Domain of a function

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Illustration shown f{displaystyle f}, a function with domain X{displaystyle X} and co-domain And{displaystyle Y}. The little oval inside And{displaystyle Y} is the image of f{displaystyle f}Sometimes called range f{displaystyle f}.

In mathematics, the domain (set of definition or set of items) of a function f:X→ → And{displaystyle f:Xto Y} is the set of existence of itself, that is, the values for which the function is defined. It is the set of all objects that can transform, denotes Domf{displaystyle operatorname {Dom} _{f}}, Dom (f){displaystyle operatorname {Dom} (f)} or Df{displaystyle D_{f},}. In Rn{displaystyle mathbb {R} ^{n} is called domain to a related, open and non-empty set.

On the other hand, the set of all possible outcomes of a given function is called the codomain of that function.

Definition

The domain of a function f:X→ → And{displaystyle f:Xto Y} defined as the whole X{displaystyle X} of all elements x{displaystyle x} for which the function f{displaystyle f} associates and{displaystyle and} belonging to the group And{displaystyle Y} of arrival, called codomain. This, formally written: is a fusion of all values

Df={x한 한 X:consuming consuming and한 한 And:f(x)=and!{displaystyle D_{f}={xin X:exists ;yin Y:f(x)=y}

Properties

Given two real functions:

f:: X1→ → Randg:: X2→ → R{displaystyle fcolon X_{1}to mathbb {R} ,qquad {mbox{y}quad gcolon X_{2}to mathbb {R} ,}

It has the following properties:

  1. D(f+g)=X1 X2{displaystyle D_{(f+g)}=X_{1}cap X_{2}}
  2. D(f− − g)=X1 X2{displaystyle D_{(f-g)}=X_{1}cap X_{2}}
  3. D(f⋅ ⋅ g)=X1 X2{displaystyle D_{(fcdot g)} =X_{1}cap X_{2}}}
  4. D(f/g)={x한 한 (X1 X2)日本語g(x)I was. I was. 0!{displaystyle D_{(f/g)}={xin (X_{1}cap X_{2})

Calculating the domain of a function

For the accurate calculation of the domain of a function, the concept of restriction must be introduced in the real field. These restrictions will help to identify the existence of the domain of a function. The most used are:

Logarithm of a function

Logarithms are not defined for negative numbers nor for zero, therefore any function contained within a logarithm must necessarily be strictly greater than zero. For example:

log (x2− − 9){displaystyle log(x^{2}-9)}

For the property mentioned above, it is observed that for this function to be well defined, necessarily 0}" xmlns="http://www.w3.org/1998/Math/MathML">x2− − 9▪0{displaystyle x^{2}-90}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29694fd232d0ef8a3e03fba9658eb9a7c2a7df8d" style="vertical-align: -0.505ex; width:10.648ex; height:2.843ex;"/>; clearing, two solutions are obtained 3}" xmlns="http://www.w3.org/1998/Math/MathML">x▪3{displaystyle x 2005}3}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca13c1461fe5c28b6ba92af1e60b99cde4a53648" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;"/> and <math alttext="{displaystyle xx.− − 3{displaystyle x vis-3}<img alt="{displaystyle x. The union of both solutions represents the domain of the function, which is defined as the set (-∞, -3) U (3, +∞).

Fractions

Other properties of mathematics can help to obtain the domain of a function and exclude points where it is not defined. For example, a function that has the form of a fraction will not be defined when the denominator is equal to zero.

Examples

Some domains of real functions of real variables:

f(x)=x2{displaystyle f(x)=x^{2},!} The domain of this function, as well as any polynomial and exponential function, is R{displaystyle mathbb {R} }.
f(x)=1x{displaystyle f(x)={frac {1}{x}}}}} The domain of this function is R− − {0!{displaystyle mathbb {R} -lbrace 0rbrace } since the function is not defined for x = 0.
f(x)=log (x){displaystyle f(x)=log(x),!} The domain of this function is (0,+∞ ∞ ){displaystyle (0,{+}infty)} since the logarithms are defined only for positive numbers.
f(x)=x{displaystyle f(x)={sqrt {x}}} The domain of this function is [chuckles]0,+∞ ∞ ){displaystyle lbrack 0,{+}infty}} because the index root to a negative number does not exist in the body of the real ones.

Contenido relacionado

Χ² distribution

In theory of probability and in statistics, the distribution ji to square distribution of Pearson or distribution χ χ 2{displaystyle chi ^{2}}) with k한...

Coefficient

Coefficient refers to several...

Princess of Asturias Award for Scientific and Technical Research

The Princess of Asturias Awards for Scientific and Technical Research have been awarded since 1981 to the person whose discoveries or research work represent...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save