Diagonal matrix
In linear algebra, one Diagonal matrix is a matrix whose elements outside the main diagonal are all zero; the term usually refers to square matrices. An example of a diagonal matrix of size 2× × 2{displaystyle 2times 2} That's it.
- [chuckles]3002]{displaystyle {begin{bmatrix}3 nightmare0\0 stranger2end{bmatrix}}}}
while an example of a size matrix 3× × 3{displaystyle 3times 3} That's it.
- [chuckles]600070004]{display {begin{bmatrix}6 fake0 dream0\ fake7 fake0 fake0 fake0end{bmatrix}}}}}
The identity matrix of any size or any multiple of it (a scalar matrix) is a diagonal matrix.
Definition
The matrix D=(di,j){displaystyle D=(d_{i,j})} with n{displaystyle n} columns and n{displaystyle n} it is diagonal if
- di,j=0Yeah.iI was. I was. jРусский Русский i,j한 한 {1,2,...... ,n!{displaystyle d_{i,j}=0;{mbox{si}}};ineq jquad forall ;i,jin {1,2,dotsn}}}
The elements of the main diagonal of the matrix D{displaystyle D} can take any value.
Every diagonal matrix is also a symmetric, triangular (upper and lower) and (if the entries come from the R or C) body matrix normal.
Vector operations
Multiplying a vector by a diagonal matrix involves multiplying each element of the vector by the corresponding element of the diagonal. Given a diagonal matrix D=diag (a1,...... ,an){displaystyle D=operatorname {diag},dotsa_{nn}}} and a vector v=[chuckles]x1 xn]T{displaystyle mathbf {v} ={begin{bmatrix}x_{1}{1}{cdots &x_{n}end{bmatrix}}}{{{T}}}}} the product is:
- Dv=diag (a1,...... ,an)[chuckles]x1 xn]=[chuckles]a1 an][chuckles]x1 xn]=[chuckles]a1x1 anxn]## ##############################################################################################################################################################################################################################################################
Matrix operations
The sum and multiplication operations between diagonal matrices are very simple. Consider two diagonal matrices of the same size D=diag (a1,...... ,an){displaystyle D=operatorname {diag},dotsa_{nn}}} and B=diag (b1,...... ,bn){displaystyle B=operatorname {diag} (b_{1},dotsb_{n}}}}.
For the sum of diagonal matrices we have
- D+B=diag (a1,...... ,an)+diag (b1,...... ,bn)=[chuckles]a1 an]+[chuckles]b1 bn]=[chuckles]a1+b1 bn+bn]=diag (a1+b1,...... ,an+bn){cHFFFFFF}{cHFFFFFF}{cHFFFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF00}{cHFFFFFFFFFFFF}{cHFFFFFFFF}{cHFFFFFFFFFFFF}{cHFFFFFFFFFFFFFF}{cHFFFFFFFFFFFFFFFF}{cH00}{cH00}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00}{cH00}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFFFF}{cH00}{cH00}{cH}{cH00}{cH00}{cH00}{c
y for the product of matrices,
- DB=diag (a1,...... ,an)⋅ ⋅ diag (b1,...... ,bn)=[chuckles]a1 an][chuckles]b1 bn]=[chuckles]a1b1 anbn]=diag (a1b1,...... ,anbn){cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{b}{cHFFFFFF}{b}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{b}{cH00FFFF}{cH00}{cHFFFFFFFFFFFFFFFF}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00}{cH00FFFFFFFFFF}{cH00}{cH00FFFF
The diagonal matrix D=diag (a1,...... ,an){displaystyle D=operatorname {diag},dotsa_{nn}}} is invertible if and only if the tickets a1,...... ,an{displaystyle a_{1},dotsa_{n}} They're all different than 0. In this case, you have
- D− − 1=diag (a1,...... ,an)− − 1=diag (a1− − 1,...... ,an− − 1){displaystyle D^{-1}=operatorname {diag} (a_{1},dotsa_{n})^{-1}=operatorname {diag} (a_{1}{1}{-1},dotsa_{n}^{-1}}}}}}
In particular, diagonal matrices form a ring of the matrices n× × n{displaystyle ntimes n}.
Multiply the matrix A{displaystyle A} for Left with diag (a1,...... ,an){displaystyle operatorname {diag} (a_{1},dotsa_{n})} equivalent to multiplying i{displaystyle i}-thousand row A{displaystyle A} for ai{displaystyle a_{i}} for everything i{displaystyle i}. Multiply the matrix A{displaystyle A} for Right. with diag (a1,...... ,an){displaystyle operatorname {diag} (a_{1},dotsa_{n})} equivalent to multiplying i{displaystyle i}-thousand column A{displaystyle A} for ai{displaystyle a_{i}} for everything i{displaystyle i}.
Properties
- The determining factor diag (a1,...... ,an){displaystyle operatorname {diag} (a_{1},dotsa_{n})} equals the product a1 an{displaystyle a_{1}cdots a_{n}}.
- The attachment of a diagonal matrix is also a diagonal matrix.
- Identity matrix In{displaystyle I_{n}} and the zero matrix are diagonal matrices.
- Self-value diag (a1,...... ,an){displaystyle operatorname {diag} (a_{1},dotsa_{n})} They are. a1,...... ,an{displaystyle a_{1},dotsa_{n}}.
- Vectors e1,...... ,en{displaystyle mathbf {e} _{1},dotsmathbf {e} _{n}} They form a self-voking base.
Uses
Diagonal matrices occur in many areas of linear algebra. Due to the simplicity of the operations on diagonal matrices and the computation of their determinant and their eigenvalues and eigenvectors, it is always desirable to represent a given matrix or linear transformation as a diagonal matrix.
In fact, a given n×n matrix is similar to a diagonal matrix if and only if it has n linearly independent eigenvectors. Such matrices are said to be diagonalizable.
In the field of real or complex numbers there are more properties: every normal matrix is similar to a diagonal matrix (see spectral theorem) and every matrix is equivalent to a diagonal matrix with non-negative entries.
Contenido relacionado
Multiplicative function
Taylor's theorem
Non-euclidean geometry