Central moment

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar

In statistics central moment or focused of order k{displaystyle k} of a random variable X{displaystyle X} is mathematical hope E [chuckles](X− − E[chuckles]X])k]{displaystyle operatorname {E} [X-E[X])^{k}}}} where E{displaystyle operatorname {E} } is the operator of hope. If a random variable has no mean the central moment is indefinite. It can also be defined as:

μ μ k=E [chuckles](X− − E [chuckles]X])k]=∫ ∫ − − ∞ ∞ +∞ ∞ (x− − μ μ )kf(x)dx.{displaystyle mu _{k}=operatorname {E} left[(X-operatorname {E} [X])^{k}right]=int _{-infty }^{+infty }(x-mu)^{k}f(x),dx. !

Usually the Greek letter for central moment is μ. The first central moment is zero and the second is called the variance (σ²) where σ is the standard deviation. The third and fourth central moments serve to define the standard moments called skewness and kurtosis.

The formulas for the centered and uncentered moments can be obtained from the expectation formula. If we develop it, we obtain that the uncentered moments are:

Order 0: E[chuckles]x0]=1{displaystyle E[x^{0}]=1}

Order 1: E[chuckles]x]=␡ ␡ ixin=m=α α {displaystyle E[x]={frac {sum _{i}x_{i}}{n}}}{m=alpha }

Order 2: E[chuckles]x2]=␡ ␡ ixi2n=α α 2{displaystyle E[x^{2}]={frac {sum _{i}x_{i}{i}{2}{n}}}{alpha _{2}}}}

Order 3: E[chuckles]x3]=␡ ␡ ixi3n=α α 3{displaystyle E[x^{3}]={frac {sum _{i}x_{i}{i}{3}{n}}}{alpha _{3}}}}

Order 4: E[chuckles]x4]=␡ ␡ ixi4n=α α 4{displaystyle E[x^{4}]={frac {sum _{i}x_{i}{i}{4}{n}}}{alpha _{4}}}}

While the centered ones are:

Order 0: E[chuckles](x− − m)0]=1{displaystyle E[(x-m)^{0}]=1}

Order 1: E[chuckles](x− − m)]=α α − − α α =0{displaystyle E[(x-m)]=alpha -alpha =0}

Order 2: E[chuckles](x− − m)2]=α α 2− − α α 2=σ σ 2=μ μ 2{displaystyle E[(x-m)^{2}]=alpha _{2}-alpha ^{2}=sigma ^{2}=mu _{2}}}}}}

Order 3: E[chuckles](x− − m)3]=α α 3− − 3α α α α 2+2α α 3=μ μ 3{displaystyle E[(x-m)^{3}]=alpha _{3}-3alpha alpha _{2}+2alpha ^{3}=mu _{3}}}}}}

Order 4: E[chuckles](x− − m)4]=α α 4− − 4α α α α 3+6α α 2α α 2− − 3α α 4=μ μ 4{displaystyle E[(x-m)^{4}]=alpha _{4}-4alpha alpha _{3}+6alpha ^{2}alpha _{2}-3alpha ^{4}=mu _{4}}}}

Contenido relacionado

Reductio ad absurdum

Reductio ad absurdum, a Latin expression that literally means 'reduction to absurdity', is one of the logical methods of proof most used in...

Harmonic number

In mathematics, the nth harmonic number is defined as the sum of the reciprocals of the first n natural...

Einstein field equations

In physics, Einstein's field equations, Einstein equations or Einstein-Hilbert equations are a set of ten equations from Albert Einstein's theory of general...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save