Christoffel symbols
In mathematics and physics, the Christoffel symbols, named after Elwin Bruno Christoffel (1829 - 1900), are expressions in spatial coordinates for the Levi-Civita connection derived from the metric tensor. Christoffel symbols are used whenever theoretical calculations involving geometry must be carried out, as they allow very complex calculations to be carried out without confusion. Conversely, the formal notation (without indices) for the Levi-Civita connection is elegant and allows theorems to be stated briefly, but is almost useless for practical calculations.
Preliminaries
The definitions given below are valid for Riemann manifolds and pseudo-Riemannian manifolds, such as those of general relativity, with careful distinction that must be made between upper and lower indices (counter- and covariant indices). Formulas work for any sign convention, unless explicitly stated otherwise.
Definition
The Christoffel symbols can be derived by canceling the covariant derivative of the metric tensor gi k:
Dlgik=▪ ▪ gik▪ ▪ xl− − gmkInterpreter Interpreter ilm− − gimInterpreter Interpreter klm=0{displaystyle D_{l}g_{ik}={frac {partial g_{ik}{}{partial x^{l}}}}}-g_{mk}Gamma _{il}{m}{m}{im}Gamma _{kl}{m}=0}
By swapping the indices, and in short, it can be fixed explicitly for the connection:
Interpreter Interpreter kli=12gim(▪ ▪ gmk▪ ▪ xl+▪ ▪ gml▪ ▪ xk− − ▪ ▪ gkl▪ ▪ xm)=12gim▪ ▪ gmk▪ ▪ xl+12gim▪ ▪ gml▪ ▪ xk− − 12gim▪ ▪ gkl▪ ▪ xm{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFFFF}{cHFFFFFFFF}{cHFFFFFF}{cHFFFF}{cHFFFF}{cHFFFFFFFFFF}{cHFFFFFFFFFFFFFF}{cH}{cH}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{c}{cHFFFFFFFFFFFFFFFFFFFFFFFF}{cH}{c}{cHFFFFFF}{cHFFFFFFFFFFFFFFFF}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{c}{cH00}{c}{cH}{cH00}{c}{cHFFFFFFFFFFFFFFFF
Notice that although the symbols have three indices on them, they are not tensors. They do not transform like tensors. Instead, they are the components of an object on the second tangent bundle, a "jet" bundle. See below for the transformation properties of the Christoffel symbols under change of coordinate base.
Note that most authors choose to define Christoffel symbols on a holonomic coordinate basis, which is the convention followed here. In non-holonomic coordinates, the Christoffel symbols take the more complex form:
- Interpreter Interpreter kli=12gim(▪ ▪ gmk▪ ▪ xl+▪ ▪ gml▪ ▪ xk− − ▪ ▪ gkl▪ ▪ xm+cmkl+cmlk− − cklm){displaystyle Gamma _{kl}^{i}={frac {1}{2}{im}left({frac {partial g_{mk}}{partial x{l}}}}}{frac} {partial g_{ml}{partial x{k}{c}{
where cklm=gmpcklp{displaystyle c_{klm}=g_{mp}{c_{kl}}}{p}} It's the switching coefficients of the base; that is,
- [chuckles]ek,el]=cklmem{displaystyle [e_{k},e_{l}]={c_{kl}}{m}
where ek are the basis vectors and [,] is the Lie bracket. An example of an anholonomic basis with non-trivial commutation coefficients are spherical and cylindrical coordinates.
The expressions below are valid only on a holonomic basis, unless otherwise stated.
Relation to indexless notation
Let X and Y be vector fields with the components Xi and Yk. Then the kth component of the covariant derivative of Y with respect to X is given by
(► ► XAnd)k=XiDiAndk=Xi(▪ ▪ Andk▪ ▪ xi+Interpreter Interpreter imkAndm){displaystyle left(nabla _{X}Yright)^{k}=X^{iD}_{i}Y^{k}=X^{i}left({frac {partial Y^{k}}{partial x^{i}}}}}{im}^{k}Y^{m}{right}}}}{.
Some old physics books occasionally write dx instead of X, and put it after the equation, rather than before. Here, the Einstein notation is used, the repeated indices establish the addition on those indices and the contraction with the metric tensor serves to raise and lower indices:
X,And =g(X,And)=XiAndi=gikXiAndk{displaystyle langle X,Yrangle =g(X,Y)=X^{i}Y_{i}=g_{ik}X^{i}Y^{k}}}.
Be aware that gikI was. I was. gik{displaystyle g_{ik}neq g^{ik}} and that gki=δ δ ki{displaystyle g_{k}{i}=delta _{k}^{i}}Kronecker delta. The convention is that the metric tensor is the one with the lower indices; the correct way to get gi k of gi k is to solve the linear equation gijgjk=δ δ ki{displaystyle g^{ij}g_{jk}=delta _{k}^{i}.
The statement that the connection is free of torsion to know that
► ► XAnd− − ► ► AndX=[chuckles]X,And]{displaystyle nabla _{X}Y-nabla _{Y}X=[X,Y]}
is equivalent to the statement that the Christoffel symbol is symmetric in the two lower indices:
Interpreter Interpreter jki=Interpreter Interpreter kji{displaystyle Gamma _{jk}^{i}=Gamma _{kj}^{i}}}.
The article on covariant derivative provides further discussion of the correspondence between notations with and without indices. By collapsing bound indices, we get
Interpreter Interpreter kii=12gim▪ ▪ gim▪ ▪ xk=12g▪ ▪ g▪ ▪ xk=▪ ▪ log 日本語g▪ ▪ xk{displaystyle Gamma _{ki}{i}{frac {1}{2}{2}{im}{frac {partial g_{im}}{partial x_{k}}}}{{frac {1}{2g}}{frac {frac}{partial g}{partial x{k}}}{{{frac}}{
Where |g| is the absolute value of the metric tensor determinant gi k. Similarly,
gklInterpreter Interpreter kli=− − 1日本語g▪ ▪ 日本語g日本語gik▪ ▪ xk{displaystyle g^{kl}Gamma _{kl}{frac}={frac {1}{sqrt {int}}}{;{frac {partial {sqrt {int}}{,g^{ik}}}{partial x^{k}}}}}}}{
The covariant derivative of a vector Vm is
DlVm=▪ ▪ Vm▪ ▪ xl+Interpreter Interpreter klmVk{displaystyle D_{l}V^{m}={frac {partial V^{m}{partial x^{l}}}}}{klGamma _{kl}{m}V^{k}}}
The covariant divergence is
DmVm=▪ ▪ Vm▪ ▪ xm+Vk▪ ▪ log 日本語g▪ ▪ xk=1日本語g▪ ▪ (Vm日本語g日本語)▪ ▪ xm{displaystyle D_{m}V^{m}={frac {partial V^{m}{partial x^{m}}}}{+V^{k}{frac {partial log} {sqrt}{g}}{{partial x^{k}}}{fracd}{csqpartial}{c}{b}{b}{f}}{b}{f}{f}{f}{f}{f}{f}}}{cd}{c)}{f}{f}{f}{f}}{cd}{cd}{f}{f}{f}}{cd}{cd}{cd}{f}{f}{f}{f}{f}{f}{f}{cd}}{cd}{f}}{c(.
The covariant derivative of a tensor Ai k is
DlAik=▪ ▪ Aik▪ ▪ xl+Interpreter Interpreter mliAmk+Interpreter Interpreter mlkAim{displaystyle D_{l}A^{ik}={frac {partial A^{ik}{partial x^{l}}}}}} +Gamma _{ml}{i}A^{mk}+Gamma _{ml^}{k}A^{im}}
If the tensor is antisymmetric, then its divergence simplifies to
DkAik=1日本語g▪ ▪ (Aik日本語g日本語)▪ ▪ xk{displaystyle D_{k}A^{ik}={frac {1}{sqrt {int}}}}{frac {partial (A^{ik}{sqrt {1}{sqrt}}}{partial x^{k}}}}}}}}{.
The contravariant derivative of a scalar field φ is called the gradient of φ. That is, the gradient is the differential with the index raised:
Diφ φ =gik▪ ▪ φ φ ▪ ▪ xk{displaystyle D^{i}phi =g^{ik}{frac {partial phi }{partial x^{k}}}}}}}}
The Laplacian of a scalar potential is given by
Δ Δ φ φ =1日本語g▪ ▪ ▪ ▪ xi(gik日本語g日本語▪ ▪ φ φ ▪ ▪ xk){displaystyle Delta phi ={frac {1}{sqrt {int}{sqrt}}{frac {partial }{partial x^{i}}}}}{left(g^{{ik}{sqrt {int}}{expendable}}{excual phi }{partal phi }{partial }{partial }}{partial x{partial x{partial x^{posal x^{b}}}}}}}}}}}}{right}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}{ex.
The Laplacian is the covariant divergence of the gradient, that is Δφ = Di D iφ.
Riemann curvature
The Riemann curvature tensor is given in terms of the Christoffel symbols and their derivatives by:
Riklm=12(▪ ▪ 2gim▪ ▪ xk▪ ▪ xl+▪ ▪ 2gkl▪ ▪ xi▪ ▪ xm− − ▪ ▪ 2gil▪ ▪ xk▪ ▪ xm− − ▪ ▪ 2gkm▪ ▪ xi▪ ▪ xl)+gnp(Interpreter Interpreter klnInterpreter Interpreter imp− − Interpreter Interpreter kmnInterpreter Interpreter ilp){cHFFFFFF}{cHFFFFFF}{cHFFFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFFFF}{cHFFFFFFFFFFFF}{cHFFFFFFFFFFFF}{cHFFFFFF}{cHFFFFFFFF}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{}{c}{cH00}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{c}{c}{c}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{}{}{cH00}{}{c}{c}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF.
The symmetries of the tensor are:
Riklm=Rlmik{displaystyle R_{iklm}=R_{lmik},} and Riklm=− − Rkilm=− − Rikml{displaystyle R_{iklm}=-R_{kilm}=-R_{ikml},}.
That is, it is symmetric in the exchange of the first and last pair of indices, and antisymmetric in the permutation of a pair.
The sum of the cyclic permutation is
Riklm+Rimkl+Rilmk=0{displaystyle R_{iklm}+R_{imkl}+R_{ilmk}=0,}
The identity of Bianchi is
DmRikln+DlRimkn+DkRilmn=0{displaystyle D_{m}R_{ikl}^{n}+D_{l}R_{imk}^{n}+D_{k}R_{ilm}^{n}=0}
Ricci curvature
The Ricci tensor is given by an indices contraction of the Riemann curvature tensor, explicitly contracting indices:
- Rik=glmRlimk{displaystyle R_{ik}=g^{lm}R_{limk},}
Using the formulas from the previous section and applying contraction, it can be seen that the Ricci tensor is given in terms of the Christoffel symbols by:
- Rik=▪ ▪ Interpreter Interpreter ikl▪ ▪ xl− − ▪ ▪ Interpreter Interpreter ill▪ ▪ xk+Interpreter Interpreter iklInterpreter Interpreter lmm− − Interpreter Interpreter ilmInterpreter Interpreter kml{displaystyle R_{ik}={frac {partial Gamma _{ik}{l}}}{partial x^{l}}}}}-{frac {partial Gamma _{il}{l}{l}{partial x^{k}}}}}}{Gamma _{l}{l{l}{x{l}{l}{x{l}{x{l}{m}{x{m}{x{x{x}{x}{x}{x{x}}}{x{x{x{x}}}}}}{x{x{x{x{x{x}}}}}}}}}{x{x{x{x{x{x{x}}}}}}}}}}}}}}}}}}{s}}{
- Rii=(▪ ▪ Interpreter Interpreter iil)▪ ▪ xl− − (▪ ▪ Interpreter Interpreter ill)▪ ▪ xi+Interpreter Interpreter iilInterpreter Interpreter lmm− − Interpreter Interpreter ilmInterpreter Interpreter iml{displaystyle R_{ii}={frac {left(partial Gamma _{ii^}{l}{right)}{partial x^{l}}{frac {left(partial Gamma}{il}{l}{l}{l}{l}{right)}{partial x^{i}}{Gamma _{
- Rii=(▪ ▪ Interpreter Interpreter iil)▪ ▪ xl− − (▪ ▪ Interpreter Interpreter ill)▪ ▪ xi+Interpreter Interpreter iilInterpreter Interpreter lll− − Interpreter Interpreter iiiInterpreter Interpreter iii{displaystyle R_{ii}={frac {left(partial Gamma _{ii^}{l}{right)}{partial x^{l}}{frac {left(partial Gamma}{l}{il^}{l}{l}{right)}{partial x^{i}}}{Gamma
- Rik=− − Interpreter Interpreter iikInterpreter Interpreter kki{displaystyle R_{ik}=-Gamma _{ii}{k}Gamma _{kk}{i}{i}}
This tensor is symmetrical: Rik=Rki{displaystyle R_{ik}=R_{ki}}}. If a last contraction is made on the two indexes of the Ricci tensor, you get the climbing curvature that is given by:
- R=gikRik{displaystyle R=g^{ik}R_{ik},}.
The covariant derivative of the scalar curvature follows from the Bianchi identity:
- DlRml=12▪ ▪ R▪ ▪ xm{displaystyle D_{l}R_{m}{l}={frac {1}{frac}}{frac {partial R}{partial x^{m}}}}}}}}}}{frac {partial R}{partial x^{m}}}}}}}}}}{.
Weyl tensor
The Weyl tensor is given by
Ciklm=Riklm+12(− − Rilgkm+Rimgkl+Rklgim− − Rkmgil)+16R(gilgkm− − gimgkl){displaystyle C_{iklm}=R_{iklm}+{frac {1{2}}}}left(-R_{il}g_{km}+R_{im}g_{kl}{kl}{kl}{x1}{x1}{1⁄2}{x1}{x1}{x1}{x1}{1}{x1}}{x1}}}}{x1⁄2}}}{x1⁄2}}}}}{x1⁄2}}}}{x1⁄2}}}}{x1⁄2}{x1⁄2}}{x1⁄2}}
Change of variables
Low variable change (x1,...,xn){displaystyle (x^{1},...x^{n}}} a (and1,...,andn){displaystyle (y^{1},...,y^{n}}, vectors are transformed as
- ▪ ▪ ▪ ▪ andi=▪ ▪ xk▪ ▪ andi▪ ▪ ▪ ▪ xk{displaystyle {frac {partial}{partial y^{i}}}}{frac {partial x^{k}{partial y^{i}}}{frac {partial }{partial }{partial x^{k}}}}}}
and therefore
- Interpreter Interpreter ijk! ! =▪ ▪ xp▪ ▪ andi▪ ▪ xq▪ ▪ andjInterpreter Interpreter pqr▪ ▪ andk▪ ▪ xr+▪ ▪ andk▪ ▪ xr▪ ▪ 2xr▪ ▪ andi▪ ▪ andj{displaystyle {overline {Gamma _{ij}{k}}={frac}{partial x^{p}{partial y^{i}{,{frac}{partial x^{q}}}{partial y{j}}}}{, Gamma _{pq}{,{cpartir}{
where the overline denotes Christoffel symbols in the framework coordinates (and1,...,andn){displaystyle (y^{1},...,y^{n}}.
Christoffel Symbols under General Coordinate Transformations (GCT's)
Christoffel symbols do not transform like tensors under general coordinate transformations (GCT's). However, the variation of the Christoffel symbols are tensors (δΓ).
Demonstration |
Interpreter Interpreter ! ! jki=12g! ! il(▪ ▪ g! ! jl▪ ▪ x! ! k+▪ ▪ g! ! lk▪ ▪ x! ! j− − ▪ ▪ g! ! kj▪ ▪ x! ! l){cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}{cHFFFFFF}}{cHFFFFFFFF}{cHFFFF}{cHFFFF}{cHFFFF}{cH}{cHFFFFFF}{cHFFFFFFFFFF}{cH}{cHFFFF}{cH}{cHFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF}{cH}{cH}{cH}{cHFFFFFFFFFFFF}{cHFFFFFFFFFFFFFFFF}}{cH00}{cH00}{cHFFFFFFFFFFFFFF}{c}{cH00}{cH00}{cH}{cH00}{cH00}{cH}{cH(1)
We develop the first member of the equation and then we only change indexes properly to get the second and third term ▪ ▪ g! ! jl▪ ▪ x! ! k=▪ ▪ ▪ ▪ x! ! k(▪ ▪ xs▪ ▪ x! ! j▪ ▪ xt▪ ▪ x! ! lgst)=▪ ▪ ▪ ▪ x! ! k(▪ ▪ xs▪ ▪ x! ! j▪ ▪ xt▪ ▪ x! ! l)gst+▪ ▪ xs▪ ▪ x! ! j▪ ▪ xt▪ ▪ x! ! l▪ ▪ gst▪ ▪ x! ! k=▪ ▪ ▪ ▪ x! ! k(▪ ▪ xs▪ ▪ x! ! j)▪ ▪ xt▪ ▪ x! ! lgst+▪ ▪ xs▪ ▪ x! ! j▪ ▪ ▪ ▪ x! ! k(▪ ▪ xt▪ ▪ x! ! l)gst+▪ ▪ xs▪ ▪ x! ! j▪ ▪ xt▪ ▪ x! ! l▪ ▪ xr▪ ▪ x! ! k▪ ▪ gst▪ ▪ xr=▪ ▪ 2xs▪ ▪ x! ! k▪ ▪ x! ! j▪ ▪ xt▪ ▪ x! ! lgst+▪ ▪ xs▪ ▪ x! ! j▪ ▪ 2xt▪ ▪ x! ! k▪ ▪ x! ! lgst+▪ ▪ xs▪ ▪ x! ! j▪ ▪ xt▪ ▪ x! ! l▪ ▪ xr▪ ▪ x! ! k▪ ▪ gst▪ ▪ xr♪ |
Contenido relacionado
Olga Ladyzhenskaya
Groupoid
Cx