Annex: Mathematical constants

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar

The following is an addendum about mathematical constants.

Mathematical constants and functions

The structure of the table is as follows:

  • Value numerical of the constant and link to MathWorld or OEIS Wiki.
  • LaTeX: Formula or series in the TeX format.
  • Formula: To use in Wolfram Alpha. If in the calculations, ∞ takes a long time, it can be changed by 20000, to obtain an approximate result.
  • OEIS: On-Line Encyclopedia of Integer Sequences.
  • Continuous fracture: In the simple format [Full part; frac1, frac2, frac3,...] suprarayed if it's periodic.
  • Year: From the discovery of the constant, or data of the author.
  • Web format: Constant value, in format suitable for web search engines.
  • N.o: Number Type
    • R - Rational
    • I - Irrational
    • A - Algebraic
    • T - Transcendental
    • C - Complex
(The table can be ordered ascendant or descendant, by any of the fields, but press in the heading titles.)
Constantes y funciones matemáticas
Valor Nombre Gráfico Símbolo LaTeX Fórmula N.º OEIS Fracción continua Año Formato web
0,88622 69254 52758 01364 ​ Factorial de
un medio​
.5 ! {displaystyle {.5},!} Γ ( 3 2 ) = 1 2 π = ∫ 0 ∞ x 1 / 2 e − x d x {displaystyle Gamma left({tfrac {3}{2}}right),={tfrac {1}{2}}{sqrt {pi }},=int _{0}^{infty }x^{1/2}e^{-x}dx} sqrt(Pi)/2 A019704 [0;1,7,1,3,1,2,1,57,6,1,3,1,37,3,41,1,10,2,1,1,...] 0.88622692545275801364908374167057259
0,74048 04896 93061 04116 ​ Constante de Hermite Empaquetamiento óptimo de esferas 3D Conjetura de Kepler ​ Pyramid of 35 spheres animation large.gif μ K {displaystyle {mu _{_{K}}}} π 3 2 . . . . {displaystyle {frac {pi }{3{sqrt {2}}}}{color {white}....color {black}}} Después de 400 años, Thomas Hales demostró en 2014 con El Proyecto Flyspeck, que la Conjetura de Kepler era cierta. ​ pi/(3 sqrt(2)) A093825 [0;1,2,1,5,1,4,2,2,1,1,2,2,2,6,1,1,1,5,2,1,1,1,...] 1611 0.74048048969306104116931349834344894
1,60669 51524 15291 76378 ​ Constante de Erdős–Borwein​​


E B {displaystyle {E}_{,B}} m = 1 ∞ n = 1 ∞ 1 2 m n = ∑ n = 1 ∞ 1 2 n − 1 = 1 1 + 1 3 + 1 7 + 1 15 + . . . {displaystyle sum _{m=1}^{infty }sum _{n=1}^{infty }{frac {1}{2^{mn}}}=sum _{n=1}^{infty }{frac {1}{2^{n}-1}}={frac {1}{1}}!+!{frac {1}{3}}!+!{frac {1}{7}}!+!{frac {1}{15}}!+!...} sum[n=1 to ∞]
{1/(2^n-1)}
I A065442 [1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,6,1,2,...] 1949 1.60669515241529176378330152319092458
0,07077 60393 11528 80353

-0,68400 03894 37932 129 i

Constante MKB
··
M I {displaystyle M_{I}} lim n → 1 2 n ( − 1 ) x x x d x = ∫ 1 2 n e i π x x 1 / x d x {displaystyle lim _{nrightarrow infty }int _{1}^{2n}(-1)^{x}~{sqrt[{x}]{x}}~dx=int _{1}^{2n}e^{ipi x}~x^{1/x}~dx} lim_(2n->∞) int[1 to 2n]
{exp(i*Pi*x)*x^(1/x) dx}
C A255727
A255728
[0;14,7,1,2,1,23,2,1,8,16,1,1,3,1,26,1,6,1,1,...]
- [0;1,2,6,13,41,112,1,25,1,1,1,1,3,13,2,1,...] i
2009 0.07077603931152880353952802183028200
-0.68400038943793212918274445999266 i
3,05940 74053 42576 14453 ​ ​ Constante
Doble factorial
Double factorial.PNG C n ! ! {displaystyle {C_{_{n!!}}}} n = 0 ∞ 1 n ! ! = e [ 1 2 + γ ( 1 2 , 1 2 ) ] {displaystyle sum _{n=0}^{infty }{frac {1}{n!!}}={sqrt {e}}left[{frac {1}{sqrt {2}}}+gamma ({tfrac {1}{2}},{tfrac {1}{2}})right]} Sum[n=0 to ∞]{1/n!!} A143280 [3;16,1,4,1,66,10,1,1,1,1,2,5,1,2,1,1,1,1,1,2,...] 3.05940740534257614453947549923327861
0,62481 05338 43826 58687
+ 1,30024 25902 20120 419 i
Fracción continua generalizada de i F C G ( i ) {displaystyle {{F}_{CG}}_{(i)}} i + i i + i i + i i + i i + i i + i i + i / . . . = 17 − 1 8 + i ( 1 2 + 2 17 − 1 ) {displaystyle textstyle i{+}{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+i{/...}}}}}}}}}}}}}={sqrt {frac {{sqrt {17}}-1}{8}}}+ileft({tfrac {1}{2}}{+}{sqrt {frac {2}{{sqrt {17}}-1}}}right)} i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(
...)))))))))))))))))))))
C A A156590

A156548
[i;1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,..]
= [0;1,i]
0.62481053384382658687960444744285144
+ 1.30024259022012041915890982074952 i
0,91893 85332 04672 74178 ​ Fórmula de Raabe ​


ζ ′ ( 0 ) {displaystyle {zeta '(0)}} a a + 1 log ⁡ Γ ( t ) d t = 1 2 log ⁡ 2 π + a log ⁡ a − a , a ≥ 0 {displaystyle int limits _{a}^{a+1}log Gamma (t),mathrm {d} t={tfrac {1}{2}}log 2pi +alog a-a,quad ageq 0} integral_a^(a+1) {log(Gamma(x))+a-a log(a)} dx A075700 [0;1,11,2,1,36,1,1,3,3,5,3,1,18,2,1,1,2,2,1,1,...] 0.91893853320467274178032973640561763
0,42215 77331 15826 62702 ​ Volumen del Tetraedro de Reuleaux ​ ReuleauxTetrahedron Animation.gif V R {displaystyle {V_{_{R}}}} s 3 12 ( 3 2 − 49 π + 162 arctan ⁡ 2 ) {displaystyle {frac {s^{3}}{12}}(3{sqrt {2}}-49,pi +162,arctan {sqrt {2}})} (3*Sqrt[2] - 49*Pi + 162*ArcTan[Sqrt[2]])/12 A102888 [0;2,2,1,2,2,7,4,4,287,1,6,1,2,1,8,5,1,1,1,1,...] 0.42215773311582662702336591662385075
1,17628 08182 59917 50654 ​ Constante de Salem, conjetura de Lehmer ​


σ 10 {displaystyle {sigma _{_{10}}}} x 10 + x 9 − x 7 − x 6 − x 5 − x 4 − x 3 + x + 1 {displaystyle x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1} x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1 A A073011 [1;5,1,2,17,1,7,2,1,1,2,4,7,2,2,1,1,15,1,1,... 1983? 1.17628081825991750654407033847403505
2,39996 32297 28653 32223 ​
Radianes
Ángulo áureo ​ Golden Angle.svgSunflower.svg b {displaystyle {b}} ( 4 − 2 Φ ) π = ( 3 − 5 ) π {displaystyle (4-2,Phi),pi =(3-{sqrt {5}}),pi } = 137.507764050037854646...° (4-2*Phi)*Pi T A131988 [2;2,1,1,1087,4,4,120,2,1,1,2,1,1,7,7,2,11,...] 1907 2.39996322972865332223155550663361385
1,26408 47353 05301 11307 ​ Constante de Vardi ​


V c {displaystyle {V_{c}}} 3 2 ∏ n ≥ 1 ( 1 + 1 ( 2 e n − 1 ) 2 ) 1 / 2 n + 1 {displaystyle {frac {sqrt {3}}{sqrt {2}}}prod _{ngeq 1}left(1+{1 over (2e_{n}-1)^{2}}right)^{!1/2^{n+1}}} A076393 [1;3,1,3,1,2,5,54,7,1,2,1,2,3,15,1,2,1,1,2,1,...] 1991 1.26408473530530111307959958416466949
1,5065918849 ± 0,0000000028 Área del fractal de Mandelbrot ​ Mandelbrot sequence new.gif γ {displaystyle gamma } Se conjetura que el valor exacto es: 6 π 1 − e {displaystyle {sqrt {6pi -1}}-e} = 1,506591651... A098403 [1;1,1,37,2,2,1,10,1,1,2,2,4,1,1,1,1,5,4,...] 1912 1.50659177 +/- 0.00000008

1,61111 49258 08376 736
111•••111 27224 36828 ​
183213 unos
Constante
Factorial exponencial
S E f {displaystyle {S_{Ef}}} n = 1 ∞ 1 n ( n − 1 ) ⋅ 2 1 = 1 + 1 2 1 + 1 3 2 1 + 1 4 3 2 1 + 1 5 4 3 2 1 + ⋯ {displaystyle sum _{n=1}^{infty }{frac {1}{n^{(n{-}1)^{cdot ^{cdot ^{cdot ^{2^{1}}}}}}}}=1{+}{frac {1}{2^{1}}}{+}{frac {1}{3^{2^{1}}}}+{frac {1}{4^{3^{2^{1}}}}}+{frac {1}{5^{4^{3^{2^{1}}}}}}{+}cdots } T A080219 [1; 1, 1, 1, 1, 2, 1, 808, 2, 1, 2, 1, 14,...] 1.61111492580837673611111111111111111
0,31813 15052 04764 13531

±1,33723 57014 30689 40 i

Punto fijo
Super-logaritmo ​·
Slogez01.jpg W ( − 1 ) {displaystyle {-W(-1)}} lim n → {displaystyle lim _{nrightarrow infty }} f ( x ) = log ⁡ ( log ⁡ ( log ⁡ ( log ⁡ ( ⋯ log ⁡ ( log ⁡ ( x ) ) ) ) ) ) ⏟ log s ⁡ anidados n veces {displaystyle f(x)=underbrace {log(log(log(log(cdots log(log(x)))))),!} atop {log _{s}{text{ anidados n veces}}}}

Para un valor inicial de x distinto a 0, 1, e, e^e, e^(e^e), etc.

-W(-1)
Donde W=ProductLog
Lambert W function
C A059526
A059527
[-i;1 +2i,1+i,6-i,1+2i,-7+3i,2i,2,1-2i,-1+i,-,...] 0.31813150520476413531265425158766451
-1.33723570143068940890116214319371 i
1,09317 04591 95490 89396 ​ Constante de Smarandache 1.ª ​ S 1 {displaystyle {S_{1}}} n = 2 ∞ 1 μ ( n ) ! . . . . {displaystyle sum _{n=2}^{infty }{frac {1}{mu (n)!}}{color {white}....color {black}}} La función Kempner μ(n) se define como sigue:

μ(n) es el número más pequeño por el que μ(n)! es divisible por n

A048799 [1;10,1,2,1,2,1,13,3,1,6,1,2,11,4,6,2,15,1,1,...] 1.09317045919549089396820137014520832
1,64218 84352 22121 13687 ​ Constante de Lebesgue L2 ​


L 2 {displaystyle {L2}} 1 5 + 25 − 2 5 π = 1 π 0 π | sin ⁡ ( 5 t 2 ) | sin ⁡ ( t 2 ) d t {displaystyle {frac {1}{5}}+{frac {sqrt {25-2{sqrt {5}}}}{pi }}={frac {1}{pi }}int _{0}^{pi }{frac {left|sin({frac {5t}{2}})right|}{sin({frac {t}{2}})}},dt} 1/5 + sqrt(25 -
2*sqrt(5))/Pi
T A226655 [1;1,1,1,3,1,6,1,5,2,2,3,1,2,7,1,3,5,2,2,1,1,...] 1910 1.64218843522212113687362798892294034
0,82699 33431 32688 07426 ​ Disk Covering ​ COVER5.gif C 5 {displaystyle {C_{5}}} 1 ∑ n = 0 ∞ 1 ( 3 n + 2 2 ) = 3 3 2 π {displaystyle {frac {1}{sum _{n=0}^{infty }{frac {1}{binom {3n+2}{2}}}}}={frac {3{sqrt {3}}}{2pi }}} 3 Sqrt[3]/(2 Pi) T A086089 [0;1,4,1,3,1,1,4,1,2,2,1,1,7,1,4,4,2,1,1,1,1,...] 1939
1949
0.82699334313268807426698974746945416
1,78723 16501 82965 93301 ​ Constante de Komornik–Loreti ​


q {displaystyle {q}} 1 = ∑ n = 1 ∞ t k q k Raiz real de ∏ n = 0 ∞ ( 1 − 1 q 2 n ) + q − 2 q − 1 = 0 {displaystyle 1=!sum _{n=1}^{infty }{frac {t_{k}}{q^{k}}}qquad scriptstyle {text{Raiz real de}}displaystyle prod _{n=0}^{infty }!left(!1{-}{frac {1}{q^{2^{n}}}}!right)!{+}{frac {q{-}2}{q{-}1}}=0}

t k = Sucesión de Thue-Morse

FindRoot[(prod[n=0
to ∞] {1-1/(x^2^n)}+
(x-2)/(x-1))= 0, {x, 1.7}, WorkingPrecision->30]
T A055060 [1;1,3,1,2,3,188,1,12,1,1,22,33,1,10,1,1,7,...] 1998 1.78723165018296593301327489033700839
0,59017 02995 08048 11302 ​ Constante de Chebyshev ​ ·



λ C h {displaystyle {lambda _{Ch}}} Γ ( 1 4 ) 2 4 π 3 / 2 = 4 ( 1 4 ! ) 2 π 3 / 2 {displaystyle {frac {Gamma ({tfrac {1}{4}})^{2}}{4pi ^{3/2}}}={frac {4({tfrac {1}{4}}!)^{2}}{pi ^{3/2}}}} (Gamma(1/4)^2)
/(4 pi^(3/2))
A249205 [0;1,1,2,3,1,2,41,1,6,5,124,5,2,2,1,1,6,1,2,...] 0.59017029950804811302266897027924429
0,52382 25713 89864 40645 ​ Función Chi
Coseno hiperbólico integral
Chi function.png C h i ( ) {displaystyle {operatorname {Chi()} }}
γ + ∫ 0 x cosh ⁡ t − 1 t d t {displaystyle gamma +int _{0}^{x}{frac {cosh t-1}{t}},dt}

γ = Constante de Euler–Mascheroni = 0,5772156649... {displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}}

Chi(x) A133746 [0;1,1,9,1,172,1,7,1,11,1,1,2,1,8,1,1,1,1,1,...] 0.52382257138986440645095829438325566
0,62432 99885 43550 87099 ​ Constante de Golomb–Dickman​



λ {displaystyle {lambda }} 0 ∞ f ( x ) x 2 d x P a r a x > 2 = ∫ 0 1 e L i ( n ) d n Li = Integral logarítmica {displaystyle int limits _{0}^{infty }{underset {Para;x>2}{{frac {f(x)}{x^{2}}}dx}}=int limits _{0}^{1}e^{Li(n)}dnquad scriptstyle {text{Li = Integral logarítmica}}} N[Int{n,0,1}[e^Li(n)],34] A084945 [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] 1930
y
1964
0.62432998854355087099293638310083724
0,98770 03907 36053 46013 ​ Área delimitada por la
rotación excéntrica del
Triángulo de Reuleaux ​
Rotation of Reuleaux triangle.gif T R {displaystyle {mathcal {T}}_{R}} a 2 ⋅ ( 2 3 + π 6 − 3 ) {displaystyle a^{2}cdot left(2{sqrt {3}}+{frac {pi }{6}}-3right)} donde a= lado del cuadrado 2 sqrt(3)+pi/6-3 T A066666 [0;1,80,3,3,2,1,1,1,4,2,2,1,1,1,8,1,2,10,1,2,...] 1914 0.98770039073605346013199991355832854
0,70444 22009 99165 59273 Constante Carefree2



C 2 {displaystyle {mathcal {C}}_{2}} n = 1 ∞ ( 1 − 1 p n ( p n + 1 ) ) p n : p r i m o {displaystyle {underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1-{frac {1}{p_{n}(p_{n}+1)}}right)}}} N[prod[n=1 to ∞]
{1 - 1/(prime(n)*
(prime(n)+1))}]
A065463 [0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...] 0.70444220099916559273660335032663721
1,84775 90650 22573 51225 ​ Constante camino auto-evitante en red hexagonal ​ · HEX-LATTICE-20.gif μ {displaystyle {mu }} 2 + 2 = lim n → c n 1 / n {displaystyle {sqrt {2+{sqrt {2}}}};=lim _{nrightarrow infty }c_{n}^{1/n}}

La menor raíz real de : x 4 − 4 x 2 + 2 = 0 {displaystyle:;x^{4}-4x^{2}+2=0}

sqrt(2+sqrt(2)) A A179260 [1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...] 1.84775906502257351225636637879357657
0,19452 80494 65325 11361 ​ 2ª Constante Du Bois Reymond ​


C 2 {displaystyle {C_{2}}} e 2 − 7 2 = ∫ 0 ∞ | d d t ( sin ⁡ t t ) n | d t − 1 {displaystyle {frac {e^{2}-7}{2}}=int _{0}^{infty }left|{{frac {d}{dt}}left({frac {sin t}{t}}right)^{n}}right|,dt-1} (e^2-7)/2 T A062546 [0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...]
= [0;2p+3], p∈ℕ
0.19452804946532511361521373028750390
2,59807 62113 53315 94029 ​ Área de un hexágono
de lado unitario ​
Esagono.png A 6 {displaystyle {mathcal {A}}_{6}} 3 3 2 l 2 {displaystyle {frac {3{sqrt {3}}}{2}},l^{2}} 3 sqrt(3)/2 A A104956 [2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...]
[2;1,1,2,20,2,1,1,4]
2.59807621135331594029116951225880855
1,78657 64593 65922 46345 ​ Constante de
Silverman ​




S m {displaystyle {{mathcal {S}}_{_{m}}}} n = 1 ∞ 1 ϕ ( n ) σ 1 ( n ) = ∏ n = 1 ∞ ( 1 + ∑ k = 1 ∞ 1 p n 2 k − p n k − 1 ) p n : p r i m o {displaystyle sum _{n=1}^{infty }{frac {1}{phi (n)sigma _{1}(n)}}={underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1+sum _{k=1}^{infty }{frac {1}{p_{n}^{2k}-p_{n}^{k-1}}}right)}}}
ø() = Función totien de Euler, σ1() = Función divisor.
Sum[n=1 to ∞]
{1/[EulerPhi(n)
DivisorSigma(1,n)]}
A093827 [1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...] 1.78657645936592246345859047554131575
1,46099 84862 06318 35815 ​ Constante
cuatro-colores
de Baxter ​
Mapamundi World map with four colours.svg Coloreado 4C C 2 {displaystyle {mathcal {C}}^{2}} n = 1 ∞ ( 3 n − 1 ) 2 ( 3 n − 2 ) ( 3 n ) = 3 4 π 2 Γ ( 1 3 ) 3 {displaystyle prod _{n=1}^{infty }{frac {(3n-1)^{2}}{(3n-2)(3n)}}={frac {3}{4pi ^{2}}},Gamma left({frac {1}{3}}right)^{3}} Γ() = Función Gamma 3×Gamma(1/3)
^3/(4 pi^2)
A224273 [1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...] 1970 1.46099848620631835815887311784605969
0,66131 70494 69622 33528 ​ Constante de
Feller-Tornier ​




C F T {displaystyle {{mathcal {C}}_{_{FT}}}} 1 2 ∏ n = 1 ∞ ( 1 − 2 p n 2 ) + 1 2 p n : p r i m o = 3 π 2 ∏ n = 1 ∞ ( 1 − 1 p n 2 − 1 ) + 1 2 {displaystyle {underset {p_{n}:,{primo}}{{frac {1}{2}}prod _{n=1}^{infty }left(1-{frac {2}{p_{n}^{2}}}right){+}{frac {1}{2}}}}={frac {3}{pi ^{2}}}prod _{n=1}^{infty }left(1-{frac {1}{p_{n}^{2}-1}}right){+}{frac {1}{2}}} [prod[n=1 to ∞]
{1-2/prime(n)^2}]
/2 + 1/2
T ? A065493 [0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...] 1932 0.66131704946962233528976584627411853
1,92756 19754 82925 30426 ​ Constante Tetranacci

T {displaystyle {mathcal {T}}} La mayor raíz real de : x 4 − x 3 − x 2 − x − 1 = 0 {displaystyle:;;x^{4}-x^{3}-x^{2}-x-1=0} Root[x+x^-4-2=0] A A086088 [1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...] 1.92756197548292530426190586173662216
1,00743 47568 84279 37609 ​ Constante DeVicci's Teseracto 8-cell-orig.gif f ( 3 , 4 ) {displaystyle {f_{(3,4)}}} Arista del mayor cubo, dentro de un hipercubo unitario 4D.

La menor raíz real de : 4 x 4 − 28 x 3 − 7 x 2 + 16 x + 16 = 0 {displaystyle:;;4x^{4}{-}28x^{3}{-}7x^{2}{+}16x{+}16=0}

Root[4*x^8-28*x^6
-7*x^4+16*x^2+16
=0]
A A243309 [1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...] 1.00743475688427937609825359523109914
0,15915 49430 91895 33576 ​ Constante A de Plouffe ​


A {displaystyle {A}} 1 2 π {displaystyle {frac {1}{2pi }}} 1/(2 pi) T A086201 [0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...] 0.15915494309189533576888376337251436
0,41245 40336 40107 59778 ​ Constante de Thue-Morse ​ Thue-MorseRecurrence.gif τ {displaystyle tau } n = 0 ∞ t n 2 n + 1 {displaystyle sum _{n=0}^{infty }{frac {t_{n}}{2^{n+1}}}} donde t n {displaystyle {t_{n}}} es la secuencia Thue–Morse y

donde τ ( x ) = ∑ n = 0 ∞ ( − 1 ) t n x n = ∏ n = 0 ∞ ( 1 − x 2 n ) {displaystyle tau (x)=sum _{n=0}^{infty }(-1)^{t_{n}},x^{n}=prod _{n=0}^{infty }(1-x^{2^{n}})}

T A014571 [0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...] 0.41245403364010759778336136825845528
0,58057 75582 04892 40229 ​ Constante de Pell​


P P e l l {displaystyle {{mathcal {P}}_{_{Pell}}}} 1 − n = 0 ∞ ( 1 − 1 2 2 n + 1 ) {displaystyle 1-prod _{n=0}^{infty }left(1-{frac {1}{2^{2n+1}}}right)} N[1-prod[n=0 to ∞]
{1-1/(2^(2n+1)}]
T ? A141848 [0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...] 0.58057755820489240229004389229702574
2,20741 60991 62477 96230 ​ Problema moviendo el sofá de Hammersley ​ Hammersley sofa animated.gif S H {displaystyle {S_{_{H}}}} π 2 + 2 π {displaystyle {frac {pi }{2}}+{frac {2}{pi }},} ¿Cuál es el área más grande de una forma, que pueda ser maniobrada en un pasillo en forma de L y tenga de ancho la unidad ? pi/2 + 2/pi T A086118 [2;4,1,4,1,1,2,5,1,11,1,1,5,1,6,1,3,1,1,1,1,7,...] 1967 2.20741609916247796230685674512980889
1,15470 05383 79251 52901 ​ Constante de Hermite ​ γ 2 {displaystyle gamma _{_{2}}} 2 3 = 1 cos ( π 6 ) {displaystyle {frac {2}{sqrt {3}}}={frac {1}{cos ,({frac {pi }{6}})}}} 2/sqrt(3) A 1+
A246724
[1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...]
[1;6,2]
1.15470053837925152901829756100391491
0,63092 97535 71457 43709 ​ Dimensión fractal del Conjunto de Cantor ​ Cantor5.svg d f ( k ) {displaystyle d_{f}(k)} lim ε 0 log ⁡ N ( ε ) log ⁡ ( 1 / ε ) = log ⁡ 2 log ⁡ 3 {displaystyle lim _{varepsilon to 0}{frac {log N(varepsilon)}{log(1/varepsilon)}}={frac {log 2}{log 3}}} log(2)/log(3)
N[3^x=2]
T A102525 [0;1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 0.63092975357145743709952711434276085
0,17150 04931 41536 06586 ​ Constante
Hall-Montgomery ​
δ 0 {displaystyle {{delta }_{_{0}}}} 1 + π 2 6 + 2 L i 2 ( − e ) L i 2 = Integral dilogarítmica {displaystyle 1+{frac {pi ^{2}}{6}}+2;mathrm {Li} _{2}left(-{sqrt {e}};right)quad mathrm {Li} _{2},scriptstyle {text{= Integral dilogarítmica}}} 1 + Pi^2/6 + 2*PolyLog[2, -Sqrt[E]] A143301 [0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...] 0.17150049314153606586043997155521210
1,55138 75245 48320 39226 ​ Constante
Triángulo Calabi ​
Calabi triangle.svg C C R {displaystyle {C_{_{CR}}}} 1 3 + ( − 23 + 3 i 237 ) 1 3 3 ⋅ 2 2 3 + 11 3 ( 2 ( − 23 + 3 i 237 ) ) 1 3 {displaystyle {1 over 3}+{(-23+3i{sqrt {237}})^{tfrac {1}{3}} over 3cdot 2^{tfrac {2}{3}}}+{11 over 3(2(-23+3i{sqrt {237}}))^{tfrac {1}{3}}}} FindRoot[
2x^3-2x^2-3x+2
==0, {x, 1.5},
WorkingPrecision->40]
A A046095 [1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...] 1946 ~ 1.55138752454832039226195251026462381
0,97027 01143 92033 92574 ​ Constante de Lochs ​


£ L o {displaystyle {{text{£}}_{_{Lo}}}} 6 ln ⁡ 2 ln ⁡ 10 π 2 {displaystyle {frac {6ln 2ln 10}{pi ^{2}}}} 6*ln(2)*ln(10)/Pi^2 A086819 [0;1,32,1,1,1,2,1,46,7,2,7,10,8,1,71,1,37,1,1,...] 1964 0.97027011439203392574025601921001083
1,30568 67 ≈ ​ Dimensión fractal del círculo de Apolonio ​ ApollonianGasket-15 32 32 33.svg
ε {displaystyle varepsilon }
A052483 [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 1.3056867 ≈
0,00131 76411 54853 17810 ​ Constante de Heath-Brown–Moroz​ C H B M {displaystyle {C_{_{HBM}}}} n = 1 ∞ ( 1 − 1 p n ) 7 ( 1 + 7 p n + 1 p n 2 ) p n : p r i m o {displaystyle {underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1-{frac {1}{p_{n}}}right)^{7}left(1+{frac {7p_{n}+1}{p_{n}^{2}}}right)}}} N[prod[n=1 to ∞]
{((1-1/prime(n))^7)
*(1+(7*prime(n)+1)
/(prime(n)^2))}]
T ? A118228 [0;758,1,13,1,2,3,56,8,1,1,1,1,1,143,1,1,1,2,...] 0.00131764115485317810981735232251358
0,14758 36176 50433 27417 ​ Constante gamma de Plouffe ​ Trigo-arctan-animation.gif C {displaystyle {C}} 1 π arctan ⁡ 1 2 = 1 π n = 0 ∞ ( − 1 ) n ( 2 2 n + 1 ) ( 2 n + 1 ) {displaystyle {frac {1}{pi }}arctan {frac {1}{2}}={frac {1}{pi }}sum _{n=0}^{infty }{frac {(-1)^{n}}{(2^{2n+1})(2n+1)}}}
= 1 π ( 1 2 − 1 3 ⋅ 2 3 + 1 5 ⋅ 2 5 − 1 7 ⋅ 2 7 + ⋯ ) {displaystyle ={frac {1}{pi }}left({frac {1}{2}}-{frac {1}{3cdot 2^{3}}}+{frac {1}{5cdot 2^{5}}}-{frac {1}{7cdot 2^{7}}}+cdots right)}
Arctan(1/2)/Pi T A086203 [0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...] 0.14758361765043327417540107622474052
0,70523 01717 91800 96514 ​ Constante Primorial
Suma de productos de inverso de primos
P # {displaystyle {P_{#}}} n = 1 ∞ 1 p n # = 1 2 + 1 6 + 1 30 + 1 210 + . . . = ∑ k = 1 ∞ n = 1 k 1 p n p n : p r i m o {displaystyle {underset {p_{n}:,{primo}}{sum _{n=1}^{infty }{frac {1}{p_{n}#}}={frac {1}{2}}+{frac {1}{6}}+{frac {1}{30}}+{frac {1}{210}}+...=sum _{k=1}^{infty }prod _{n=1}^{k}{frac {1}{p_{n}}}}}} Sum[k=1 to ∞](prod[n=1 to k]{1/prime(n)}) I A064648 [0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...] 0.70523017179180096514743168288824851
0,29156 09040 30818 78013 ​ Constante dimer 2D,
recubrimiento con dominós ​ ·
Dominoes tiling 8x8.svg
C π {displaystyle {frac {C}{pi }}}

C=catalan

π π cosh − 1 ⁡ ( cos ⁡ ( t ) + 3 2 ) 4 π d t {displaystyle int limits _{-pi }^{pi }{frac {cosh ^{-1}left({frac {sqrt {cos(t)+3}}{sqrt {2}}}right)}{4pi }}dt} N[int[-pi to pi] {arccosh(sqrt(
cos(t)+3)/sqrt(2))
/(4*Pi) /, dt}]
A143233 [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 0.29156090403081878013838445646839491
0,72364 84022 98200 00940 ​ Constante de Sarnak C s a {displaystyle {C_{sa}}} p > 2 ( 1 − p + 2 p 3 ) {displaystyle prod _{p>2}{Big (}1-{frac {p+2}{p^{3}}}{Big)}} N[prod[k=2 to ∞]
{1-(prime(k)+2)
/(prime(k)^3)}]
T ? A065476 [0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...] 0.72364840229820000940884914980912759
0,63212 05588 28557 67840 ​ Constante de tiempo ​ Seq1.png τ {displaystyle {tau }} lim n → 1 − ! n n ! = lim n → P ( n ) = ∫ 0 1 e − x d x = 1 − 1 e = {displaystyle lim _{nto infty }1-{frac {!n}{n!}}=lim _{nto infty }P(n)=int _{0}^{1}e^{-x}dx=1-{frac {1}{e}}=}

n = 0 ∞ ( − 1 ) n n ! = 1 1 ! − 1 2 ! + 1 3 ! − 1 4 ! + 1 5 ! − 1 6 ! + ⋯ {displaystyle sum limits _{n=0}^{infty }{frac {(-1)^{n}}{n!}}={frac {1}{1!}}-{frac {1}{2!}}+{frac {1}{3!}}-{frac {1}{4!}}+{frac {1}{5!}}-{frac {1}{6!}}+cdots }

lim_(n->∞) (1- !n/n!)
!n=subfactorial
T A068996 [0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [0;1,1,1,2n], n∈ℕ
0.63212055882855767840447622983853913
0.30366 30028 98732 65859 ​ Constante de Gauss-Kuzmin-Wirsing​ λ 2 {displaystyle {lambda }_{2}} lim n → F n ( x ) − ln ⁡ ( 1 − x ) ( − λ ) n = Ψ ( x ) , {displaystyle lim _{nto infty }{frac {F_{n}(x)-ln(1-x)}{(-lambda)^{n}}}=Psi (x),}

donde Ψ ( x ) {displaystyle Psi (x)} es una función analítica tal que Ψ ( 0 ) = Ψ ( 1 ) = 0 {displaystyle Psi (0)!=!Psi (1)!=!0} .

A038517 [0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...] 1973 0.30366300289873265859744812190155623
1,30357 72690 34296 39125 ​ Constante de Conway ​ Conway constant.png λ {displaystyle {lambda }} x 71 − x 69 − 2 x 68 − x 67 + 2 x 66 + 2 x 65 + x 64 − x 63 − x 62 − x 61 − x 60 − x 59 + 2 x 58 + 5 x 57 + 3 x 56 − 2 x 55 − 10 x 54 − 3 x 53 − 2 x 52 + 6 x 51 + 6 x 50 + x 49 + 9 x 48 − 3 x 47 − 7 x 46 − 8 x 45 − 8 x 44 + 10 x 43 + 6 x 42 + 8 x 41 − 5 x 40 − 12 x 39 + 7 x 38 − 7 x 37 + 7 x 36 + x 35 − 3 x 34 + 10 x 33 + x 32 − 6 x 31 − 2 x 30 − 10 x 29 − 3 x 28 + 2 x 27 + 9 x 26 − 3 x 25 + 14 x 24 − 8 x 23 − 7 x 21 + 9 x 20 + 3 x 19 − 4 x 18 − 10 x 17 − 7 x 16 + 12 x 15 + 7 x 14 + 2 x 13 − 12 x 12 − 4 x 11 − 2 x 10 + 5 x 9 + x 7 − 7 x 6 + 7 x 5 − 4 x 4 + 12 x 3 − 6 x 2 + 3 x − 6 = 0 {displaystyle {begin{smallmatrix}x^{71}quad -x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}quad -7x^{21}+9x^{20}\+3x^{19}!-4x^{18}!-10x^{17}!-7x^{16}!+12x^{15}!+7x^{14}!+2x^{13}!-12x^{12}!-4x^{11}!-2x^{10}\+5x^{9}+x^{7}quad -7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6 = 0quad quad quad end{smallmatrix}}} A A014715 [1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...] 1987 1.30357726903429639125709911215255189
1,18656 91104 15625 45282 ​ Constante de Lévy ​


β {displaystyle {beta }} π 2 12 ln ⁡ 2 {displaystyle {frac {pi ^{2}}{12,ln 2}}} pi^2 /(12 ln 2) A100199 [1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...] 1935 1.18656911041562545282172297594723712
0,83564 88482 64721 05333 Constante de Baker ​ Baker constant.png β 3 {displaystyle beta _{3}} 0 1 d t 1 + t 3 = ∑ n = 0 ∞ ( − 1 ) n 3 n + 1 = 1 3 ( ln ⁡ 2 + π 3 ) {displaystyle int _{0}^{1}{frac {mathrm {d} t}{1+t^{3}}}=sum _{n=0}^{infty }{frac {(-1)^{n}}{3n+1}}={frac {1}{3}}left(ln 2+{frac {pi }{sqrt {3}}}right)} Sum[n=0 to ∞]
{((-1)^(n))/(3n+1)}
A113476 [0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...] 0.83564884826472105333710345970011076
23,10344 79094 20541 6160 ​ Serie de Kempner(0) ​ K 0 {displaystyle {K_{0}}} 1 + 1 2 + 1 3 + ⋯ + 1 9 + 1 11 + ⋯ + 1 19 + 1 21 + ⋯ + etc. {displaystyle 1{+}{frac {1}{2}}{+}{frac {1}{3}}{+}cdots {+}{frac {1}{9}}{+}{frac {1}{11}}{+}cdots {+}{frac {1}{19}}{+}{frac {1}{21}}{+}cdots {+},{text{etc.}}}

+ 1 99 + 1 111 + ⋯ + 1 119 + 1 121 + ⋯ d e n o m i n a d o r e s q u e c o n t i e n e n c e r o s . E x c l u i d o s l o s {displaystyle {+}{frac {1}{99}}{+}{frac {1}{111}}{+}cdots {+}{frac {1}{119}}{+}{frac {1}{121}}{+}cdots ;;{overset {Excluidos;los}{underset {contienen;ceros.}{scriptstyle denominadores;que}}}}

1+1/2+1/3+1/4+1/5
+1/6+1/7+1/8+1/9
+1/11+1/12+1/13
+1/14+1/15+...
A082839 [23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...] 23.1034479094205416160340540433255981
0,98943 12738 31146 95174 ​ Constante de Lebesgue ​ Fourier synthesis.svg C 1 {displaystyle {C_{1}}} lim n → ( L n − 4 π 2 ln ⁡ ( 2 n + 1 ) ) = 4 π 2 ( ∑ k = 1 ∞ 2 ln ⁡ k 4 k 2 − 1 − Γ ′ ( 1 2 ) Γ ( 1 2 ) ) {displaystyle lim _{nto infty }!!left(!{L_{n}{-}{frac {4}{pi ^{2}}}ln(2n{+}1)}!!right)!{=}{frac {4}{pi ^{2}}}!left({sum _{k=1}^{infty }!{frac {2ln k}{4k^{2}{-}1}}}{-}{frac {Gamma '({tfrac {1}{2}})}{Gamma ({tfrac {1}{2}})}}!!right)} 4/pi^2*[(2
Sum[k=1 to ∞]
{ln(k)/(4*k^2-1)})
-poligamma(1/2)]
A243277 [0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...] 0.98943127383114695174164880901886671
1,38135 64445 18497 79337 Constante Beta Kneser-Mahler ​



β {displaystyle beta } e 2 π 0 π 3 t tan ⁡ t d t = e ∫ 1 3 1 3 ln ⁡ 1 + e 2 π i t ⌋ d t {displaystyle e^{^{textstyle {frac {2}{pi }}displaystyle {int _{0}^{frac {pi }{3}}}textstyle {ttan t dt}}}=e^{^{displaystyle {,int _{frac {-1}{3}}^{frac {1}{3}}}textstyle {,ln lfloor 1+e^{2pi it}}rfloor dt}}} e^((PolyGamma(1,4/3)
- PolyGamma(1,2/3)
+9)/(4*sqrt(3)*Pi))
A242710 [1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...] 1963 1.38135644451849779337146695685062412
1,18745 23511 26501 05459 ​ Constante de Foias α ​ F α {displaystyle F_{alpha }} x n + 1 = ( 1 + 1 x n ) n para n = 1 , 2 , 3 , … {displaystyle x_{n+1}=left(1+{frac {1}{x_{n}}}right)^{n}{text{ para }}n=1,2,3,ldots }

La constante de Foias es el único número real tal que si x1 = α, entonces la secuencia diverge a ∞. Cuando x1 = α, lim n → x n log ⁡ n n = 1 {displaystyle ,lim _{nto infty }x_{n}{tfrac {log n}{n}}=1}

A085848 [1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...] 1970 1.18745235112650105459548015839651935
2,29316 62874 11861 03150 ​ Constante de Foias β Foias constant.png F β {displaystyle F_{beta }} x x + 1 = ( x + 1 ) x {displaystyle x^{x+1}=(x+1)^{x}} x^(x+1)
= (x+1)^x
A085846 [2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...] 2000 2.29316628741186103150802829125080586
0,66170 71822 67176 23515 ​ Constante de Robbins ​ Δ ( 3 ) {displaystyle Delta (3)} 4 + 17 2 − 6 3 − 7 π 105 + ln ⁡ ( 1 + 2 ) 5 + 2 ln ⁡ ( 2 + 3 ) 5 {displaystyle {frac {4!+!17{sqrt {2}}!-6{sqrt {3}}!-7pi }{105}}!+!{frac {ln(1!+!{sqrt {2}})}{5}}!+!{frac {2ln(2!+!{sqrt {3}})}{5}}} (4+17*2^(1/2)-6
*3^(1/2)+21*ln(1+
2^(1/2))+42*ln(2+
3^(1/2))-7*Pi)/105
A073012 [0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...] 1978 0.66170718226717623515583113324841358
0,78853 05659 11508 96106 ​ Constante de Lüroth ​ Constante de Lüroth.svg C L {displaystyle C_{L}} n = 2 ∞ ln ⁡ ( n n − 1 ) n {displaystyle sum _{n=2}^{infty }{frac {ln left({frac {n}{n-1}}right)}{n}}} Sum[n=2 to ∞]
log(n/(n-1))/n
A085361 [0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...] 0.78853056591150896106027632216944432
0,92883 58271 ​ Constante entre primos gemelos de JJGJJG ​ B 1 {displaystyle B_{1}} 1 4 + 1 6 + 1 12 + 1 18 + 1 30 + 1 42 + 1 60 + 1 72 + ⋯ {displaystyle {frac {1}{4}}+{frac {1}{6}}+{frac {1}{12}}+{frac {1}{18}}+{frac {1}{30}}+{frac {1}{42}}+{frac {1}{60}}+{frac {1}{72}}+cdots } 1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + 1/60 + 1/72 +... A241560 [0; 1, 13, 19, 4, 2, 3, 1, 1] 2014 0.928835827131
5,24411 51085 84239 62092 ​ Constante
2 Lemniscata ​
Lemniscate of Bernoulli.gif 2 ϖ {displaystyle 2varpi } [ Γ ( 1 4 ) ] 2 2 π = 4 ∫ 0 1 d x ( 1 − x 2 ) ( 2 − x 2 ) {displaystyle {frac {[Gamma ({tfrac {1}{4}})]^{2}}{sqrt {2pi }}}=4int _{0}^{1}{frac {dx}{sqrt {(1-x^{2})(2-x^{2})}}}} Gamma[ 1/4 ]^2
/Sqrt[ 2 Pi ]
A064853 [5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...] 1718 5.24411510858423962092967917978223883
0,57595 99688 92945 43964 ​ Constante Stephens ​ C S {displaystyle C_{S}} n = 1 ∞ ( 1 − p p 3 − 1 ) {displaystyle prod _{n=1}^{infty }left(1-{frac {p}{p^{3}-1}}right)} Prod[n=1 to ∞]
{1-prime(n)
/(prime(n)^3-1)}
T ? A065478 [0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...] ? 0.57595996889294543964316337549249669
0,73908 51332 15160 64165 ​ Número de Dottie ​ Dottie number.png d {displaystyle d} lim x → cos x ⁡ ( c ) = cos ⁡ ( cos ⁡ ( cos ⁡ ( cos ⁡ ( ⋯ ( cos ⁡ ( c ) ) ) ) ) ) ⏟ x {displaystyle lim _{xto infty }cos ^{x}(c)=underbrace {cos(cos(cos(cos(cdots (cos(c))))))} _{x}} cos(c)=c T A003957 [0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...] 0.73908513321516064165531208767387340
0,67823 44919 17391 97803 ​ Constante Taniguchi ​ C T {displaystyle C_{T}} n = 1 ∞ ( 1 − 3 p n 3 + 2 p n 4 + 1 p n 5 − 1 p n 6 ) {displaystyle prod _{n=1}^{infty }left(1-{frac {3}{{p_{n}}^{3}}}+{frac {2}{{p_{n}}^{4}}}+{frac {1}{{p_{n}}^{5}}}-{frac {1}{{p_{n}}^{6}}}right)} p n = primo {displaystyle scriptstyle p_{n}=,{text{primo}}} Prod[n=1 to ∞] {1
-3/prime(n)^3
+2/prime(n)^4
+1/prime(n)^5
-1/prime(n)^6}
T ? A175639 [0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...] ? 0.67823449191739197803553827948289481
1,35845 62741 82988 43520 ​ Constante espiral áurea FakeRealLogSpiral.svg c {displaystyle c} φ 2 π = ( 1 + 5 2 ) 2 π {displaystyle varphi ^{frac {2}{pi }}=left({frac {1+{sqrt {5}}}{2}}right)^{frac {2}{pi }}} GoldenRatio^(2/Pi) A212224 [1;2,1,3,1,3,10,8,1,1,8,1,15,6,1,3,1,1,2,3,1,1,...] 1.35845627418298843520618060050187945
2,79128 78474 77920 00329 Raíces anidadas S5 S 5 {displaystyle S_{5}} 21 + 1 2 = 5 + 5 + 5 + 5 + 5 + ⋯ {displaystyle displaystyle {frac {{sqrt {21}}+1}{2}}=scriptstyle ,{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5+cdots }}}}}}}}}};}

= 1 + 5 − 5 − 5 − 5 − 5 − {displaystyle =1+,scriptstyle {sqrt {5-{sqrt {5-{sqrt {5-{sqrt {5-{sqrt {5-cdots }}}}}}}}}};}

(sqrt(21)+1)/2 A A222134 [2;1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,...]
[2;1,3]
2.79128784747792000329402359686400424
1,85407 46773 01371 91843 ​ Constante Lemniscata de Gauss ​ Lemniscate Building.gif L / 2 {displaystyle L{text{/}}{sqrt {2}}} 0 ∞ d x 1 + x 4 = 1 4 π Γ ( 1 4 ) 2 = 4 ( 1 4 ! ) 2 π {displaystyle int limits _{0}^{infty }{frac {mathrm {d} x}{sqrt {1+x^{4}}}}={frac {1}{4{sqrt {pi }}}},Gamma left({frac {1}{4}}right)^{2}={frac {4left({frac {1}{4}}!right)^{2}}{sqrt {pi }}}} Γ() = Función Gamma pi^(3/2)/(2 Gamma(3/4)^2) A093341 [1;1,5,1,5,1,3,1,6,2,1,4,16,3,112,2,1,1,18,1,...] ? 1.85407467730137191843385034719526005
1,75874 36279 51184 82469 Constante Producto infinito, con Alladi-Grinstead ​ P r 1 {displaystyle Pr_{1}} n = 2 ∞ ( 1 + 1 n ) 1 n {displaystyle prod _{n=2}^{infty }{Big (}1+{frac {1}{n}}{Big)}^{frac {1}{n}}} Prod[n=2 to ∞]
{(1+1/n)^(1/n)}
A242623 [1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...] 1977 1.75874362795118482469989684865589317
1,73245 47146 00633 47358 ​ Constante inversa de Euler-Mascheroni 1 γ {displaystyle {frac {1}{gamma }}} ( ∫ 0 1 − log ⁡ ( log ⁡ 1 x ) d x ) − 1 = ∑ n = 1 ∞ ( − 1 ) n ( − 1 + γ ) n {displaystyle left(int _{0}^{1}-log left(log {frac {1}{x}}right),dxright)^{-1}=sum _{n=1}^{infty }(-1)^{n}(-1+gamma)^{n}} 1/Integrate_
(x=0 to 1)
{-log(log(1/x))}
A098907 [1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...] 1.73245471460063347358302531586082968
1,94359 64368 20759 20505 ​ Constante Euler Totient ​ ​ EulerPhi100.PNG E T {displaystyle ET} p ( 1 + 1 p ( p − 1 ) ) p = Nros. primos = ζ ( 2 ) ζ ( 3 ) ζ ( 6 ) = 315 ζ ( 3 ) 2 π 4 {displaystyle {underset {p{text{= Nros. primos}}}{prod _{p}{Big (}1+{frac {1}{p(p-1)}}{Big)}}}={frac {zeta (2);zeta (3)}{zeta (6)}}={frac {315;zeta (3)}{2pi ^{4}}}} zeta(2)*zeta(3)
/zeta(6)
A082695 [1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...] 1750 1.94359643682075920505707036257476343
1,49534 87812 21220 54191 Raíz cuarta de cinco ​ 5 4 {displaystyle {sqrt[{4}]{5}}} 5 5 5 5 5 ⋯ 5 5 5 5 5 {displaystyle {sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,cdots }}}}}}}}}}} (5(5(5(5(5(5(5)
^1/5)^1/5)^1/5)
^1/5)^1/5)^1/5)
^1/5...
A A011003 [1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...] 1.49534878122122054191189899414091339
0,87228 40410 65627 97617 ​ Área Círculo de Ford ​ Circumferències de Ford.svg A C F {displaystyle A_{CF}} q ≥ 1 ∑ ( p , q ) = 1 1 ≤ p < q π ( 1 2 q 2 ) 2 = π 4 ζ ( 3 ) ζ ( 4 ) = 45 2 ζ ( 3 ) π 3 {displaystyle sum _{qgeq 1}sum _{(p,q)=1 atop 1leq p<q}pi left({frac {1}{2q^{2}}}right)^{2}={frac {pi }{4}}{frac {zeta (3)}{zeta (4)}}={frac {45}{2}}{frac {zeta (3)}{pi ^{3}}}} ς() = Función zeta pi Zeta(3) /(4 Zeta(4)) [0;1,6,1,4,1,7,5,36,3,29,1,1,10,3,2,8,1,1,1,3,...] ? 0.87228404106562797617519753217122587
1,08232 32337 11138 19151 ​ Constante Zeta(4) ​


ζ ( 4 ) {displaystyle zeta (4)} π 4 90 = ∑ n = 1 ∞ 1 n 4 = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + 1 5 4 + . . . {displaystyle {frac {pi ^{4}}{90}}=sum _{n=1}^{infty }{frac {1}{n^{4}}}={frac {1}{1^{4}}}+{frac {1}{2^{4}}}+{frac {1}{3^{4}}}+{frac {1}{4^{4}}}+{frac {1}{5^{4}}}+...} Sum[n=1 to ∞]
{1/n^4}
T A013662 [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...] 1.08232323371113819151600369654116790
1,56155 28128 08830 27491 Raíz Triangular de 2. ​ Números triangulares.png R 2 {displaystyle {R_{2}}} 17 − 1 2 = 4 + 4 + 4 + 4 + 4 + 4 + ⋯ 1 {displaystyle {frac {{sqrt {17}}-1}{2}}=,scriptstyle {sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+cdots }}}}}}}}}}}},,-1}

= 4 − 4 − 4 − 4 − 4 − 4 − {displaystyle =,scriptstyle {sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-cdots }}}}}}}}}}}}textstyle }

(sqrt(17)-1)/2 A A222133 [1;1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,...]
[1;1,1,3]
1.56155281280883027491070492798703851
1,45607 49485 82689 67139 ​ Constante de Backhouse ​ B {displaystyle {B}} lim k → | q k + 1 q k | donde: Q ( x ) = 1 P ( x ) = ∑ k = 1 ∞ q k x k {displaystyle lim _{kto infty }left|{frac {q_{k+1}}{q_{k}}}rightvert quad scriptstyle {text{donde:}}displaystyle ;;Q(x)={frac {1}{P(x)}}=!sum _{k=1}^{infty }q_{k}x^{k}}

P ( x ) = ∑ k = 1 ∞ p k x k p k : p r i m o = 1 + 2 x + 3 x 2 + 5 x 3 + 7 x 4 + . . . {displaystyle P(x)=!sum _{k=1}^{infty }{underset {p_{k}:,{primo}}{p_{k}x^{k}}}!!=1{+}2x{+}3x^{2}{+}5x^{3}{+}7x^{4}{+}...}

1/(FindRoot[0 == 1
+ Sum[x^n Prime[n],
{n, 10000}], {x, {1}})
A072508 [1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,4,...] 1995 1.45607494858268967139959535111654355
1,43599 11241 76917 43235 ​ Constante interpolación de Lebesgue ​ · Fourier series integral identities.gif L 1 {displaystyle {L_{1}}} i = 0 j ≠ i n x − x i x j − x i = 1 π 0 π sin ⁡ 3 t 2 ⌋ sin ⁡ t 2 d t = 1 3 + 2 3 π {displaystyle prod _{begin{smallmatrix}i=0\jneq iend{smallmatrix}}^{n}{frac {x-x_{i}}{x_{j}-x_{i}}}={frac {1}{pi }}int _{0}^{pi }{frac {lfloor sin {frac {3t}{2}}rfloor }{sin {frac {t}{2}}}},dt={frac {1}{3}}+{frac {2{sqrt {3}}}{pi }}} 1/3 + 2*sqrt(3)/Pi T A226654 [1;2,3,2,2,6,1,1,1,1,4,1,7,1,1,1,2,1,3,1,2,1,1,...] 1902 ~ 1.43599112417691743235598632995927221
1,04633 50667 70503 18098 Constante mass Minkowski-Siegel ​ F 1 {displaystyle F_{1}} n = 1 ∞ n ! 2 π n ( n e ) n 1 + 1 n 12 {displaystyle prod _{n=1}^{infty }{frac {n!}{{sqrt {2pi n}}left({frac {n}{e}}right)^{n}{sqrt[{12}]{1+{tfrac {1}{n}}}}}}} N[prod[n=1 to ∞]
n! /(sqrt(2*Pi*n)
*(n/e)^n *(1+1/n)
^(1/12))]
A213080 [1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..] 1867
1885
1935
1.04633506677050318098095065697776037
1,86002 50792 21190 30718 Constante espiral de Theodorus ​ Spiral of Theodorus.svg {displaystyle partial } n = 1 ∞ 1 n 3 + n = ∑ n = 1 ∞ 1 n ( n + 1 ) {displaystyle sum _{n=1}^{infty }{frac {1}{{sqrt {n^{3}}}+{sqrt {n}}}}=sum _{n=1}^{infty }{frac {1}{{sqrt {n}}(n+1)}}} Sum[n=1 to ∞]
{1/(n^(3/2)
+n^(1/2))}
A226317 [1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...] -460
a
-399
1.86002507922119030718069591571714332
0,80939 40205 40639 13071 ​ Constante de Alladi-Grinstead​ A A G {displaystyle {{mathcal {A}}_{AG}}} e − 1 + ∑ k = 2 ∞ n = 1 ∞ 1 n k n + 1 = e − 1 − k = 2 ∞ 1 k ln ⁡ ( 1 − 1 k ) {displaystyle e^{-1+sum limits _{k=2}^{infty }sum limits _{n=1}^{infty }{frac {1}{nk^{n+1}}}}=e^{-1-sum limits _{k=2}^{infty }{frac {1}{k}}ln left(1-{frac {1}{k}}right)}} e^{(sum[k=2 to ∞]
|sum[n=1 to ∞]
{1/(n k^(n+1))})-1}
A085291 [0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...] 1977 0.80939402054063913071793188059409131
1,26185 95071 42914 87419 ​ Dimensión fractal del Copo de nieve de Koch ​ C k {displaystyle {C_{k}}} log ⁡ 4 log ⁡ 3 {displaystyle {frac {log 4}{log 3}}} log(4)/log(3) T A100831 [1;3,1,4,1,1,11,1,46,1,5,112,1,1,1,1,1,3,1,7,...] 1.26185950714291487419905422868552171
1,22674 20107 20353 24441 ​ Constante Factorial de Fibonacci ​ F {displaystyle F} n = 1 ∞ ( 1 − ( − 1 φ 2 ) n ) = ∏ n = 1 ∞ ( 1 − ( 5 − 3 2 ) n ) {displaystyle prod _{n=1}^{infty }left(1-left(-{frac {1}{{varphi }^{2}}}right)^{n}right)=prod _{n=1}^{infty }left(1-left({frac {{sqrt {5}}-3}{2}}right)^{n}right)} prod[n=1 to ∞]
{1-((sqrt(5) -3)/2)^n}
A062073 [1;4,2,2,3,2,15,9,1,2,1,2,15,7,6,21,3,5,1,23,...] 1.22674201072035324441763023045536165
0,85073 61882 01867 26036 ​ Constante de plegado de papel ​ · Miura-ori.gif P f {displaystyle {P_{f}}} n = 0 ∞ 8 2 n 2 2 n + 2 − 1 = ∑ n = 0 ∞ 1 2 2 n 1 − 1 2 2 n + 2 {displaystyle sum _{n=0}^{infty }{frac {8^{2^{n}}}{2^{2^{n+2}}-1}}=sum _{n=0}^{infty }{cfrac {tfrac {1}{2^{2^{n}}}}{1-{tfrac {1}{2^{2^{n+2}}}}}}} N[Sum[n=0 to ∞]
{8^2^n/(2^2^
(n+2)-1)},37]
A143347 [0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...] ? 0.85073618820186726036779776053206660
6,58088 59910 17920 97085 Constante de Froda ​

2 e {displaystyle 2^{,e}} 2 e {displaystyle 2^{e}} 2^e [6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] 6.58088599101792097085154240388648649
– 0,5
± 0,86602 54037 84438 64676 i
Raíz cúbica de 1 ​ 3rd roots of unity.svg 1 3 {displaystyle {sqrt[{3}]{1}}} { 1 − 1 2 + 3 2 i − 1 2 − 3 2 i . {displaystyle {begin{cases} 1\-{frac {1}{2}}+{frac {sqrt {3}}{2}}i\-{frac {1}{2}}-{frac {sqrt {3}}{2}}i.end{cases}}} 1,
E^(2i pi/3)
E^(-2i pi/3)
CA A010527 - [0,5]
± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i
- [0,5]
± [0; 1, 6, 2] i
- 0,5
± 0.8660254037844386467637231707529 i
1,11786 41511 89944 97314 ​ Constante de Goh-Schmutz ​ C G S {displaystyle C_{GS}} 0 ∞ log ⁡ ( s + 1 ) e s − 1 d s = − n = 1 ∞ e n n E i ( − n ) I n t e g r a l E x p o n e n c i a l E i : {displaystyle int _{0}^{infty }{frac {log(s+1)}{e^{s}-1}} ds=!-!sum _{n=1}^{infty }{frac {e^{n}}{n}}Ei(-n){overset {Ei:}{underset {Exponencial}{scriptstyle Integral}}}} Integrate{
log(s+1)
/(E^s-1)}
A143300 [1;8,2,15,2,7,2,1,1,1,1,2,3,5,3,5,1,1,4,13,1,...] 1.11786415118994497314040996202656544
1,11072 07345 39591 56175 ​ Razón entre un cuadrado y la circunferencia circunscrita ​ Circumscribed2.png π 2 2 {displaystyle {frac {pi }{2{sqrt {2}}}}} n = 1 ∞ ( − 1 ) ⌊ n − 1 2 ⌋ 2 n + 1 = 1 1 + 1 3 − 1 5 − 1 7 + 1 9 + 1 11 − . . . {displaystyle sum _{n=1}^{infty }{frac {(-1)^{lfloor {frac {n-1}{2}}rfloor }}{2n+1}}={frac {1}{1}}+{frac {1}{3}}-{frac {1}{5}}-{frac {1}{7}}+{frac {1}{9}}+{frac {1}{11}}-...} Sum[n=1 to ∞]
{(-1)^(floor((n-1)/2))
/(2n-1)}
T A093954 [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] 1.11072073453959156175397024751517342
2,82641 99970 67591 57554 ​ Constante de Murata ​ C m {displaystyle {C_{m}}} n = 1 ∞ ( 1 + 1 ( p n − 1 ) 2 ) p n : p r i m o {displaystyle prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{{Big (}1+{frac {1}{(p_{n}-1)^{2}}}{Big)}}}} Prod[n=1 to ∞]
{1+1/(prime(n)
-1)^2}
T ? A065485 [2;1,4,1,3,5,2,2,2,4,3,2,1,3,2,1,1,1,8,2,2,28,...] 2.82641999706759157554639174723695374
1,52362 70862 02492 10627 ​ Dimensión fractal de la frontera de la Curva del dragón ​ Fractal dragon curve.jpg C d {displaystyle {C_{d}}} log ⁡ ( 1 + 73 − 6 87 3 + 73 + 6 87 3 3 ) log ⁡ ( 2 ) {displaystyle {frac {log left({frac {1+{sqrt[{3}]{73-6{sqrt {87}}}}+{sqrt[{3}]{73+6{sqrt {87}}}}}{3}}right)}{log(2)}}} (log((1+(73-6
sqrt(87))^1/3+ (73+6 sqrt(87))^1/3)
/3))/ log(2)))
T [1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...] 1.52362708620249210627768393595421662
1,30637 78838 63080 69046 ​ Constante de Mills ​ θ {displaystyle {theta }} Es primo θ 3 n ⌋ {displaystyle lfloor theta ^{3^{n}}rfloor } Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8) A051021 [1;3,3,1,3,1,2,1,2,1,4,2,35,21,1,4,4,1,1,3,2,...] 1947 1.30637788386308069046861449260260571
2,02988 32128 19307 25004 ​ Volumen hiperbólico del Complemento del Nudo en Forma de Ocho ​ Blue Figure-Eight Knot.png V 8 {displaystyle {V_{8}}} 2 3 ∑ n = 1 ∞ 1 n ( 2 n n ) ∑ k = n 2 n − 1 1 k = 6 ∫ 0 π / 3 log ⁡ ( 1 2 sin ⁡ t ) d t = {displaystyle 2{sqrt {3}},sum _{n=1}^{infty }{frac {1}{n{2n choose n}}}sum _{k=n}^{2n-1}{frac {1}{k}}=6int limits _{0}^{pi /3}log left({frac {1}{2sin t}}right),dt=}

3 9 ∑ n = 0 ∞ ( − 1 ) n 27 n { 18 ( 6 n + 1 ) 2 − 18 ( 6 n + 2 ) 2 − 24 ( 6 n + 3 ) 2 − 6 ( 6 n + 4 ) 2 + 2 ( 6 n + 5 ) 2 } {displaystyle scriptstyle {frac {sqrt {3}}{9}},sum limits _{n=0}^{infty }{frac {(-1)^{n}}{27^{n}}},left{!{frac {18}{(6n+1)^{2}}}-{frac {18}{(6n+2)^{2}}}-{frac {24}{(6n+3)^{2}}}-{frac {6}{(6n+4)^{2}}}+{frac {2}{(6n+5)^{2}}}!right}}

6 integral[0 to pi/3]
{log(1/(2 sin (n)))}
A091518 [2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...] 2.02988321281930725004240510854904057
1,46707 80794 33975 47289 ​ Constante de Porter​

C {displaystyle {C}} 6 ln ⁡ 2 π 2 ( 3 ln ⁡ 2 + 4 γ 24 π 2 ζ ′ ( 2 ) − 2 ) − 1 2 {displaystyle {frac {6ln 2}{pi ^{2}}}left(3ln 2+4,gamma -{frac {24}{pi ^{2}}},zeta '(2)-2right)-{frac {1}{2}}}

γ = Constante de Euler–Mascheroni = 0,5772156649... {displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}} ζ ′ ( 2 ) = Derivada de ζ ( 2 ) = − n = 2 ∞ ln ⁡ n n 2 = −0,9375482543... {displaystyle scriptstyle zeta '(2),{text{= Derivada de }}zeta (2),=,-!!sum limits _{n=2}^{infty }{frac {ln n}{n^{2}}},{text{= −0,9375482543...}}}

6*ln2/Pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/Pi^2-2)-1/2 A086237 [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...] 1974 1.46707807943397547289779848470722995
1,85193 70519 82466 17036 ​ Constante de Gibbs ​ Int si(x).PNG S i ( π ) {displaystyle {Si(pi)}}
Integralsenoidal
0 π sin ⁡ t t d t = ∑ n = 1 ∞ ( − 1 ) n − 1 π 2 n − 1 ( 2 n − 1 ) ( 2 n − 1 ) ! {displaystyle int _{0}^{pi }{frac {sin t}{t}},dt=sum limits _{n=1}^{infty }(-1)^{n-1}{frac {pi ^{2n-1}}{(2n-1)(2n-1)!}}}

= π π 3 3 ∗ 3 ! + π 5 5 ∗ 5 ! − π 7 7 ∗ 7 ! + . . . {displaystyle =pi -{frac {pi ^{3}}{3*3!}}+{frac {pi ^{5}}{5*5!}}-{frac {pi ^{7}}{7*7!}}+...}

SinIntegral[Pi] A036792 [1;1,5,1,3,15,1,5,3,2,7,2,1,62,1,3,110,1,39,...] 1.85193705198246617036105337015799136
1,78221 39781 91369 11177 ​ Constante de Grothendieck ​


K R {displaystyle {K_{R}}} π 2 log ⁡ ( 1 + 2 ) = π 2 arsinh ⁡ 1 {displaystyle {frac {pi }{2log(1+{sqrt {2}})}}={frac {pi }{2operatorname {arsinh} 1}}} pi/(2 log(1+sqrt(2))) A088367 [1;1,3,1,1,2,4,2,1,1,17,1,12,4,3,5,10,1,1,3,...] 1.78221397819136911177441345297254934
1,74540 56624 07346 86349 ​ Constante media armónica de Khinchin ​ Plot harmonic mean.png K − 1 {displaystyle {K_{-1}}} log ⁡ 2 ∑ n = 1 ∞ 1 n log ⁡ ( 1 + 1 n ( n + 2 ) ) = lim n → n 1 a 1 + 1 a 2 + . . . + 1 a n {displaystyle {frac {log 2}{sum limits _{n=1}^{infty }{frac {1}{n}}log {bigl (}1+{frac {1}{n(n+2)}}{bigr)}}}=lim _{nto infty }{frac {n}{{frac {1}{a_{1}}}+{frac {1}{a_{2}}}+...+{frac {1}{a_{n}}}}}}

a1...an son elementos de una fracción continua [a0;a1,a2,...,an]

(log 2)/
(sum[n=1 to ∞]
{1/n log(1+
1/(n(n+2))}
A087491 [1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...] 1.74540566240734686349459630968366106
0,10841 01512 23111 36151 ​ Constante de Trott

T 1 {displaystyle mathrm {T} _{1}} [ 1 , 0 , 8 , 4 , 1 , 0 , 1 , 5 , 1 , 2 , 2 , 3 , 1 , 1 , 1 , 3 , 6 , . . . ] {displaystyle textstyle [1,0,8,4,1,0,1,5,1,2,2,3,1,1,1,3,6,...]}

1 1 + 1 0 + 1 8 + 1 4 + 1 1 + 1 0 + 1 / . . . {displaystyle {frac {1}{1+{frac {1}{0+{frac {1}{8+{frac {1}{4+{frac {1}{1+{frac {1}{0+1{/...}}}}}}}}}}}}}}

Trott Constant A039662 [0;9,4,2,5,1,2,2,3,1,1,1,3,6,1,5,1,1,2,...] 0.10841015122311136151129081140641509
1,45136 92348 83381 05028 ​ Constante de Ramanujan–Soldner ​ · Integrallogrithm.png μ {displaystyle {mu }} L i ( x ) = ∫ 0 x d t ln ⁡ t = 0 L i = Integral logarítmica {displaystyle mathrm {Li} (x)=int _{0}^{x}{frac {dt}{ln t}}=0qquad mathrm {Li} ,scriptstyle {text{= Integral logarítmica}}}

L i ( x ) = E i ( ln ⁡ x ) E i = Integral exponencial {displaystyle mathrm {Li} (x);=;mathrm {Ei} (ln {x});;qquad mathrm {Ei} ,scriptstyle {text{= Integral exponencial}}}

FindRoot[li(x) = 0] I A070769 [1;2,4,1,1,1,3,1,1,1,2,47,2,4,1,12,1,1,2,2,1,...] 1792
a
1809
1.45136923488338105028396848589202744
0,64341 05462 88338 02618 ​ Constante de Cahen ​ ξ 2 {displaystyle xi _{2}} k = 1 ∞ ( − 1 ) k s k − 1 = 1 1 − 1 2 + 1 6 − 1 42 + 1 1806 ± {displaystyle sum _{k=1}^{infty }{frac {(-1)^{k}}{s_{k}-1}}={frac {1}{1}}-{frac {1}{2}}+{frac {1}{6}}-{frac {1}{42}}+{frac {1}{1806}}{,pm cdots }}

sk son términos de la Sucesión de Sylvester 2, 3, 7, 43, 1807...
Definida por S 0 = 2 , S k = 1 + ∏ n = 0 k − 1 S n {displaystyle scriptstyle ,S_{0}=,2,,,S_{k}=,1+prod limits _{n=0}^{k-1}S_{n}} para k>0

T A118227 [0; 1, 1, 1, 4, 9, 196, 16641, 639988804,...] 1891 0.64341054628833802618225430775756476
-4,22745 35333 76265 408 ​ Digamma (¼) ​ Complex Polygamma 0.jpg ψ ( 1 4 ) {displaystyle psi ({tfrac {1}{4}})} γ π 2 − 3 ln ⁡ 2 = − γ + ∑ n = 0 ∞ ( 1 n + 1 − 1 n + 1 4 ) {displaystyle -gamma -{frac {pi }{2}}-3ln {2}=-gamma +sum _{n=0}^{infty }left({frac {1}{n+1}}-{frac {1}{n+{tfrac {1}{4}}}}right)} -EulerGamma
-pi/2 -3 log 2
A020777 -[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...] -4,2274535333762654080895301460966835
1,77245 38509 05516 02729 ​ Constante de Carlson-Levin​


Γ ( 1 2 ) {displaystyle {Gamma }({tfrac {1}{2}})} π = ( − 1 2 ) ! = ∫ 1 e x 2 d x = ∫ 0 1 1 − ln ⁡ x d x {displaystyle {sqrt {pi }}=left(-{frac {1}{2}}right)!=int _{-infty }^{infty }{frac {1}{e^{x^{2}}}},dx=int _{0}^{1}{frac {1}{sqrt {-ln x}}},dx} sqrt (pi) T A002161 [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] 1.77245385090551602729816748334114518
0,23571 11317 19232 93137 ​ Constante de Copeland-Erdős​ C C E {displaystyle {{mathcal {C}}_{CE}}} n = 1 ∞ p n 10 n + ∑ k = 1 n ⌊ log 10 ⁡ p k ⌋ {displaystyle sum _{n=1}^{infty }{frac {p_{n}}{10^{n+sum limits _{k=1}^{n}lfloor log _{10}{p_{k}}rfloor }}}} sum[n=1 to ∞]
{prime(n) /(n+(10^
sum[k=1 to n]{floor
(log_10 prime(k))}))}
I A033308 [0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...] 0.23571113171923293137414347535961677
2,09455 14815 42326 59148 ​ Constante de Wallis​ Wallis's Constant.png W {displaystyle W} 45 − 1929 18 3 + 45 + 1929 18 3 {displaystyle {sqrt[{3}]{frac {45-{sqrt {1929}}}{18}}}+{sqrt[{3}]{frac {45+{sqrt {1929}}}{18}}}} (((45-sqrt(1929))
/18))^(1/3)+
(((45+sqrt(1929))
/18))^(1/3)
A A007493 [2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...] 1616
a
1703
2.09455148154232659148238654057930296
0,28674 74284 34478 73410 ​ Constante Strongly Carefree​ K 2 {displaystyle K_{2}} n = 1 ∞ ( 1 − 3 p n − 2 p n 3 ) p n : p r i m o = 6 π 2 ∏ n = 1 ∞ ( 1 − 1 p n ( p n + 1 ) ) p n : p r i m o {displaystyle prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {3p_{n}-2}{{p_{n}}^{3}}}right)}}={frac {6}{pi ^{2}}}prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {1}{p_{n}(p_{n}+1)}}right)}}} N[ prod[k=1 to ∞]
{1 - (3*prime(k)-2)
/(prime(k)^3)}]
A065473 [0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...] 0.28674742843447873410789271278983845
0,56714 32904 09783 87299 ​ Constante Omega, función W(1) de Lambert ​ Lambert-w.svg Ω {displaystyle {Omega }} n = 1 ∞ ( − n ) n − 1 n ! = ( 1 e ) ( 1 e ) ⋅ ( 1 e ) = e − Ω = e − e − e ⋅ e {displaystyle sum _{n=1}^{infty }{frac {(-n)^{n-1}}{n!}}=,left({frac {1}{e}}right)^{left({frac {1}{e}}right)^{cdot ^{cdot ^{left({frac {1}{e}}right)}}}}=e^{-Omega }={e}^{-e^{-e^{cdot ^{cdot ^{-e}}}}}} Sum[n=1 to ∞]
{(-n)^(n-1)/n!}
T A030178 [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...] 1728
a
1777
0.56714329040978387299996866221035555
0,54325 89653 42976 70695 ​ Constante de Bloch-Landau ​ L {displaystyle {L}} Γ ( 1 3 ) Γ ( 5 6 ) Γ ( 1 6 ) = ( − 2 3 ) ! ( − 1 + 5 6 ) ! ( − 1 + 1 6 ) ! {displaystyle {frac {Gamma ({tfrac {1}{3}});Gamma ({tfrac {5}{6}})}{Gamma ({tfrac {1}{6}})}}={frac {(-{tfrac {2}{3}})!;(-1+{tfrac {5}{6}})!}{(-1+{tfrac {1}{6}})!}}} gamma(1/3)
*gamma(5/6)
/gamma(1/6)
A081760 [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...] 1929 0.54325896534297670695272829530061323
0,34053 73295 50999 14282 ​ Constante de Pólya Random Walk​ Walk3d 0.png p ( 3 ) {displaystyle {p(3)}} 1 − ( 3 ( 2 π ) 3 ∫ π π π π π π d x d y d z 3 − cos ⁡ x − cos ⁡ y − cos ⁡ z ) − 1 {displaystyle 1-!!left({3 over (2pi)^{3}}int limits _{-pi }^{pi }int limits _{-pi }^{pi }int limits _{-pi }^{pi }{dx,dy,dz over 3-!cos x-!cos y-!cos z}right)^{!-1}}

= 1 − 16 2 3 π 3 ( Γ ( 1 24 ) Γ ( 5 24 ) Γ ( 7 24 ) Γ ( 11 24 ) ) − 1 {displaystyle =1-16{sqrt {tfrac {2}{3}}};pi ^{3}left(Gamma ({tfrac {1}{24}})Gamma ({tfrac {5}{24}})Gamma ({tfrac {7}{24}})Gamma ({tfrac {11}{24}})right)^{-1}}

1-16*Sqrt[2/3]*Pi^3
/((Gamma[1/24]
*Gamma[5/24]
*Gamma[7/24]
*Gamma[11/24])
A086230 [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...] 0.34053732955099914282627318443290289
0,35323 63718 54995 98454 ​ Constante de Hafner-Sarnak-McCurley (1)​ σ {displaystyle {sigma }} k = 1 ∞ { 1 − [ 1 − j = 1 n ( 1 − p k − j ) ] 2 } {displaystyle prod _{k=1}^{infty }left{1-left[1-prod _{j=1}^{n}(1-p_{k}^{-j})right]^{2}right}} prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-prime(k)^-j})^2} A085849 [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...] 1993 0.35323637185499598454351655043268201
0,74759 79202 53411 43517 ​ Constante Parking de Rényi​ Random car parking problem.svg ParallelParkingAnimation2.gif m {displaystyle {m}} 0 ∞ e ( − 2 ∫ 0 x 1 − e − y y d y ) d x = e − 2 γ 0 ∞ e − 2 Γ ( 0 , n ) n 2 {displaystyle int limits _{0}^{infty }e^{left(!-2int limits _{0}^{x}{frac {1-e^{-y}}{y}}dyright)}!dx={e^{-2gamma }}int limits _{0}^{infty }{frac {e^{-2Gamma (0,n)}}{n^{2}}}} [e^(-2*Gamma)] * Int{n,0,∞}[ e^(- 2*Gamma(0,n)) /n^2] A050996 [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...] 1958 0.74759792025341143517873094383017817
0,60792 71018 54026 62866 ​ Constante de Hafner-Sarnak-McCurley (2)​ 1 ζ ( 2 ) {displaystyle {frac {1}{zeta (2)}}} 6 π 2 = ∏ n = 0 ∞ ( 1 − 1 p n 2 ) p n : p r i m o = ( 1 − 1 2 2 ) ( 1 − 1 3 2 ) ( 1 − 1 5 2 ) . . . {displaystyle {frac {6}{pi ^{2}}}{=}prod _{n=0}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {1}{{p_{n}}^{2}}}right)}}{=}textstyle left(1{-}{frac {1}{2^{2}}}right)left(1{-}{frac {1}{3^{2}}}right)left(1{-}{frac {1}{5^{2}}}right)...} Prod{n=1 to ∞}
(1-1/prime(n)^2)
T A059956 [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] 0.60792710185402662866327677925836583
0,12345 67891 01112 13141 ​ Constante de Champernowne​ Champernowne constant.svg C 10 {displaystyle C_{10}} n = 1 ∞ k = 10 n − 1 10 n − 1 k 10 k n − 9 ∑ j = 0 n − 1 10 j ( n − j − 1 ) {displaystyle sum _{n=1}^{infty }sum _{k=10^{n-1}}^{10^{n}-1}{frac {k}{10^{kn-9sum _{j=0}^{n-1}10^{j}(n-j-1)}}}} T A033307 [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] 1933 0.12345678910111213141516171819202123
0,76422 36535 89220 66299 ​ Constante de Landau-Ramanujan​ K {displaystyle K} 1 2 ∏ p ≡ 3 mod 4 ( 1 − 1 p 2 ) − 1 2 p : p r i m o = π 4 ∏ p ≡ 1 mod 4 ( 1 − 1 p 2 ) 1 2 p : p r i m o {displaystyle {frac {1}{sqrt {2}}}prod _{pequiv 3!!!!!mod !4}!!{underset {!!!!!!!!p:,{primo}}{left(1-{frac {1}{p^{2}}}right)^{-{frac {1}{2}}}}}!!={frac {pi }{4}}prod _{pequiv 1!!!!!mod !4}!!{underset {!!!!p:,{primo}}{left(1-{frac {1}{p^{2}}}right)^{frac {1}{2}}}}} T ? A064533 [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...] 1908 0.76422365358922066299069873125009232
1,58496 25007 21156 18145 ​ Dimensión Hausdorf del triángulo de Sierpinski​ SierpinskiTriangle-ani-0-7.gif l o g 2 3 {displaystyle {log_{2}3}} l o g 3 l o g 2 = ∑ n = 0 ∞ 1 2 2 n + 1 ( 2 n + 1 ) ∑ n = 0 ∞ 1 3 2 n + 1 ( 2 n + 1 ) = 1 2 + 1 24 + 1 160 + . . . 1 3 + 1 81 + 1 1215 + . . . {displaystyle {frac {log3}{log2}}={frac {sum _{n=0}^{infty }{frac {1}{2^{2n+1}(2n+1)}}}{sum _{n=0}^{infty }{frac {1}{3^{2n+1}(2n+1)}}}}={frac {{frac {1}{2}}+{frac {1}{24}}+{frac {1}{160}}+...}{{frac {1}{3}}+{frac {1}{81}}+{frac {1}{1215}}+...}}} (Sum[n=0 to ∞]
{1/(2^(2n+1)(2n+1))})/
(Sum[n=0 to ∞]
{1/(3^(2n+1)(2n+1))})
T A020857 [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 1.58496250072115618145373894394781651
0,11000 10000 00000 00000 0001 Número de Liouville ​


£ L i {displaystyle {text{£}}_{Li}} n = 1 ∞ 1 10 n ! = 1 10 1 ! + 1 10 2 ! + 1 10 3 ! + 1 10 4 ! + . . . {displaystyle sum _{n=1}^{infty }{frac {1}{10^{n!}}}={frac {1}{10^{1!}}}+{frac {1}{10^{2!}}}+{frac {1}{10^{3!}}}+{frac {1}{10^{4!}}}+...} Sum[n=1 to ∞]
{10^(-n!)}
T A012245 [1;9,1,999,10,9999999999999,1,9,999,1,9] 0.11000100000000000000000100...
0,46364 76090 00806 11621 Serie de Machin-Gregory​ Arctangent.svg arctan ⁡ 1 2 {displaystyle arctan {frac {1}{2}}} n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = 1 2 − 1 3 ⋅ 2 3 + 1 5 ⋅ 2 5 − 1 7 ⋅ 2 7 + . . . P a r a x = 1 / 2 {displaystyle {underset {Para;x=1/2qquad qquad }{sum _{n=0}^{infty }{frac {!!(-1)^{n}x^{2n+1}}{2n+1}}={frac {1}{2}}-!{frac {1}{3cdot 2^{3}}}{+}{frac {1}{5cdot 2^{5}}}-!{frac {1}{7cdot 2^{7}}}{+}{...}}}} Sum[n=0 to ∞]
{(-1)^n (1/2)
^(2n+1)/(2n+1)}
I A073000 [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...] 0.46364760900080611621425623146121440
1,27323 95447 35162 68615 Serie de Ramanujan-Forsyth ​ 4 π {displaystyle {frac {4}{pi }}} n = 0 ∞ ( ( 2 n − 3 ) ! ! ( 2 n ) ! ! ) 2 = 1 + ( 1 2 ) 2 + ( 1 2 ⋅ 4 ) 2 + ( 1 ⋅ 3 2 ⋅ 4 ⋅ 6 ) 2 + . . . {displaystyle displaystyle sum limits _{n=0}^{infty }textstyle left({frac {(2n-3)!!}{(2n)!!}}right)^{2}={1!+!left({frac {1}{2}}right)^{2}!{+}left({frac {1}{2cdot 4}}right)^{2}!{+}left({frac {1cdot 3}{2cdot 4cdot 6}}right)^{2}{+}...}} Sum[n=0 to ∞]
{[(2n-3)!!
/(2n)!!]^2}
I A088538 [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] 1.27323954473516268615107010698011489
15,15426 22414 79264 1897 ​ Constante exponencial reiterado ​ Exp-esc.png e e {displaystyle e^{e}} n = 0 ∞ e n n ! = lim n → ( 1 + n n ) n − n ( 1 + n ) 1 + n {displaystyle sum _{n=0}^{infty }{frac {e^{n}}{n!}}=lim _{nto infty }left({frac {1+n}{n}}right)^{n^{-n}(1+n)^{1+n}}} Sum[n=0 to ∞]
{(e^n)/n!}
A073226 [15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...] 15.1542622414792641897604302726299119
36,46215 96072 07911 77099 Pi elevado a pi ​

π π {displaystyle pi ^{pi }} π π {displaystyle pi ^{pi }} pi^pi A073233 [36;2,6,9,2,1,2,5,1,1,6,2,1,291,1,38,50,1,2,...] 36.4621596072079117709908260226921236
0,53964 54911 90413 18711 Constante de Ioachimescu ​ 2 + ζ ( 1 2 ) {displaystyle 2+zeta ({tfrac {1}{2}})} 2 − ( 1 + 2 ) ∑ n = 1 ∞ ( − 1 ) n + 1 n = γ + ∑ n = 1 ∞ ( − 1 ) 2 n γ n 2 n n ! {displaystyle {2{-}(1{+}{sqrt {2}})sum _{n=1}^{infty }{frac {(-1)^{n+1}}{sqrt {n}}}}=gamma +sum _{n=1}^{infty }{frac {(-1)^{2n};gamma _{n}}{2^{n}n!}}} γ +N
[sum[n=1 to ∞]
{((-1)^(2n)
gamma_n)
/(2^n n!)}]
2-
A059750
[0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...] 0.53964549119041318711050084748470198
2,58498 17595 79253 21706 ​ Constante de Sierpiński ​ Random Sierpinski Triangle animation.gif K {displaystyle {K}} π ( 2 γ + ln ⁡ 4 π 3 Γ ( 1 4 ) 4 ) = π ( 2 γ + 4 ln ⁡ Γ ( 3 4 ) − ln ⁡ π ) {displaystyle pi left(2gamma +ln {frac {4pi ^{3}}{Gamma ({tfrac {1}{4}})^{4}}}right)=pi (2gamma +4ln Gamma ({tfrac {3}{4}})-ln pi)}

= π ( 2 ln ⁡ 2 + 3 ln ⁡ π + 2 γ 4 ln ⁡ Γ ( 1 4 ) ) {displaystyle =pi left(2ln 2+3ln pi +2gamma -4ln Gamma ({tfrac {1}{4}})right)}

-Pi Log[Pi]+2 Pi
EulerGamma
+4 Pi Log
[Gamma[3/4]]
A062089 [2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...] 1907 2.58498175957925321706589358738317116
1,83928 67552 14161 13255 Constante Tribonacci ​ TRIBONACCI.jpg ϕ 3 {displaystyle {phi _{}}_{3}} 1 + 19 + 3 33 3 + 19 − 3 33 3 3 = 1 + ( 1 2 + 1 2 + 1 2 + . . . 3 3 3 ) − 1 {displaystyle textstyle {frac {1+{sqrt[{3}]{19+3{sqrt {33}}}}+{sqrt[{3}]{19-3{sqrt {33}}}}}{3}}=scriptstyle ,1+left({sqrt[{3}]{{tfrac {1}{2}}+{sqrt[{3}]{{tfrac {1}{2}}+{sqrt[{3}]{{tfrac {1}{2}}+...}}}}}}right)^{-1}} (1/3)*(1+(19+3
*sqrt(33))^(1/3)
+(19-3
*sqrt(33))^(1/3))
A A058265 [1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...] 1.83928675521416113255185256465328660
0,69220 06275 55346 35386 ​ Valor mínimo de la función
ƒ(x) = xx
( 1 e ) 1 e {displaystyle {left({frac {1}{e}}right)}^{frac {1}{e}}} e − 1 e {displaystyle {e}^{-{frac {1}{e}}}} = Inverso de: Número de Steiner e^(-1/e) A072364 [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 0.69220062755534635386542199718278976
0,70710 67811 86547 52440

+0,70710 67811 86547 52440 i

Raíz cuadrada de i Imaginary2Root.svg i {displaystyle {sqrt {i}}} 1 4 = 1 + i 2 = e i π 4 = cos ⁡ ( π 4 ) + i sin ⁡ ( π 4 ) {displaystyle {sqrt[{4}]{-1}}={frac {1+i}{sqrt {2}}}=e^{frac {ipi }{4}}=cos left({frac {pi }{4}}right)+isin left({frac {pi }{4}}right)} (1+i)/(sqrt 2) C A A010503

A010503
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..]
= [0;1,2,...]
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] i
= [0;1,2,...] i
0.70710678118654752440084436210484903
+ 0.70710678118654752440084436210484 i
1,15636 26843 32269 71685 ​ Constante de recurrencia cúbica ​


σ 3 {displaystyle {sigma _{3}}} n = 1 ∞ n 3 − n = 1 2 3 ⋯ 3 3 3 = 1 1 / 3 2 1 / 9 3 1 / 27 ⋯ {displaystyle prod _{n=1}^{infty }n^{{3}^{-n}}={sqrt[{3}]{1{sqrt[{3}]{2{sqrt[{3}]{3cdots }}}}}}=1^{1/3};2^{1/9};3^{1/27}cdots } prod[n=1 to ∞]
{n ^(1/3)^n}
A123852 [1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...] 1.15636268433226971685337032288736935
1,66168 79496 33594 12129 ​ Recurrencia cuadrática de Somos ​ σ {displaystyle {sigma }} n = 1 ∞ n 1 / 2 n = 1 2 3 4 ⋯ = 1 1 / 2 2 1 / 4 3 1 / 8 ⋯ {displaystyle prod _{n=1}^{infty }n^{{1/2}^{n}}={sqrt {1{sqrt {2{sqrt {3{sqrt {4cdots }}}}}}}}=1^{1/2};2^{1/4};3^{1/8}cdots } prod[n=1 to ∞]
{n ^(1/2)^n}
T ? A065481 [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] 1.66168794963359412129581892274995074
0,95531 66181 24509 27816 Ángulo mágico​ Magic angle.svg θ m {displaystyle {theta _{m}}} arctan ⁡ ( 2 ) = arccos ⁡ ( 1 3 ) ≈ 54 , 7356 ∘ {displaystyle arctan left({sqrt {2}}right)=arccos left({sqrt {tfrac {1}{3}}}right)approx textstyle {54,7356}^{circ }} arctan(sqrt(2)) T A195696 [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...] 0.95531661812450927816385710251575775
0,59634 73623 23194 07434 ​ Constante de Euler-Gompertz ​ G {displaystyle {G}} e E i ( − 1 ) = ∫ 0 ∞ e − n 1 + n d n = 1 1 + 1 1 + 1 1 + 2 1 + 2 1 + 3 1 + 3 1 + 4 / . . . {displaystyle -emathrm {Ei} (-1)=int limits _{0}^{infty }{frac {e^{-n}}{1{+}n}},dn=textstyle {frac {1}{1+{frac {1}{1+{frac {1}{1+{frac {2}{1+{frac {2}{1+{frac {3}{1+{frac {3}{1+4{/...}}}}}}}}}}}}}}}} N[int[0 to ∞]
{(e^-n)/(1+n)}]
I A073003 [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...] 0.59634736232319407434107849936927937
0,69777 46579 64007 98200 ​ Constante de fracción continua, función de Bessel ​ C C F {displaystyle {C}_{CF}} I 1 ( 2 ) I 0 ( 2 ) = ∑ n = 0 ∞ n n ! n ! ∑ n = 0 ∞ 1 n ! n ! = 1 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 / . . . {displaystyle {frac {I_{1}(2)}{I_{0}(2)}}={frac {sum limits _{n=0}^{infty }{frac {n}{n!n!}}}{sum limits _{n=0}^{infty }{frac {1}{n!n!}}}}=textstyle {frac {1}{1+{frac {1}{2+{frac {1}{3+{frac {1}{4+{frac {1}{5+{frac {1}{6+1{/...}}}}}}}}}}}}}} (Sum {n=0 to ∞}
n/(n!n!)) /
(Sum {n=0 to ∞}
1/(n!n!))
I A052119 [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;p+1], p∈ℕ
0.69777465796400798200679059255175260
0,36651 29205 81664 32701 Mediana distribución de Gumbel ​ GumbelDichteF.svg l l 2 {displaystyle {ll_{2}}} ln ⁡ ( ln ⁡ ( 2 ) ) {displaystyle -ln(ln(2))} -ln(ln(2)) A074785 [0;2,1,2,1,2,6,1,6,6,2,2,2,1,12,1,8,1,1,3,1,...] 0.36816512920566432701243915823266947
0,64624 54398 94813 30426 ​ Constante de Masser-Gramain ​ C {displaystyle {C}} γ β ( 1 ) + β ′ ( 1 ) = π ( − ln ⁡ Γ ( 1 4 ) + 3 4 π + 1 2 ln ⁡ 2 + 1 2 γ ) {displaystyle gamma {beta }(1){+}{beta }'(1)=pi !left(-!ln Gamma ({tfrac {1}{4}})+{tfrac {3}{4}}pi +{tfrac {1}{2}}ln 2+{tfrac {1}{2}}gamma right)} = π ( − ln ⁡ ( 1 4 ! ) + 3 4 ln ⁡ π 3 2 ln ⁡ 2 + 1 2 γ ) {displaystyle =pi !left(-!ln({tfrac {1}{4}}!)+{tfrac {3}{4}}ln pi -{tfrac {3}{2}}ln 2+{tfrac {1}{2}},gamma right)} γ = Constante de Euler–Mascheroni = 0,5772156649... {displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}} β() = Función beta, Γ() = Función Gamma Pi/4*(2*Gamma
+ 2*Log[2]
+ 3*Log[Pi]
- 4 Log[Gamma[1/4]])
A086057 [0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...] 0.64624543989481330426647339684579279
0.69034 71261 14964 31946 Límite superior exponencial iterado ​ TetrationConvergence2D.png H 2 n + 1 {displaystyle {H}_{2n+1}} lim n → H 2 n + 1 = ( 1 2 ) ( 1 3 ) ( 1 4 ) ⋅ ( 1 2 n + 1 ) = 2 − 3 − 4 ⋅ 2 n − 1 {displaystyle lim _{nto infty }{H}_{2n+1}=textstyle left({frac {1}{2}}right)^{left({frac {1}{3}}right)^{left({frac {1}{4}}right)^{cdot ^{cdot ^{left({frac {1}{2n+1}}right)}}}}}={2}^{-3^{-4^{cdot ^{cdot ^{-2n-1}}}}}} 2^-3^-4^-5^-6^
-7^-8^-9^-10^
-11^-12^-13 …
A242760 [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...] 0.69034712611496431946732843846418942
0,65836 55992 Límite inferior exponencial iterado ​ H 2 n {displaystyle {H}_{2n}} lim n → H 2 n = ( 1 2 ) ( 1 3 ) ( 1 4 ) ⋅ ( 1 2 n ) = 2 − 3 − 4 ⋅ 2 n {displaystyle lim _{nto infty }{H}_{2n}=textstyle left({frac {1}{2}}right)^{left({frac {1}{3}}right)^{left({frac {1}{4}}right)^{cdot ^{cdot ^{left({frac {1}{2n}}right)}}}}}={2}^{-3^{-4^{cdot ^{cdot ^{-2n}}}}}} 2^-3^-4^-5^-6^
-7^-8^-9^-10^
-11^-12 …
[0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...] 0.6583655992...
2,71828 18284 59045 23536 ​ Número e, constante de Euler ​ Exp derivative at 0.svg e {displaystyle {e}} n = 0 ∞ 1 n ! = 1 0 ! + 1 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + ⋯ {displaystyle sum _{n=0}^{infty }{frac {1}{n!}}={frac {1}{0!}}+{frac {1}{1}}+{frac {1}{2!}}+{frac {1}{3!}}+{frac {1}{4!}}+{frac {1}{5!}}+cdots } 2 ∏ n = 1 ∞ i = 1 2 n − 1 ( 2 n + 2 i ) ∏ i = 1 2 n − 1 ( 2 n + 2 i − 1 ) 2 n = 2 4 3 6 ⋅ 8 5 ⋅ 7 4 10 ⋅ 12 ⋅ 14 ⋅ 16 9 ⋅ 11 ⋅ 13 ⋅ 15 8 ⋯ {displaystyle 2!prod _{n=1}^{infty }!!textstyle {sqrt[{2^{n}}]{frac {prod _{i=1}^{2^{n-1}}(2^{n}+2i)}{prod _{i=1}^{2^{n-1}}!(2^{n}+2i-1)}}}=2{sqrt {frac {4}{3}}}{sqrt[{4}]{frac {6cdot 8}{5cdot 7}}}{sqrt[{8}]{frac {10cdot 12cdot 14cdot 16}{9cdot 11cdot 13cdot 15}}}cdots } Sum[n=0 to ∞]
{1/n!}
T A001113 [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [2;1,2p,1], p∈ℕ
1618 2.71828182845904523536028747135266250
2,74723 82749 32304 33305 Raíces anidadas de Ramanujan R5 R 5 {displaystyle R_{5}} 5 + 5 + 5 − 5 + 5 + 5 + 5 − = 2 + 5 + 15 − 6 5 2 {displaystyle scriptstyle {sqrt {5+{sqrt {5+{sqrt {5-{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5-cdots }}}}}}}}}}}}}};=textstyle {frac {2+{sqrt {5}}+{sqrt {15-6{sqrt {5}}}}}{2}}} (2+sqrt(5)
+sqrt(15
-6 sqrt(5)))/2
A [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] 2.74723827493230433305746518613420282
2,23606 79774 99789 69640​ Raíz cuadrada de cinco
Suma de Gauss ​
Pinwheel 1.svg 5 {displaystyle {sqrt {5}}} ( n = 5 ) ∑ k = 0 n − 1 e 2 k 2 π i n = 1 + e 2 π i 5 + e 8 π i 5 + e 18 π i 5 + e 32 π i 5 {displaystyle scriptstyle (n=5)displaystyle sum _{k=0}^{n-1}e^{frac {2k^{2}pi i}{n}}=1+e^{frac {2pi i}{5}}+e^{frac {8pi i}{5}}+e^{frac {18pi i}{5}}+e^{frac {32pi i}{5}}} Sum[k=0 to 4]
{e^(2k^2 pi i/5)}
A A002163 [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;4,...]
2.23606797749978969640917366873127624
1,09864 19643 94156 48573 ​ Constante París C P a {displaystyle C_{Pa}} n = 2 ∞ 2 φ φ + φ n , φ = F i {displaystyle prod _{n=2}^{infty }{frac {2varphi }{varphi +varphi _{n}}};,;varphi {=}{Fi}} con φ n = 1 + φ n − 1 {displaystyle varphi _{n}{=}{sqrt {1{+}varphi _{n{-}1}}}} y φ 1 = 1 {displaystyle varphi _{1}{=}1}


A105415 [1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] 1.09864196439415648573466891734359621
0,11494 20448 53296 20070 ​ Constante de Kepler–Bouwkamp ​ Regular polygons qtl4.svg ρ {displaystyle {rho }} n = 3 ∞ cos ⁡ ( π n ) = cos ⁡ ( π 3 ) cos ⁡ ( π 4 ) cos ⁡ ( π 5 ) . . . {displaystyle prod _{n=3}^{infty }cos left({frac {pi }{n}}right)=cos left({frac {pi }{3}}right)cos left({frac {pi }{4}}right)cos left({frac {pi }{5}}right)...} prod[n=3 to ∞]
{cos(pi/n)}



A085365 [0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] 0.11494204485329620070104015746959874
1,28242 71291 00622 63687 ​ Constante de Glaisher–Kinkelin ​


A {displaystyle {A}} e 1 12 − ζ ( − 1 ) = e 1 8 − 1 2 ∑ n = 0 ∞ 1 n + 1 ∑ k = 0 n ( − 1 ) k ( n k ) ( k + 1 ) 2 ln ⁡ ( k + 1 ) {displaystyle e^{{frac {1}{12}}-zeta ^{prime }(-1)}=e^{{frac {1}{8}}-{frac {1}{2}}sum limits _{n=0}^{infty }{frac {1}{n+1}}sum limits _{k=0}^{n}left(-1right)^{k}{binom {n}{k}}left(k+1right)^{2}ln(k+1)}} e^(1/2-zeta´{-1}) T ? A074962 [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] 1878 1.28242712910062263687534256886979172
3,62560 99082 21908 31193 ​ Gamma(1/4) ​ Gamma abs 3D.png Γ ( 1 4 ) {displaystyle Gamma ({tfrac {1}{4}})} 4 ( 1 4 ) ! = ( 2 π ) 3 4 ∏ k = 1 ∞ tanh ⁡ ( π k 2 ) {displaystyle 4left({frac {1}{4}}right)!=(2pi)^{frac {3}{4}}prod _{k=1}^{infty }tanh left({frac {pi k}{2}}right)} 4(1/4)! T A068466 [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] 1729 3.62560990822190831193068515586767200
1,78107 24179 90197 98523 ​ Exp.gamma por función G-Barnes ​ e γ {displaystyle e^{gamma }} n = 1 ∞ e 1 n 1 + 1 n = ∏ n = 0 ∞ ( ∏ k = 0 n ( k + 1 ) ( − 1 ) k + 1 ( n k ) ) 1 n + 1 = {displaystyle prod _{n=1}^{infty }{frac {e^{frac {1}{n}}}{1+{tfrac {1}{n}}}}=prod _{n=0}^{infty }left(prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n choose k}}right)^{frac {1}{n+1}}=}

( 2 1 ) 1 / 2 ( 2 2 1 ⋅ 3 ) 1 / 3 ( 2 3 ⋅ 4 1 ⋅ 3 3 ) 1 / 4 ( 2 4 ⋅ 4 4 1 ⋅ 3 6 ⋅ 5 ) 1 / 5 . . . {displaystyle textstyle left({frac {2}{1}}right)^{1/2}left({frac {2^{2}}{1cdot 3}}right)^{1/3}left({frac {2^{3}cdot 4}{1cdot 3^{3}}}right)^{1/4}left({frac {2^{4}cdot 4^{4}}{1cdot 3^{6}cdot 5}}right)^{1/5}...}

Prod[n=1 to ∞]
{e^(1/n)}/{1 + 1/n}
A073004 [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] 1900 1.78107241799019798523650410310717954
0,18785 96424 62067 12024 ​ MRB Constant, Marvin Ray Burns ​​​ MRB-Gif.gif C M R B {displaystyle C_{{}_{MRB}}} n = 1 ∞ ( − 1 ) n ( n 1 / n − 1 ) = − 1 1 + 2 2 − 3 3 + 4 4 . . . {displaystyle sum _{n=1}^{infty }({-}1)^{n}(n^{1/n}{-}1)=-{sqrt[{1}]{1}}+{sqrt[{2}]{2}}-{sqrt[{3}]{3}}+{sqrt[{4}]{4}},...} Sum[n=1 to ∞]
{(-1)^n (n^(1/n)-1)}
A037077 [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] 1999 0.18785964246206712024851793405427323
1,01494 16064 09653 62502 ​ Constante de Gieseking ​ π ln ⁡ β {displaystyle {pi ln beta }} 3 3 4 ( 1 − n = 0 ∞ 1 ( 3 n + 2 ) 2 + ∑ n = 1 ∞ 1 ( 3 n + 1 ) 2 ) = {displaystyle {frac {3{sqrt {3}}}{4}}left(1-sum _{n=0}^{infty }{frac {1}{(3n+2)^{2}}}+sum _{n=1}^{infty }{frac {1}{(3n+1)^{2}}}right)=}

3 3 4 ( 1 − 1 2 2 + 1 4 2 − 1 5 2 + 1 7 2 ± . . . ) = ∫ 0 2 π 3 ln ( 2 cos ⁡ t 2 ) d t {displaystyle textstyle {frac {3{sqrt {3}}}{4}}left(1{-}{frac {1}{2^{2}}}{+}{frac {1}{4^{2}}}{-}{frac {1}{5^{2}}}{+}{frac {1}{7^{2}}}{pm }...right)=displaystyle !int _{0}^{frac {2pi }{3}}!ln !left(2cos {tfrac {t}{2}}right){mathrm {d} }t}

sqrt(3)*3/4 *(1
-Sum[n=0 to ∞]
{1/((3n+2)^2)}
+Sum[n=1 to ∞]
{1/((3n+1)^2)})
A143298 [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] 1912 1.01494160640965362502120255427452028
2,62205 75542 92119 81046 ​ Constante Lemniscata ​ Lemniscate of Gerono.svg ϖ {displaystyle {varpi }} π G = 4 2 π Γ ( 5 4 ) 2 = 1 4 2 π Γ ( 1 4 ) 2 = 4 2 π ( 1 4 ! ) 2 {displaystyle pi ,{G}=4{sqrt {tfrac {2}{pi }}},Gamma {left({tfrac {5}{4}}right)^{2}}={tfrac {1}{4}}{sqrt {tfrac {2}{pi }}},Gamma {left({tfrac {1}{4}}right)^{2}}=4{sqrt {tfrac {2}{pi }}}left({tfrac {1}{4}}!right)^{2}} 4 sqrt(2/pi)
((1/4)!)^2
T A062539 [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] 1798 2.62205755429211981046483958989111941
0,83462 68416 74073 18628 ​ Constante de Gauss ​



G {displaystyle {G}} 1 a g m ( 1 , 2 ) = 4 2 ( 1 4 ! ) 2 π 3 / 2 a g m : M e d i a a r i t m e ´ t i c a − g e o m e ´ t r i c a {displaystyle {underset {agm:;Media;aritm{acute {e}}tica-geom{acute {e}}trica}{{frac {1}{mathrm {agm} (1,{sqrt {2}})}}={frac {4{sqrt {2}},({tfrac {1}{4}}!)^{2}}{pi ^{3/2}}}}}} (4 sqrt(2)
((1/4)!)^2)
/pi^(3/2)
T A014549 [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] 1799 0.83462684167407318628142973279904680
0,00787 49969 97812 3844 ​ Constante de Chaitin ​ ProgramTree.svg Ω {displaystyle {Omega }} p ∈ P 2 − | p | | p | : T a m a n ~ o d e l p r o g r a m a P : C o n j u n t o d e t o d o s l o s p r o g r a m a s q u e s e p a r a n . p : P r o g r a m a q u e s e p a r a {displaystyle sum _{pin P}2^{-|p|}{overset {p:;{Programa;que;se;para}}{underset {P:;Conjunto;de;todos;los;programas;que;se;paran.}{scriptstyle {|p|}:;Tama{tilde {n}}o;del;programa}}}}
Ver también: Problema de la parada
T A100264 [0; 126, 1, 62, 5, 5, 3, 3, 21, 1, 4, 1] 1975 0.0078749969978123844
2,80777 02420 28519 36522 ​ Constante Fransén–Robinson ​


F {displaystyle {F}} 0 ∞ 1 Γ ( x ) d x . = e + ∫ 0 ∞ e − x π 2 + ln 2 ⁡ x d x {displaystyle int _{0}^{infty }{frac {1}{Gamma (x)}},dx.=e+int _{0}^{infty }{frac {e^{-x}}{pi ^{2}+ln ^{2}x}},dx} N[int[0 to ∞]
{1/Gamma(x)}]
A058655 [2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] 1978 2.80777024202851936522150118655777293
1,01734 30619 84449 13971 ​ Zeta(6) ​ Zeta.png ζ ( 6 ) {displaystyle zeta (6)} π 6 945 = ∏ n = 1 ∞ 1 1 − p n − 6 p n : p r i m o = 1 1 − 2 − 6 ⋅ 1 1 − 3 − 6 ⋅ 1 1 − 5 − 6 . . . {displaystyle {frac {pi ^{6}}{945}}=prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{frac {1}{{1-p_{n}}^{-6}}}}={frac {1}{1{-}2^{-6}}}{cdot }{frac {1}{1{-}3^{-6}}}{cdot }{frac {1}{1{-}5^{-6}}}...}

= ∑ n = 1 ∞ 1 n 6 = 1 1 6 + 1 2 6 + 1 3 6 + 1 4 6 + 1 5 6 + . . . {displaystyle textstyle =sum _{n=1}^{infty }{frac {1}{n^{6}}}={frac {1}{1^{6}}}+{frac {1}{2^{6}}}+{frac {1}{3^{6}}}+{frac {1}{4^{6}}}+{frac {1}{5^{6}}}+...}

Prod[n=1 to ∞]
{1/(1
-prime(n)^-6)}
T A013664 [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] 1.01734306198444913971451792979092052
1,64872 12707 00128 14684 ​ Raíz cuadrada del número e ​


e {displaystyle {sqrt {e}}} n = 0 ∞ 1 2 n n ! = ∑ n = 0 ∞ 1 ( 2 n ) ! ! = 1 1 + 1 2 + 1 8 + 1 48 + ⋯ {displaystyle sum _{n=0}^{infty }{frac {1}{2^{n}n!}}=sum _{n=0}^{infty }{frac {1}{(2n)!!}}={frac {1}{1}}+{frac {1}{2}}+{frac {1}{8}}+{frac {1}{48}}+cdots } sum[n=0 to ∞]
{1/(2^n n!)}
T A019774 [1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...]
= [1;1,1,1,4p+1], p∈ℕ
1.64872127070012814684865078781416357
i... ​ Número imaginario​ Complex numbers imaginary unit.svg i {displaystyle {i}} 1 = ln ⁡ ( − 1 ) π e i π = − 1 {displaystyle {sqrt {-1}}={frac {ln(-1)}{pi }}qquad qquad mathrm {e} ^{i,pi }=-1} sqrt(-1) CI 1501
à
1576
i
4,81047 73809 65351 65547 Constante de John ​

γ {displaystyle gamma } i i = i − i = i 1 i = ( i i ) − 1 = e π 2 {displaystyle {sqrt[{i}]{i}}=i^{-i}=i^{frac {1}{i}}=(i^{i})^{-1}=e^{frac {pi }{2}}} e^(π/2) T A042972 [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...] 4.81047738096535165547303566670383313
0.49801 56681 18356 04271

0.15494 98283 01810 68512 i

Factorial de i i ! {displaystyle {i},!} Γ ( 1 + i ) = i Γ ( i ) = ∫ 0 ∞ t i e t d t {displaystyle Gamma (1+i)=i,Gamma (i)=int limits _{0}^{infty }{frac {t^{i}}{e^{t}}}mathrm {d} t} Gamma(1+i) C A212877
A212878
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i
0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i
0,43828 29367 27032 11162

0,36059 24718 71385 485 i ​

Tetración infinita de i


i {displaystyle {}^{infty }{i}} lim n → n i = lim n → i i ⋅ i ⏟ n {displaystyle lim _{nto infty }{}^{n}i=lim _{nto infty }underbrace {i^{i^{cdot ^{cdot ^{i}}}}} _{n}} i^i^i^... C A077589
A077590
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1,...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i
0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i
0,56755 51633 06957 82538 Módulo de la
Tetración infinita de i
| ∞ i | {displaystyle |{}^{infty }{i}|} lim n → | n i | = | lim n → i i ⋅ i ⏟ n | {displaystyle lim _{nto infty }left|{}^{n}iright|=left|lim _{nto infty }underbrace {i^{i^{cdot ^{cdot ^{i}}}}} _{n}right|} Mod(i^i^i^...) A212479 [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] 0.56755516330695782538461314419245334
0,26149 72128 47642 78375 ​ Constante de Meissel-Mertens ​ Meissel–Mertens constant definition.svg M {displaystyle {M}} lim n → ( ∑ p ≤ n 1 p − ln ⁡ ( ln ⁡ ( n ) ) ) = γ + ∑ p ( ln ( 1 − 1 p ) + 1 p ) γ : Constante de Euler , p : primo {displaystyle lim _{nrightarrow infty }!!left(sum _{pleq n}{frac {1}{p}}!-ln(ln(n))!right)!!={underset {!!!!gamma:,{text{Constante de Euler}},,,p:,{text{primo}}}{!gamma !+!!sum _{p}!left(!ln !left(!1!-!{frac {1}{p}}!right)!!+!{frac {1}{p}}!right)}}} gamma+
Sum[n=1 to ∞]
{ln(1-1/prime(n))
+1/prime(n)}
A077761 [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...] 1866
y
1873
0.26149721284764278375542683860869585
1,92878 00... ​ Constante de Wright ​ ω {displaystyle {omega }} ⌊ 2 2 2 ⋅ 2 ω ⌋ {displaystyle leftlfloor 2^{2^{2^{cdot ^{cdot ^{2^{omega }}}}}}rightrfloor } = primos: {displaystyle quad } ⌊ 2 ω ⌋ {displaystyle leftlfloor 2^{omega }rightrfloor } =3, ⌊ 2 2 ω ⌋ {displaystyle leftlfloor 2^{2^{omega }}rightrfloor } =13, ⌊ 2 2 2 ω ⌋ {displaystyle leftlfloor 2^{2^{2^{omega }}}rightrfloor } =16381, {displaystyle dots } A086238 [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] 1.9287800..
0,37395 58136 19202 28805 ​ Constante de Artin ​ C A r t i n {displaystyle {C}_{Artin}} n = 1 ∞ ( 1 − 1 p n ( p n − 1 ) ) p n = primos {displaystyle prod _{n=1}^{infty }left(1-{frac {1}{p_{n}(p_{n}-1)}}right)quad p_{n}scriptstyle {text{ = primos}}} Prod[n=1 to ∞]
{1-1/(prime(n)
(prime(n)-1))}
A005596 [0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] 1999 0.37395581361920228805472805434641641
4,66920 16091 02990 67185 ​ Constante δ de Feigenbaum δ ​ LogisticMap BifurcationDiagram.png δ {displaystyle {delta }} lim n → x n + 1 − x n x n + 2 − x n + 1 x ∈ ( 3 , 8284 ; 3 , 8495 ) {displaystyle lim _{nto infty }{frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}qquad scriptstyle xin (3,8284;,3,8495)}

x n + 1 = a x n ( 1 − x n ) o x n + 1 = a sin ⁡ ( x n ) {displaystyle scriptstyle x_{n+1}=,ax_{n}(1-x_{n})quad {o}quad x_{n+1}=,asin(x_{n})}

A006890 [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] 1975 4.66920160910299067185320382046620161
2,50290 78750 95892 82228 ​ Constante α de Feigenbaum ​ Mandelbrot zoom.gif α {displaystyle alpha } lim n → d n d n + 1 {displaystyle lim _{nto infty }{frac {d_{n}}{d_{n+1}}}} A006891 [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] 1979 2.50290787509589282228390287321821578
5,97798 68121 78349 12266 ​ Constante hexagonal Madelung 2


H 2 ( 2 ) {displaystyle {H}_{2}(2)} π ln ⁡ ( 3 ) 3 {displaystyle pi ln(3){sqrt {3}}} Pi Log[3]Sqrt[3] A086055 [5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] 5.97798681217834912266905331933922774
0,96894 61462 59369 38048 Constante Beta(3) ​ β ( 3 ) {displaystyle {beta }(3)} π 3 32 = ∑ n = 1 ∞ 1 n + 1 ( − 1 + 2 n ) 3 = 1 1 3 − 1 3 3 + 1 5 3 − 1 7 3 + . . . {displaystyle {frac {pi ^{3}}{32}}=sum _{n=1}^{infty }{frac {-1^{n+1}}{(-1+2n)^{3}}}={frac {1}{1^{3}}}{-}{frac {1}{3^{3}}}{+}{frac {1}{5^{3}}}{-}{frac {1}{7^{3}}}{+}...} Sum[n=1 to ∞]
{(-1)^(n+1)
/(-1+2n)^3}
T A153071 [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] 0.96894614625936938048363484584691860
1,90216 05831 04 ​ Constante de Brun 2
= Σ inverso
primos gemelos ​
Bruns-constant.svg B 2 {displaystyle {B}_{,2}} ( 1 p + 1 p + 2 ) p , p + 2 : p r i m o s = ( 1 3 + 1 5 ) + ( 1 5 + 1 7 ) + ( 1 11 + 1 13 ) + . . . {displaystyle textstyle {underset {p,,p+2:,{primos}}{sum ({frac {1}{p}}+{frac {1}{p+2}})}}=({frac {1}{3}}{+}{frac {1}{5}})+({tfrac {1}{5}}{+}{tfrac {1}{7}})+({tfrac {1}{11}}{+}{tfrac {1}{13}})+...} N[prod[n=2 to 0,870∞]
[1-1/(prime(n)
-1)^2]]
A065421 [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] 1919 1.902160583104
0,87058 83799 75 ​ Constante de Brun 4
= Σ inverso
primos gemelos ​




B 4 {displaystyle {B}_{,4}} ( 1 5 + 1 7 + 1 11 + 1 13 ) p , p + 2 , p + 6 , p + 8 : p r i m o s + ( 1 11 + 1 13 + 1 17 + 1 19 ) + … {displaystyle {underset {p,,p+2,,p+6,,p+8:,{primos}}{left({tfrac {1}{5}}+{tfrac {1}{7}}+{tfrac {1}{11}}+{tfrac {1}{13}}right)}}+left({tfrac {1}{11}}+{tfrac {1}{13}}+{tfrac {1}{17}}+{tfrac {1}{19}}right)+dots } A213007 [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] 1919 0.87058837997
22,45915 77183 61045 47342 pi^e ​

π e {displaystyle pi ^{e}} π e {displaystyle pi ^{e}} pi^e A059850 [22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] 22.4591577183610454734271522045437350
3,14159 26535 89793 23846 ​ Número π, constante de Arquímedes ​ · Sine cosine one period.svg π {displaystyle {pi }} lim n → 2 n 2 − 2 + 2 + ... + 2 ⏟ n {displaystyle lim _{nto infty },2^{n}underbrace {sqrt {2-{sqrt {2+{sqrt {2+{text{...}}+{sqrt {2}}}}}}}} _{n}} Sum[n=0 to ∞]
{(-1)^n 4/(2n+1)}
T A000796 [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] -250 ~ 3.14159265358979323846264338327950288
0,28878 80950 86602 42127 ​ Flajolet and Richmond ​


Q {displaystyle {Q}} n = 1 ∞ ( 1 − 1 2 n ) = ( 1 − 1 2 1 ) ( 1 − 1 2 2 ) ( 1 − 1 2 3 ) . . . {displaystyle prod _{n=1}^{infty }left(1-{frac {1}{2^{n}}}right)=left(1{-}{frac {1}{2^{1}}}right)left(1{-}{frac {1}{2^{2}}}right)left(1{-}{frac {1}{2^{3}}}right)...} prod[n=1 to ∞]
{1-1/2^n}
A048651 [0;3,2,6,4,1,2,1,9,2,1,2,3,2,3,5,1,2,1,1,6,1,...] 1992 0.28878809508660242127889972192923078
0,06598 80358 45312 53707 ​ Límite inferior de Tetración ​ Infinite power tower.svg e − e {displaystyle {e}^{-e}} ( 1 e ) e {displaystyle left({frac {1}{e}}right)^{e}} 1/(e^e) A073230 [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] 0.06598803584531253707679018759684642
0,31830 98861 83790 67153 ​ Inverso de Pi, Ramanujan​


1 π {displaystyle {frac {1}{pi }}} 2 2 9801 ∑ n = 0 ∞ ( 4 n ) ! ( 1103 + 26390 n ) ( n ! ) 4 396 4 n {displaystyle {frac {2{sqrt {2}}}{9801}}sum _{n=0}^{infty }{frac {(4n)!,(1103+26390;n)}{(n!)^{4},396^{4n}}}} 2 sqrt(2)/9801
*Sum[n=0 to ∞]
{((4n)!/n!^4)*(1103+
26390n)/396^(4n)}
T A049541 [0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] 0.31830988618379067153776752674502872
0,63661 97723 67581 34307 ​

Constante de Buffon ​ Buffon2.png Aguja interseca línea 2 π {displaystyle {frac {2}{pi }}} 2 2 ⋅ 2 + 2 2 ⋅ 2 + 2 + 2 2 ⋯ {displaystyle {frac {sqrt {2}}{2}}cdot {frac {sqrt {2+{sqrt {2}}}}{2}}cdot {frac {sqrt {2+{sqrt {2+{sqrt {2}}}}}}{2}}cdots }

Producto de François Viète

2/Pi T A060294 [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] 1540
a
1603
0.63661977236758134307553505349005745
0,47494 93799 87920 65033 ​ Constante de Weierstrass ​


σ ( 1 2 ) {displaystyle sigma ({tfrac {1}{2}})} e π 8 π 4 ∗ 2 3 / 4 ( 1 4 ! ) 2 {displaystyle {frac {e^{frac {pi }{8}}{sqrt {pi }}}{4*2^{3/4}{({frac {1}{4}}!)^{2}}}}} (E^(Pi/8) Sqrt[Pi])
/(4 2^(3/4) (1/4)!^2)
A094692 [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...] 1872 ? 0.47494937998792065033250463632798297
0,57721 56649 01532 86060 ​ Constante de Euler-Mascheroni​ Euler-Mas.jpg γ {displaystyle {gamma }} n = 1 ∞ k = 0 ∞ ( − 1 ) k 2 n + k = ∑ n = 1 ∞ 1 n − ln ⁡ ( n ) = ∫ 0 1 − ln ⁡ ( ln ⁡ 1 x ) d x {displaystyle sum _{n=1}^{infty }sum _{k=0}^{infty }{frac {(-1)^{k}}{2^{n}+k}}!=!sum _{n=1}^{infty }{frac {1}{n}}-ln(n)!=!!int _{0}^{1}!!-ln(ln {frac {1}{x}}),dx} sum[n=1 to ∞]
|sum[k=0 to ∞]
{((-1)^k)/(2^n+k)}
A001620 [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,...] 1735 0.57721566490153286060651209008240243
1,70521 11401 05367 76428 ​ Constante de Niven ​ C {displaystyle {C}} 1 + ∑ n = 2 ∞ ( 1 − 1 ζ ( n ) ) {displaystyle 1+sum _{n=2}^{infty }left(1-{frac {1}{zeta (n)}}right)} 1+ Sum[n=2 to ∞]
{1-(1/Zeta(n))}
A033150 [1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...] 1969 1.70521114010536776428855145343450816
0,60459 97880 78072 61686 ​ Relación entre el área de un triángulo equilátero y su círculo inscrito. Fano plane.svg π 3 3 {displaystyle {frac {pi }{3{sqrt {3}}}}} n = 1 ∞ 1 n ( 2 n n ) = 1 − 1 2 + 1 4 − 1 5 + 1 7 − 1 8 + ⋯ {displaystyle sum _{n=1}^{infty }{frac {1}{n{2n choose n}}}=1-{frac {1}{2}}+{frac {1}{4}}-{frac {1}{5}}+{frac {1}{7}}-{frac {1}{8}}+cdots } Serie de Dirichlet Sum[1/(n
Binomial[2 n, n])
, {n, 1, ∞}]
T A073010 [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...] 0.60459978807807261686469275254738524
3,24697 96037 17467 06105 ​ Constante Silver de Tutte–Beraha ​ ς {displaystyle varsigma } 2 + 2 cos ⁡ 2 π 7 = 2 + 2 + 7 + 7 7 + 7 7 + ⋯ 3 3 3 1 + 7 + 7 7 + 7 7 + ⋯ 3 3 3 {displaystyle 2+2cos {frac {2pi }{7}}=textstyle 2+{frac {2+{sqrt[{3}]{7+7{sqrt[{3}]{7+7{sqrt[{3}]{,7+cdots }}}}}}}{1+{sqrt[{3}]{7+7{sqrt[{3}]{7+7{sqrt[{3}]{,7+cdots }}}}}}}}} 2+2 cos(2Pi/7) A A116425 [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] 3.24697960371746706105000976800847962
0,69314 71805 59945 30941 ​ Logaritmo natural de 2 Alternating Harmonic Series.PNG L n ( 2 ) {displaystyle Ln(2)} n = 1 ∞ 1 n 2 n = ∑ n = 1 ∞ ( − 1 ) n + 1 n = 1 1 − 1 2 + 1 3 − 1 4 + ⋯ {displaystyle sum _{n=1}^{infty }{frac {1}{n2^{n}}}=sum _{n=1}^{infty }{frac {({-}1)^{n+1}}{n}}={frac {1}{1}}-{frac {1}{2}}+{frac {1}{3}}-{frac {1}{4}}+{cdots }} Sum[n=1 to ∞]
{(-1)^(n+1)/n}
T A002162 [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...] 1550
a
1617
0.69314718055994530941723212145817657
0,66016 18158 46869 57392 ​ Constante de los primos gemelos ​


C 2 {displaystyle {C}_{2}} p = 3 ∞ p ( p − 2 ) ( p − 1 ) 2 {displaystyle prod _{p=3}^{infty }{frac {p(p-2)}{(p-1)^{2}}}} prod[p=3 to ∞]
{p(p-2)/(p-1)^2
A005597 [0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] 1922 0.66016181584686957392781211001455577
0,66274 34193 49181 58097 ​ Constante límite de Laplace​ Laplace limit.png λ {displaystyle {lambda }} x e x 2 + 1 x 2 + 1 + 1 = 1 {displaystyle {frac {x;e^{sqrt {x^{2}+1}}}{{sqrt {x^{2}+1}}+1}}=1} (x e^sqrt(x^2+1))
/(sqrt(x^2+1)+1)
= 1
A033259 [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...] 1782 ~ 0.66274341934918158097474209710925290
0,28016 94990 23869 13303 ​ Constante de Bernstein​


β {displaystyle {beta }} 1 2 π {displaystyle {frac {1}{2{sqrt {pi }}}}} 1/(2 sqrt(pi)) T A073001 [0;3,1,1,3,9,6,3,1,3,14,34,2,1,1,60,2,2,1,1,...] 1913 0.28016949902386913303643649123067200
0,78343 05107 12134 40705 ​ Sophomore's Dream 1
Johann Bernoulli ​
Reve etudiant.svg I 1 {displaystyle {I}_{1}} 0 1 x − x d x = ∑ n = 1 ∞ ( − 1 ) n + 1 n n = 1 1 1 − 1 2 2 + 1 3 3 − {displaystyle int _{0}^{1}!x^{-x},dx=sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n^{n}}}={frac {1}{1^{1}}}-{frac {1}{2^{2}}}+{frac {1}{3^{3}}}-{cdots }} Sum[n=1 to ∞]
{-(-1)^n /n^n}
A083648 [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...] 1697 0.78343051071213440705926438652697546
1,29128 59970 62663 54040 ​ Sophomore's Dream 2 Johann Bernoulli​ Socd 001.png I 2 {displaystyle {I}_{2}} 0 1 1 x x d x = ∑ n = 1 ∞ 1 n n = 1 1 1 + 1 2 2 + 1 3 3 + 1 4 4 + ⋯ {displaystyle int _{0}^{1}!{frac {1}{x^{x}}},dx=sum _{n=1}^{infty }{frac {1}{n^{n}}}={frac {1}{1^{1}}}+{frac {1}{2^{2}}}+{frac {1}{3^{3}}}+{frac {1}{4^{4}}}+cdots } Sum[n=1 to ∞]
{1/(n^n)}
A073009 [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...] 1697 1.29128599706266354040728259059560054
0,82246 70334 24113 21823 ​ Constante Nielsen-Ramanujan​


ζ ( 2 ) 2 {displaystyle {frac {{zeta }(2)}{2}}} π 2 12 = ∑ n = 1 ∞ ( − 1 ) n + 1 n 2 = 1 1 2 − 1 2 2 + 1 3 2 − 1 4 2 + 1 5 2 − . . . {displaystyle {frac {pi ^{2}}{12}}=sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n^{2}}}={frac {1}{1^{2}}}{-}{frac {1}{2^{2}}}{+}{frac {1}{3^{2}}}{-}{frac {1}{4^{2}}}{+}{frac {1}{5^{2}}}{-}...} Sum[n=1 to ∞]
{((-1)^(n+1))/n^2}
T A072691 [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...] 1909 0.82246703342411321823620758332301259
0,78539 81633 97448 30961 ​ Beta(1) ​ Loglogisticcdf.svg β ( 1 ) {displaystyle {beta }(1)} π 4 = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 = 1 1 − 1 3 + 1 5 − 1 7 + 1 9 − {displaystyle {frac {pi }{4}}=sum _{n=0}^{infty }{frac {(-1)^{n}}{2n+1}}={frac {1}{1}}-{frac {1}{3}}+{frac {1}{5}}-{frac {1}{7}}+{frac {1}{9}}-cdots } Sum[n=0 to ∞]
{(-1)^n/(2n+1)}
T A003881 [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...] 1805
a
1859
0.78539816339744830961566084581987572
0,91596 55941 77219 01505 ​ Constante de Catalan ​ ​ ​


C {displaystyle {C}} 0 1 ∫ 0 1 1 1 + x 2 y 2 d x d y = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) 2 = 1 1 2 − 1 3 2 + ⋯ {displaystyle int _{0}^{1}!!int _{0}^{1}!!{frac {1}{1{+}x^{2}y^{2}}},dx,dy=!sum _{n=0}^{infty }!{frac {(-1)^{n}}{(2n{+}1)^{2}}}!=!{frac {1}{1^{2}}}{-}{frac {1}{3^{2}}}{+}{cdots }} Sum[n=0 to ∞]
{(-1)^n/(2n+1)^2}
T ? A006752 [0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...] 1864 0.91596559417721901505460351493238411
1,05946 30943 59295 26456 ​ Intervalo entre semitonos de la escala musical ​ ​ Rast scale.svg

YB0214 Clavier tempere.png

2 12 {displaystyle {sqrt[{12}]{2}}} 440 H z . 2 1 12 2 2 12 2 3 12 2 4 12 2 5 12 2 6 12 2 7 12 2 8 12 2 9 12 2 10 12 2 11 12 2 {displaystyle scriptstyle 440,Hz.textstyle 2^{frac {1}{12}},2^{frac {2}{12}},2^{frac {3}{12}},2^{frac {4}{12}},2^{frac {5}{12}},2^{frac {6}{12}},2^{frac {7}{12}},2^{frac {8}{12}},2^{frac {9}{12}},2^{frac {10}{12}},2^{frac {11}{12}},2}

. . . D o 1 D o # R e R e # M i F a F a # S o l S o l # L a L a # S i D o 2 {displaystyle scriptstyle {color {white}...color {black}Do_{1};;Do#;,Re;,Re#;,Mi;;Fa;;Fa#;Sol;,Sol#,La;;La#;;Si;,Do_{2}}} . . . . C 1 C # D D # E F F # G G # A A # B C 2 {displaystyle scriptstyle {color {white}....color {black}C_{1};;;;C#;;;,D;;;D#;;,E;;;;,F;;;,F#;;;G;;;;G#;;;A;;;,A#;;;,B;;;C_{2}}}

2^(1/12) A A010774 [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] 1.05946309435929526456182529494634170
1,13198 82487 943 ​ Constante de Viswanath ​ C V i {displaystyle {C}_{Vi}} lim n → | a n | 1 n {displaystyle lim _{nto infty }|a_{n}|^{frac {1}{n}}} donde an = Sucesión de Fibonacci lim_(n->∞)
|a_n|^(1/n)
T ? A078416 [1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] 1997 1.1319882487943...
1,20205 69031 59594 28539 ​ Constante de Apéry​ Apéry's constant.svg ζ ( 3 ) {displaystyle zeta (3)} n = 1 ∞ 1 n 3 = 1 1 3 + 1 2 3 + 1 3 3 + 1 4 3 + 1 5 3 + ⋯ = {displaystyle sum _{n=1}^{infty }{frac {1}{n^{3}}}={frac {1}{1^{3}}}+{frac {1}{2^{3}}}+{frac {1}{3^{3}}}+{frac {1}{4^{3}}}+{frac {1}{5^{3}}}+cdots =}

1 2 ∑ n = 1 ∞ H n n 2 = 1 2 ∑ i = 1 ∞ j = 1 ∞ 1 i j ( i + j ) = ∫ 0 1 ∫ 0 1 ∫ 0 1 d x d y d z 1 − x y z {displaystyle {frac {1}{2}}sum _{n=1}^{infty }{frac {H_{n}}{n^{2}}}={frac {1}{2}}sum _{i=1}^{infty }sum _{j=1}^{infty }{frac {1}{ij(i{+}j)}}=!!int limits _{0}^{1}!!int limits _{0}^{1}!!int limits _{0}^{1}{frac {mathrm {d} xmathrm {d} ymathrm {d} z}{1-xyz}}}

Sum[n=1 to ∞]
{1/n^3}
I A010774 [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...] 1979 1.20205690315959428539973816151144999
1,22541 67024 65177 64512 ​ Gamma(3/4) ​


Γ ( 3 4 ) {displaystyle Gamma ({tfrac {3}{4}})} ( − 1 + 3 4 ) ! = ( − 1 4 ) ! {displaystyle left(-1+{frac {3}{4}}right)!=left(-{frac {1}{4}}right)!} (-1+3/4)! A068465 [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,8,...] 1.22541670246517764512909830336289053
1,25992 10498 94873 16476 ​ Raíz cúbica de dos, constante Delian Riemann surface cube root.jpg 2 3 {displaystyle {sqrt[{3}]{2}}} 2 3 {displaystyle {sqrt[{3}]{2}}} 2^(1/3) A A002580 [1;3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,...] 1.25992104989487316476721060727822835
9,86960 44010 89358 61883 Pi al Cuadrado


π 2 {displaystyle {pi }^{2}} 6 ζ ( 2 ) = 6 ∑ n = 1 ∞ 1 n 2 = 6 1 2 + 6 2 2 + 6 3 2 + 6 4 2 + ⋯ {displaystyle 6zeta (2)=6sum _{n=1}^{infty }{frac {1}{n^{2}}}={frac {6}{1^{2}}}+{frac {6}{2^{2}}}+{frac {6}{3^{2}}}+{frac {6}{4^{2}}}+cdots } 6 Sum[n=1 to ∞]
{1/n^2}
T A002388 [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...] 9.86960440108935861883449099987615114
1,41421 35623 73095 04880 ​ Raíz cuadrada de 2, constante de Pitágoras ​ Square root of 2 triangle.svg 2 {displaystyle {sqrt {2}}} n = 1 ∞ 1 + ( − 1 ) n + 1 2 n − 1 = ( 1 + 1 1 ) ( 1 − 1 3 ) ( 1 + 1 5 ) ⋯ {displaystyle prod _{n=1}^{infty }1+{frac {(-1)^{n+1}}{2n-1}}=left(1{+}{frac {1}{1}}right)left(1{-}{frac {1}{3}}right)left(1{+}{frac {1}{5}}right)cdots } prod[n=1 to ∞]
{1+(-1)^(n+1)
/(2n-1)}
A A002193 [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;2...]
< -800 1.41421356237309504880168872420969808
262 53741 26407 68743
99999 99999 99250 073 ​
Constante de Hermite-Ramanujan ​ R {displaystyle {R}} e π 163 {displaystyle e^{pi {sqrt {163}}}} e^(π sqrt(163)) T A060295 [262537412640768743;1,1333462407511,1,8,1,1,5,...] 1859 262537412640768743.999999999999250073
0,76159 41559 55764 88811 ​ Tangente hiperbólica de 1 ​ Hyperbolic Tangent.svg t h 1 {displaystyle {th},1} i tan ⁡ ( i ) = e − 1 e e + 1 e = e 2 − 1 e 2 + 1 {displaystyle -itan(i)={frac {e-{frac {1}{e}}}{e+{frac {1}{e}}}}={frac {e^{2}-1}{e^{2}+1}}} (e-1/e)/(e+1/e) T A073744 [0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...]
= [0;2p+1], p∈ℕ
0.76159415595576488811945828260479359
0,36787 94411 71442 32159 ​ Inverso del Número e ​


1 e {displaystyle {frac {1}{e}}} n = 0 ∞ ( − 1 ) n n ! = 1 0 ! − 1 1 ! + 1 2 ! − 1 3 ! + 1 4 ! − 1 5 ! + ⋯ {displaystyle sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}={frac {1}{0!}}-{frac {1}{1!}}+{frac {1}{2!}}-{frac {1}{3!}}+{frac {1}{4!}}-{frac {1}{5!}}+cdots } sum[n=2 to ∞]
{(-1)^n/n!}
T A068985 [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...]
= [0;2,1,1,2p,1], p∈ℕ
1618 0.36787944117144232159552377016146086
1,53960 07178 39002 03869 ​ Constante Square Ice de Lieb ​ Sixvertex2.png W 2 D {displaystyle {W}_{2D}} lim n → ( f ( n ) ) n − 2 = ( 4 3 ) 3 2 = 8 3 9 {displaystyle lim _{nto infty }(f(n))^{n^{-2}}=left({frac {4}{3}}right)^{frac {3}{2}}={frac {8{sqrt {3}}}{9}}} (4/3)^(3/2) A A118273 [1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] 1967 1.53960071783900203869106341467188655
1,23370 05501 36169 82735 ​ Constante de Favard​ 3 4 ζ ( 2 ) {displaystyle {tfrac {3}{4}}zeta (2)} π 2 8 = ∑ n = 0 ∞ 1 ( 2 n − 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ⋯ {displaystyle {frac {pi ^{2}}{8}}=sum _{n=0}^{infty }{frac {1}{(2n-1)^{2}}}={frac {1}{1^{2}}}+{frac {1}{3^{2}}}+{frac {1}{5^{2}}}+{frac {1}{7^{2}}}+cdots } sum[n=1 to ∞]
{1/((2n-1)^2)}
T A111003 [1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] 1902
a
1965
1.23370055013616982735431137498451889
7,38905 60989 30650 22723 Constante cónica de Schwarzschild ​ Conic constant.svg e 2 {displaystyle e^{2}} n = 0 ∞ 2 n n ! = 1 + 2 + 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + 2 5 5 ! + . . . {displaystyle sum _{n=0}^{infty }{frac {2^{n}}{n!}}=1+2+{frac {2^{2}}{2!}}+{frac {2^{3}}{3!}}+{frac {2^{4}}{4!}}+{frac {2^{5}}{5!}}+...} Sum[n=0 to ∞]
{2^n/n!}
T A072334 [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2,1,1,n,4*n+6,n+2], n = 3, 6, 9, etc.
7.38905609893065022723042746057500781
0,20787 95763 50761 90854 ​ i^i ​

i i {displaystyle {i}^{i}} e − π 2 {displaystyle e^{frac {-pi }{2}}} e^(-pi/2) T A049006 [0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] 1746 0.20787957635076190854695561983497877
1,44466 78610 09766 13365 ​ Número de Steiner ​ Infinite power tower.svg e e {displaystyle {sqrt[{e}]{e}}} e 1 / e {displaystyle e^{1/e}} Límite superior de Tetración e^(1/e) A073229 [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 1796
a
1863
1.44466786100976613365833910859643022
4,53236 01418 27193 80962 Constante de van der Pauw α {displaystyle {alpha }} π l n ( 2 ) = ∑ n = 0 ∞ 4 ( − 1 ) n 2 n + 1 ∑ n = 1 ∞ ( − 1 ) n + 1 n = 4 1 − 4 3 + 4 5 − 4 7 + 4 9 − . . . 1 1 − 1 2 + 1 3 − 1 4 + 1 5 − . . . {displaystyle {frac {pi }{ln(2)}}={frac {sum _{n=0}^{infty }{frac {4(-1)^{n}}{2n+1}}}{sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n}}}}={frac {{frac {4}{1}}{-}{frac {4}{3}}{+}{frac {4}{5}}{-}{frac {4}{7}}{+}{frac {4}{9}}-...}{{frac {1}{1}}{-}{frac {1}{2}}{+}{frac {1}{3}}{-}{frac {1}{4}}{+}{frac {1}{5}}-...}}} π/ln(2) A163973 [4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] 4.53236014182719380962768294571666681
1,57079 63267 94896 61923 ​ Constante de Favard K1
Producto de Wallis ​
Wallis product-chart.png π 2 {displaystyle {frac {pi }{2}}} n = 1 ∞ ( 4 n 2 4 n 2 − 1 ) = 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ {displaystyle prod _{n=1}^{infty }left({frac {4n^{2}}{4n^{2}-1}}right)={frac {2}{1}}cdot {frac {2}{3}}cdot {frac {4}{3}}cdot {frac {4}{5}}cdot {frac {6}{5}}cdot {frac {6}{7}}cdot {frac {8}{7}}cdot {frac {8}{9}}cdots } Prod[n=1 to ∞]
{(4n^2)/(4n^2-1)}
A019669 [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...] 1655 1.57079632679489661923132169163975144
3,27582 29187 21811 15978 ​ Constante de Khinchin-Lévy ​ · γ {displaystyle gamma } e π 2 / ( 12 ln ⁡ 2 ) {displaystyle e^{pi ^{2}/(12ln 2)}} e^(pi^2/(12 ln(2)) A086702 [3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] 1936 3.27582291872181115978768188245384386
1,61803 39887 49894 84820 ​ Fi, Número áureo ​ · Animation GoldenerSchnitt.gif φ {displaystyle {varphi }} 1 + 5 2 = 1 + 1 + 1 + 1 + ⋯ {displaystyle {frac {1+{sqrt {5}}}{2}}={sqrt {1+{sqrt {1+{sqrt {1+{sqrt {1+cdots }}}}}}}}} (1+5^(1/2))/2 A A001622 [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]
= [0;1,...]
-300 ~ 1.61803398874989484820458683436563811
1,64493 40668 48226 43647 ​ Función Zeta (2) de Riemann ζ ( 2 ) {displaystyle {zeta }(,2)} π 2 6 = ∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ⋯ {displaystyle {frac {pi ^{2}}{6}}=sum _{n=1}^{infty }{frac {1}{n^{2}}}={frac {1}{1^{2}}}+{frac {1}{2^{2}}}+{frac {1}{3^{2}}}+{frac {1}{4^{2}}}+cdots } Sum[n=1 to ∞]
{1/n^2}
T A013661 [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] 1826
a
1866
1.64493406684822643647241516664602519
1,73205 08075 68877 29352 ​ Constante de Theodorus​ Square root of 3 in cube.svg 3 {displaystyle {sqrt {3}}} 3 3 3 3 3 ⋯ 3 3 3 3 3 {displaystyle {sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,cdots }}}}}}}}}}} (3(3(3(3(3(3(3)
^1/3)^1/3)^1/3)
^1/3)^1/3)^1/3)
^1/3...
A A002194 [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;1,2,...]
-465
a
-398
1.73205080756887729352744634150587237
1,75793 27566 18004 53270 ​ Número de Kasner ​ R {displaystyle {R}} 1 + 2 + 3 + 4 + ⋯ {displaystyle {sqrt {1+{sqrt {2+{sqrt {3+{sqrt {4+cdots }}}}}}}}} A072449 [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] 1878
a
1955
1.75793275661800453270881963821813852
2,29558 71493 92638 07403 ​ Constante universal parabólica ​ Parabola animada.gif P 2 {displaystyle {P}_{,2}} ln ⁡ ( 1 + 2 ) + 2 = arcsinh ⁡ ( 1 ) + 2 {displaystyle ln(1+{sqrt {2}})+{sqrt {2}};=;operatorname {arcsinh} (1)+{sqrt {2}}} ln(1+sqrt 2)+sqrt 2 T A103710 [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,7,2,1,...] 2.29558714939263807403429804918949038
3,30277 56377 31994 64655 ​ Número de bronce ​


σ R r {displaystyle {sigma }_{,Rr}} 3 + 13 2 = 1 + 3 + 3 + 3 + 3 + ⋯ {displaystyle {frac {3+{sqrt {13}}}{2}}=1+{sqrt {3+{sqrt {3+{sqrt {3+{sqrt {3+cdots }}}}}}}}} (3+sqrt 13)/2 A A098316 [3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...]
= [3;3,...]
3.30277563773199464655961063373524797
2,37313 82208 31250 90564 Constante de Lévy 2


2 l n γ {displaystyle 2,ln,gamma } π 2 6 l n ( 2 ) {displaystyle {frac {pi ^{2}}{6ln(2)}}} Pi^(2)/(6*ln(2)) T A174606 [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] 1936 2.37313822083125090564344595189447424
2,50662 82746 31000 50241 Raíz cuadrada de 2 pi Stirling's Approximation Small.png 2 π {displaystyle {sqrt {2pi }}} 2 π = lim n → n ! e n n n n . . . . {displaystyle {sqrt {2pi }}=lim _{nto infty }{frac {n!;e^{n}}{n^{n}{sqrt {n}}}}{color {white}....color {black}}} Fórmula de Stirling sqrt (2*pi) T A019727 [2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] 1692
a
1770
2.50662827463100050241576528481104525
2,66514 41426 90225 18865 ​ Constante de Gelfond-Schneider ​ G G S {displaystyle G_{,GS}} 2 2 {displaystyle 2^{sqrt {2}}} 2^sqrt{2} T A007507 [2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] 1934 2.66514414269022518865029724987313985
2,68545 20010 65306 44530 ​ Constante de Khinchin ​ KhinchinBeispiele.svg K 0 {displaystyle K_{,0}} n = 1 ∞ [ 1 + 1 n ( n + 2 ) ] ln ⁡ n ln ⁡ 2 = lim n → ( ∏ k = 1 n a k ) 1 n {displaystyle prod _{n=1}^{infty }left[{1{+}{1 over n(n{+}2)}}right]^{frac {ln n}{ln 2}}=lim _{nto infty }left(prod _{k=1}^{n}a_{k}right)^{frac {1}{n}}}
... donde ak son elementos de la fracción continua [a0; a1, a2, a3,...]
prod[n=1 to ∞]
{(1+1/(n(n+2)))
^((ln(n)/ln(2))}
T A002210 [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] 1934 2.68545200106530644530971483548179569
3,35988 56662 43177 55317 ​ Constante de Prévost, sum. inversos de Fibonacci ​ Ψ {displaystyle Psi } n = 1 ∞ 1 F n = 1 1 + 1 1 + 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + ⋯ {displaystyle sum _{n=1}^{infty }{frac {1}{F_{n}}}={frac {1}{1}}+{frac {1}{1}}+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{5}}+{frac {1}{8}}+{frac {1}{13}}+cdots } I A079586 [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] 1977 3.35988566624317755317201130291892717
1,32471 79572 44746 02596 ​ Número plástico ​ Nombre plastique.svg ρ {displaystyle {rho }} 1 + 1 + 1 + ⋯ 3 3 3 = 1 2 + 1 6 23 3 3 + 1 2 − 1 6 23 3 3 {displaystyle textstyle {sqrt[{3}]{1{+}{sqrt[{3}]{1{+}{sqrt[{3}]{1{+}cdots }}}}}}={sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}}} A A060006 [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...] 1929 1.32471795724474602596090885447809734
4,13273 13541 22492 93846 Raíz de 2 e pi

2 e π {displaystyle {sqrt {2epi }}} 2 e π {displaystyle {sqrt {2epi }}} sqrt(2e pi) A019633 [4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] 4.13273135412249293846939188429985264
2,66514 41426 90225 18865 Constante de Gelfond ​ e π {displaystyle {e}^{pi }} ( − 1 ) − i = i − 2 i = ∑ n = 0 ∞ π n n ! = π 1 1 + π 2 2 ! + π 3 3 ! + ⋯ {displaystyle (-1)^{-i}=i^{-2i}=sum _{n=0}^{infty }{frac {pi ^{n}}{n!}}={frac {pi ^{1}}{1}}+{frac {pi ^{2}}{2!}}+{frac {pi ^{3}}{3!}}+cdots } Sum[n=0 to ∞]
{(pi^n)/n!}
T A039661 [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] 1906
a
1968
23.1406926327792690057290863679485474

Table of mathematical constants

Abbreviations used:

  • R - Rational number
  • I - Algebraic irrational number
  • T - transcendental irrational number
  • - Unknown
0 0 zeroR- -
1 1 OneR- -
2 2 Two.R- -
π π {displaystyle pi ,}3,14159 26535 89793 23846 26433 83279 50288 41971 Pi, constant of Archimedes or number of Ludolph T10.000.000.050 22/10/2011
e=limn→ → ∞ ∞ (1+1n)n{displaystyle e=lim _{nto infty }left(1+{frac {1}{n}{n}right)^{n}}}2,71828 18284 59045 23536 02874 71352 66249 77572 Constant of Napier, natural logarithm base T1,000,000.000. 2010
2{displaystyle {sqrt {2}}}1,41421 35623 73095 04880 16887 24209 69807 85696 Square root of twoPythagoras constant. I1,000,000.000. 2010
3{displaystyle {sqrt {3}}}1,73205 08075 68877 29352 74463 41505 87236 69428 Square threeI10,000.000
5{displaystyle {sqrt {5}}}2,23606 79774 99789 69640 91736 68731 27623 54406 Square root of fiveI10,000.000 20/12/1999
φ φ ,Δ Δ =1+52{displaystyle phitau ={frac {1+{sqrt {5}}}{2}}}}}1.61803 39887 49894 84820 45868 34365 63811 77203 Authentic number, symbolized both φ and τ. I1,000,000.000. 2010
γ γ =limn→ → ∞ ∞ [chuckles]␡ ␡ k=1n1k− − ln (n)]{displaystyle gamma =lim _{nrightarrow infty }left[sum _{k=1^{n}{frac {1}{k}}}-ln(right)}}}}}}}0.557721 56649 01532 86060 65120 90082 40243 10421 Constant of Euler-Mascheroni? 29.844.489.545 2009
α α {displaystyle alpha ,}-2,50290 78750 95892 82228 39028 73218 21578 63812 Constant α de Feigenbaum1018 1999
δ δ {displaystyle delta ,}4,66920 16091 02990 67185 32038 20466 20161 72581 Constant δ de Feigenbaum1018 1999
Cartin= pprimor(1− − 1p(p− − 1)){displaystyle C_{artin}=prod _{p,primo}left(1-{frac {1}{p(p-1)}}right)}0.3395 58136 19202 28805 47280 54346 41641 51116 Constant of Artin1000 1999
C2= p≥ ≥ 3p(p− − 2)(p− − 1)2{displaystyle C_{2}=prod _{pgeq 3}{frac {p(p-2)}{(p-1)^{2}}}}}}0.66016 18158 46869 57392 78121 10014 55577 84326 Constant twin cousins5.020 2001
B2{displaystyle B_{2},}1,90216 0582 Constant of Brun for twin cousins 9 1999 / 2002

Books

  • Finch, Steven (2003). Mathematical constants. Cambridge University Press. ISBN 978-0-521-81805-6.
  • Daniel Zwillinger (2012). Standard Mathematical Tables and Formulae. Imperial College Press. ISBN 978-1-4398-3548-7.
  • Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics. Chapman & Hall/CRC. ISBN 1-58488-347-2.
  • Lloyd Kilford (2008). Modular Forms, a Classical and Computational Introduction. Imperial College Press. ISBN 978-1-84816-213-6.
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save