displaystyle {sqrt {A_{0}^{2}+A_{1}{2}}}{2}}}}}{,
Wave pulse train labels.svg
Pulse train<math alttext="{displaystyle y={begin{cases}A_{1}&operatorname {frac} (ft)Dend{cases}}}" xmlns="http://www.w3.org/1998/Math/MathML">and={A1frac (ft).D0frac (ft)▪D{displaystyle y={begin{cases}A_{1} strangeroperatorname {frac} (ft){D fakeoperatorname {frac} (ft) HCFCDend{cases}}}}}}}<img alt="{displaystyle y={begin{cases}A_{1}&operatorname {frac} (ft)Dend{cases}}}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/604fb9b622eb58a4555880ff8c156d71498e77d4" style="vertical-align: -2.505ex; width:24.637ex; height:6.176ex;"/>A1D{displaystyle A_{1}{sqrt {D}}}}

See Note

Wave triangle labels.svg
triangular waveand=日本語2A1frac (ft)− − A1日本語{displaystyle y=leftIND2A_{1}operatorname {frac} (ft)-A_{1}right structured}A13{displaystyle A_{1} over {sqrt {3}}}}}
Wave sawtooth labels.svg
Wave in saw teethand=2A1frac (ft)− − A1{displaystyle y=2A_{1}operatorname {frac} (ft)-A_{1},}A13{displaystyle A_{1} over {sqrt {3}}}}}
Wave phasephase labels.svg
Phase to phase voltageand=A1without (t)− − A1without (t− − 2π π 3){displaystyle y=A_{1}sin(t)-A_{1}sin left(t-{frac {2pi }{3}}{3}right),}A132{displaystyle A_{1}{sqrt {frac {3}{2}}}}}

Note: Where D, is expressed in "per unit" of the period T (D = t/T).

Wave Combinations

A fairly common case is a periodic wave that contains a DC component. In this case, the effective value is (indistinctly for voltage or current):

Vef=VefCC2+VefCA2{displaystyle V_{rm {ef}}={sqrt {V_{rm {ef_{CC}}}}}^{2}+V_{rm {ef_{CA}}}}}}{{2}}}

where VefCC{displaystyle V_{rm {ef_{CC}}}} is the effective value of the continuous component and VefCA{displaystyle V_{rm {ef_{CA}}}} is the effective value of the alternating component.

Generalizing, the effective value of a combination of waves, if they are orthogonal to each other, is:

VefTortal=Vef12+Vef22+ +Vefn2{displaystyle V_{rm {ef_{Total}}}}={sqrt {V_{rm {ef_{1}}}}{2} +V_{rm {ef_{2}}}}}}}{^{2}+dots +V_{rm {rm {eff_{n}}}}}}{2}}}}}}{
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save