Valor |
Nombre |
Gráfico |
Símbolo |
LaTeX |
Fórmula |
N.º |
OEIS |
Fracción continua |
Año |
Formato web
|
0,88622 69254 52758 01364
|
Factorial de un medio
|
|
.5
!
{displaystyle {.5},!}
|
Γ
(
3
2
)
=
1
2
π
=
∫
0
∞
x
1
/
2
e
−
x
d
x
{displaystyle Gamma left({tfrac {3}{2}}right),={tfrac {1}{2}}{sqrt {pi }},=int _{0}^{infty }x^{1/2}e^{-x}dx}
|
sqrt(Pi)/2
|
|
A019704
|
[0;1,7,1,3,1,2,1,57,6,1,3,1,37,3,41,1,10,2,1,1,...]
|
|
0.88622692545275801364908374167057259
|
0,74048 04896 93061 04116
|
Constante de Hermite Empaquetamiento óptimo de esferas 3D Conjetura de Kepler
|
|
μ
K
{displaystyle {mu _{_{K}}}}
|
π
3
2
.
.
.
.
{displaystyle {frac {pi }{3{sqrt {2}}}}{color {white}....color {black}}}
Después de 400 años, Thomas Hales demostró en 2014 con El Proyecto Flyspeck, que la Conjetura de Kepler era cierta.
|
pi/(3 sqrt(2))
|
|
A093825
|
[0;1,2,1,5,1,4,2,2,1,1,2,2,2,6,1,1,1,5,2,1,1,1,...]
|
1611
|
0.74048048969306104116931349834344894
|
1,60669 51524 15291 76378
|
Constante de Erdős–Borwein
|
|
E
B
{displaystyle {E}_{,B}}
|
∑
m
=
1
∞
∑
n
=
1
∞
1
2
m
n
=
∑
n
=
1
∞
1
2
n
−
1
=
1
1
+
1
3
+
1
7
+
1
15
+
.
.
.
{displaystyle sum _{m=1}^{infty }sum _{n=1}^{infty }{frac {1}{2^{mn}}}=sum _{n=1}^{infty }{frac {1}{2^{n}-1}}={frac {1}{1}}!+!{frac {1}{3}}!+!{frac {1}{7}}!+!{frac {1}{15}}!+!...}
|
sum[n=1 to ∞] {1/(2^n-1)}
|
I
|
A065442
|
[1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,6,1,2,...]
|
1949
|
1.60669515241529176378330152319092458
|
0,07077 60393 11528 80353
-0,68400 03894 37932 129 i
|
Constante MKB · ·
|
|
M
I
{displaystyle M_{I}}
|
lim
n
→
∞
∫
1
2
n
(
−
1
)
x
x
x
d
x
=
∫
1
2
n
e
i
π
x
x
1
/
x
d
x
{displaystyle lim _{nrightarrow infty }int _{1}^{2n}(-1)^{x}~{sqrt[{x}]{x}}~dx=int _{1}^{2n}e^{ipi x}~x^{1/x}~dx}
|
lim_(2n->∞) int[1 to 2n] {exp(i*Pi*x)*x^(1/x) dx}
|
C
|
A255727 A255728
|
[0;14,7,1,2,1,23,2,1,8,16,1,1,3,1,26,1,6,1,1,...] - [0;1,2,6,13,41,112,1,25,1,1,1,1,3,13,2,1,...] i
|
2009
|
0.07077603931152880353952802183028200 -0.68400038943793212918274445999266 i
|
3,05940 74053 42576 14453
|
Constante Doble factorial
|
|
C
n
!
!
{displaystyle {C_{_{n!!}}}}
|
∑
n
=
0
∞
1
n
!
!
=
e
[
1
2
+
γ
(
1
2
,
1
2
)
]
{displaystyle sum _{n=0}^{infty }{frac {1}{n!!}}={sqrt {e}}left[{frac {1}{sqrt {2}}}+gamma ({tfrac {1}{2}},{tfrac {1}{2}})right]}
|
Sum[n=0 to ∞]{1/n!!}
|
|
A143280
|
[3;16,1,4,1,66,10,1,1,1,1,2,5,1,2,1,1,1,1,1,2,...]
|
|
3.05940740534257614453947549923327861
|
0,62481 05338 43826 58687 + 1,30024 25902 20120 419 i
|
Fracción continua generalizada de i
|
|
F
C
G
(
i
)
{displaystyle {{F}_{CG}}_{(i)}}
|
i
+
i
i
+
i
i
+
i
i
+
i
i
+
i
i
+
i
i
+
i
/
.
.
.
=
17
−
1
8
+
i
(
1
2
+
2
17
−
1
)
{displaystyle textstyle i{+}{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+i{/...}}}}}}}}}}}}}={sqrt {frac {{sqrt {17}}-1}{8}}}+ileft({tfrac {1}{2}}{+}{sqrt {frac {2}{{sqrt {17}}-1}}}right)}
|
i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/( ...)))))))))))))))))))))
|
C A
|
A156590
A156548
|
[i;1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,..] = [0;1,i]
|
|
0.62481053384382658687960444744285144 + 1.30024259022012041915890982074952 i
|
0,91893 85332 04672 74178
|
Fórmula de Raabe
|
|
ζ
′
(
0
)
{displaystyle {zeta '(0)}}
|
∫
a
a
+
1
log
Γ
(
t
)
d
t
=
1
2
log
2
π
+
a
log
a
−
a
,
a
≥
0
{displaystyle int limits _{a}^{a+1}log Gamma (t),mathrm {d} t={tfrac {1}{2}}log 2pi +alog a-a,quad ageq 0}
|
integral_a^(a+1) {log(Gamma(x))+a-a log(a)} dx
|
|
A075700
|
[0;1,11,2,1,36,1,1,3,3,5,3,1,18,2,1,1,2,2,1,1,...]
|
|
0.91893853320467274178032973640561763
|
0,42215 77331 15826 62702
|
Volumen del Tetraedro de Reuleaux
|
|
V
R
{displaystyle {V_{_{R}}}}
|
s
3
12
(
3
2
−
49
π
+
162
arctan
2
)
{displaystyle {frac {s^{3}}{12}}(3{sqrt {2}}-49,pi +162,arctan {sqrt {2}})}
|
(3*Sqrt[2] - 49*Pi + 162*ArcTan[Sqrt[2]])/12
|
|
A102888
|
[0;2,2,1,2,2,7,4,4,287,1,6,1,2,1,8,5,1,1,1,1,...]
|
|
0.42215773311582662702336591662385075
|
1,17628 08182 59917 50654
|
Constante de Salem, conjetura de Lehmer
|
|
σ
10
{displaystyle {sigma _{_{10}}}}
|
x
10
+
x
9
−
x
7
−
x
6
−
x
5
−
x
4
−
x
3
+
x
+
1
{displaystyle x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1}
|
x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1
|
A
|
A073011
|
[1;5,1,2,17,1,7,2,1,1,2,4,7,2,2,1,1,15,1,1,...
|
1983?
|
1.17628081825991750654407033847403505
|
2,39996 32297 28653 32223 Radianes
|
Ángulo áureo
|
|
b
{displaystyle {b}}
|
(
4
−
2
Φ
)
π
=
(
3
−
5
)
π
{displaystyle (4-2,Phi),pi =(3-{sqrt {5}}),pi }
= 137.507764050037854646...°
|
(4-2*Phi)*Pi
|
T
|
A131988
|
[2;2,1,1,1087,4,4,120,2,1,1,2,1,1,7,7,2,11,...]
|
1907
|
2.39996322972865332223155550663361385
|
1,26408 47353 05301 11307
|
Constante de Vardi
|
|
V
c
{displaystyle {V_{c}}}
|
3
2
∏
n
≥
1
(
1
+
1
(
2
e
n
−
1
)
2
)
1
/
2
n
+
1
{displaystyle {frac {sqrt {3}}{sqrt {2}}}prod _{ngeq 1}left(1+{1 over (2e_{n}-1)^{2}}right)^{!1/2^{n+1}}}
|
|
|
A076393
|
[1;3,1,3,1,2,5,54,7,1,2,1,2,3,15,1,2,1,1,2,1,...]
|
1991
|
1.26408473530530111307959958416466949
|
1,5065918849 ± 0,0000000028
|
Área del fractal de Mandelbrot
|
|
γ
{displaystyle gamma }
|
Se conjetura que el valor exacto es:
6
π
−
1
−
e
{displaystyle {sqrt {6pi -1}}-e}
= 1,506591651...
|
|
|
A098403
|
[1;1,1,37,2,2,1,10,1,1,2,2,4,1,1,1,1,5,4,...]
|
1912
|
1.50659177 +/- 0.00000008
|
1,61111 49258 08376 736 111•••111 27224 36828 183213 unos
|
Constante Factorial exponencial
|
|
S
E
f
{displaystyle {S_{Ef}}}
|
∑
n
=
1
∞
1
n
(
n
−
1
)
⋅
⋅
⋅
2
1
=
1
+
1
2
1
+
1
3
2
1
+
1
4
3
2
1
+
1
5
4
3
2
1
+
⋯
{displaystyle sum _{n=1}^{infty }{frac {1}{n^{(n{-}1)^{cdot ^{cdot ^{cdot ^{2^{1}}}}}}}}=1{+}{frac {1}{2^{1}}}{+}{frac {1}{3^{2^{1}}}}+{frac {1}{4^{3^{2^{1}}}}}+{frac {1}{5^{4^{3^{2^{1}}}}}}{+}cdots }
|
|
T
|
A080219
|
[1; 1, 1, 1, 1, 2, 1, 808, 2, 1, 2, 1, 14,...]
|
|
1.61111492580837673611111111111111111
|
0,31813 15052 04764 13531
±1,33723 57014 30689 40 i
|
Punto fijo Super-logaritmo ·
|
|
−
W
(
−
1
)
{displaystyle {-W(-1)}}
|
lim
n
→
∞
{displaystyle lim _{nrightarrow infty }}
f
(
x
)
=
log
(
log
(
log
(
log
(
⋯
log
(
log
(
x
)
)
)
)
)
)
⏟
log
s
anidados n veces
{displaystyle f(x)=underbrace {log(log(log(log(cdots log(log(x)))))),!} atop {log _{s}{text{ anidados n veces}}}}
Para un valor inicial de x distinto a 0, 1, e, e^e, e^(e^e), etc.
|
-W(-1) Donde W=ProductLog Lambert W function
|
C
|
A059526 A059527
|
[-i;1 +2i,1+i,6-i,1+2i,-7+3i,2i,2,1-2i,-1+i,-,...]
|
|
0.31813150520476413531265425158766451 -1.33723570143068940890116214319371 i
|
1,09317 04591 95490 89396
|
Constante de Smarandache 1.ª
|
|
S
1
{displaystyle {S_{1}}}
|
∑
n
=
2
∞
1
μ
(
n
)
!
.
.
.
.
{displaystyle sum _{n=2}^{infty }{frac {1}{mu (n)!}}{color {white}....color {black}}}
La función Kempner μ(n) se define como sigue:
μ(n) es el número más pequeño por el que μ(n)! es divisible por n
|
|
|
A048799
|
[1;10,1,2,1,2,1,13,3,1,6,1,2,11,4,6,2,15,1,1,...]
|
|
1.09317045919549089396820137014520832
|
1,64218 84352 22121 13687
|
Constante de Lebesgue L2
|
|
L
2
{displaystyle {L2}}
|
1
5
+
25
−
2
5
π
=
1
π
∫
0
π
|
sin
(
5
t
2
)
|
sin
(
t
2
)
d
t
{displaystyle {frac {1}{5}}+{frac {sqrt {25-2{sqrt {5}}}}{pi }}={frac {1}{pi }}int _{0}^{pi }{frac {left|sin({frac {5t}{2}})right|}{sin({frac {t}{2}})}},dt}
|
1/5 + sqrt(25 - 2*sqrt(5))/Pi
|
T
|
A226655
|
[1;1,1,1,3,1,6,1,5,2,2,3,1,2,7,1,3,5,2,2,1,1,...]
|
1910
|
1.64218843522212113687362798892294034
|
0,82699 33431 32688 07426
|
Disk Covering
|
|
C
5
{displaystyle {C_{5}}}
|
1
∑
n
=
0
∞
1
(
3
n
+
2
2
)
=
3
3
2
π
{displaystyle {frac {1}{sum _{n=0}^{infty }{frac {1}{binom {3n+2}{2}}}}}={frac {3{sqrt {3}}}{2pi }}}
|
3 Sqrt[3]/(2 Pi)
|
T
|
A086089
|
[0;1,4,1,3,1,1,4,1,2,2,1,1,7,1,4,4,2,1,1,1,1,...]
|
1939 1949
|
0.82699334313268807426698974746945416
|
1,78723 16501 82965 93301
|
Constante de Komornik–Loreti
|
|
q
{displaystyle {q}}
|
1
=
∑
n
=
1
∞
t
k
q
k
Raiz real de
∏
n
=
0
∞
(
1
−
1
q
2
n
)
+
q
−
2
q
−
1
=
0
{displaystyle 1=!sum _{n=1}^{infty }{frac {t_{k}}{q^{k}}}qquad scriptstyle {text{Raiz real de}}displaystyle prod _{n=0}^{infty }!left(!1{-}{frac {1}{q^{2^{n}}}}!right)!{+}{frac {q{-}2}{q{-}1}}=0}
t k = Sucesión de Thue-Morse
|
FindRoot[(prod[n=0 to ∞] {1-1/(x^2^n)}+ (x-2)/(x-1))= 0, {x, 1.7}, WorkingPrecision->30]
|
T
|
A055060
|
[1;1,3,1,2,3,188,1,12,1,1,22,33,1,10,1,1,7,...]
|
1998
|
1.78723165018296593301327489033700839
|
0,59017 02995 08048 11302
|
Constante de Chebyshev ·
|
|
λ
C
h
{displaystyle {lambda _{Ch}}}
|
Γ
(
1
4
)
2
4
π
3
/
2
=
4
(
1
4
!
)
2
π
3
/
2
{displaystyle {frac {Gamma ({tfrac {1}{4}})^{2}}{4pi ^{3/2}}}={frac {4({tfrac {1}{4}}!)^{2}}{pi ^{3/2}}}}
|
(Gamma(1/4)^2) /(4 pi^(3/2))
|
|
A249205
|
[0;1,1,2,3,1,2,41,1,6,5,124,5,2,2,1,1,6,1,2,...]
|
|
0.59017029950804811302266897027924429
|
0,52382 25713 89864 40645
|
Función Chi Coseno hiperbólico integral
|
|
C
h
i
(
)
{displaystyle {operatorname {Chi()} }}
|
γ
+
∫
0
x
cosh
t
−
1
t
d
t
{displaystyle gamma +int _{0}^{x}{frac {cosh t-1}{t}},dt}
γ
= Constante de Euler–Mascheroni = 0,5772156649...
{displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}}
|
Chi(x)
|
|
A133746
|
[0;1,1,9,1,172,1,7,1,11,1,1,2,1,8,1,1,1,1,1,...]
|
|
0.52382257138986440645095829438325566
|
0,62432 99885 43550 87099
|
Constante de Golomb–Dickman
|
|
λ
{displaystyle {lambda }}
|
∫
0
∞
f
(
x
)
x
2
d
x
P
a
r
a
x
>
2
=
∫
0
1
e
L
i
(
n
)
d
n
Li = Integral logarítmica
{displaystyle int limits _{0}^{infty }{underset {Para;x>2}{{frac {f(x)}{x^{2}}}dx}}=int limits _{0}^{1}e^{Li(n)}dnquad scriptstyle {text{Li = Integral logarítmica}}}
|
N[Int{n,0,1}[e^Li(n)],34]
|
|
A084945
|
[0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...]
|
1930 y 1964
|
0.62432998854355087099293638310083724
|
0,98770 03907 36053 46013
|
Área delimitada por la rotación excéntrica del Triángulo de Reuleaux
|
|
T
R
{displaystyle {mathcal {T}}_{R}}
|
a
2
⋅
(
2
3
+
π
6
−
3
)
{displaystyle a^{2}cdot left(2{sqrt {3}}+{frac {pi }{6}}-3right)}
donde a= lado del cuadrado
|
2 sqrt(3)+pi/6-3
|
T
|
A066666
|
[0;1,80,3,3,2,1,1,1,4,2,2,1,1,1,8,1,2,10,1,2,...]
|
1914
|
0.98770039073605346013199991355832854
|
0,70444 22009 99165 59273
|
Constante Carefree2
|
|
C
2
{displaystyle {mathcal {C}}_{2}}
|
∏
n
=
1
∞
(
1
−
1
p
n
(
p
n
+
1
)
)
p
n
:
p
r
i
m
o
{displaystyle {underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1-{frac {1}{p_{n}(p_{n}+1)}}right)}}}
|
N[prod[n=1 to ∞] {1 - 1/(prime(n)* (prime(n)+1))}]
|
|
A065463
|
[0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...]
|
|
0.70444220099916559273660335032663721
|
1,84775 90650 22573 51225
|
Constante camino auto-evitante en red hexagonal ·
|
|
μ
{displaystyle {mu }}
|
2
+
2
=
lim
n
→
∞
c
n
1
/
n
{displaystyle {sqrt {2+{sqrt {2}}}};=lim _{nrightarrow infty }c_{n}^{1/n}}
La menor raíz real de
:
x
4
−
4
x
2
+
2
=
0
{displaystyle:;x^{4}-4x^{2}+2=0}
|
sqrt(2+sqrt(2))
|
A
|
A179260
|
[1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...]
|
|
1.84775906502257351225636637879357657
|
0,19452 80494 65325 11361
|
2ª Constante Du Bois Reymond
|
|
C
2
{displaystyle {C_{2}}}
|
e
2
−
7
2
=
∫
0
∞
|
d
d
t
(
sin
t
t
)
n
|
d
t
−
1
{displaystyle {frac {e^{2}-7}{2}}=int _{0}^{infty }left|{{frac {d}{dt}}left({frac {sin t}{t}}right)^{n}}right|,dt-1}
|
(e^2-7)/2
|
T
|
A062546
|
[0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...] = [0;2p+3], p∈ℕ
|
|
0.19452804946532511361521373028750390
|
2,59807 62113 53315 94029
|
Área de un hexágono de lado unitario
|
|
A
6
{displaystyle {mathcal {A}}_{6}}
|
3
3
2
l
2
{displaystyle {frac {3{sqrt {3}}}{2}},l^{2}}
|
3 sqrt(3)/2
|
A
|
A104956
|
[2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...] [2;1,1,2,20,2,1,1,4]
|
|
2.59807621135331594029116951225880855
|
1,78657 64593 65922 46345
|
Constante de Silverman
|
|
S
m
{displaystyle {{mathcal {S}}_{_{m}}}}
|
∑
n
=
1
∞
1
ϕ
(
n
)
σ
1
(
n
)
=
∏
n
=
1
∞
(
1
+
∑
k
=
1
∞
1
p
n
2
k
−
p
n
k
−
1
)
p
n
:
p
r
i
m
o
{displaystyle sum _{n=1}^{infty }{frac {1}{phi (n)sigma _{1}(n)}}={underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1+sum _{k=1}^{infty }{frac {1}{p_{n}^{2k}-p_{n}^{k-1}}}right)}}}
ø() = Función totien de Euler, σ1() = Función divisor.
|
Sum[n=1 to ∞] {1/[EulerPhi(n) DivisorSigma(1,n)]}
|
|
A093827
|
[1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...]
|
|
1.78657645936592246345859047554131575
|
1,46099 84862 06318 35815
|
Constante cuatro-colores de Baxter
|
Mapamundi Coloreado 4C
|
C
2
{displaystyle {mathcal {C}}^{2}}
|
∏
n
=
1
∞
(
3
n
−
1
)
2
(
3
n
−
2
)
(
3
n
)
=
3
4
π
2
Γ
(
1
3
)
3
{displaystyle prod _{n=1}^{infty }{frac {(3n-1)^{2}}{(3n-2)(3n)}}={frac {3}{4pi ^{2}}},Gamma left({frac {1}{3}}right)^{3}}
Γ() = Función Gamma
|
3×Gamma(1/3) ^3/(4 pi^2)
|
|
A224273
|
[1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...]
|
1970
|
1.46099848620631835815887311784605969
|
0,66131 70494 69622 33528
|
Constante de Feller-Tornier
|
|
C
F
T
{displaystyle {{mathcal {C}}_{_{FT}}}}
|
1
2
∏
n
=
1
∞
(
1
−
2
p
n
2
)
+
1
2
p
n
:
p
r
i
m
o
=
3
π
2
∏
n
=
1
∞
(
1
−
1
p
n
2
−
1
)
+
1
2
{displaystyle {underset {p_{n}:,{primo}}{{frac {1}{2}}prod _{n=1}^{infty }left(1-{frac {2}{p_{n}^{2}}}right){+}{frac {1}{2}}}}={frac {3}{pi ^{2}}}prod _{n=1}^{infty }left(1-{frac {1}{p_{n}^{2}-1}}right){+}{frac {1}{2}}}
|
[prod[n=1 to ∞] {1-2/prime(n)^2}] /2 + 1/2
|
T ?
|
A065493
|
[0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...]
|
1932
|
0.66131704946962233528976584627411853
|
1,92756 19754 82925 30426
|
Constante Tetranacci
|
|
T
{displaystyle {mathcal {T}}}
|
La mayor raíz real de
:
x
4
−
x
3
−
x
2
−
x
−
1
=
0
{displaystyle:;;x^{4}-x^{3}-x^{2}-x-1=0}
|
Root[x+x^-4-2=0]
|
A
|
A086088
|
[1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...]
|
|
1.92756197548292530426190586173662216
|
1,00743 47568 84279 37609
|
Constante DeVicci's Teseracto
|
|
f
(
3
,
4
)
{displaystyle {f_{(3,4)}}}
|
Arista del mayor cubo, dentro de un hipercubo unitario 4D.
La menor raíz real de
:
4
x
4
−
28
x
3
−
7
x
2
+
16
x
+
16
=
0
{displaystyle:;;4x^{4}{-}28x^{3}{-}7x^{2}{+}16x{+}16=0}
|
Root[4*x^8-28*x^6 -7*x^4+16*x^2+16 =0]
|
A
|
A243309
|
[1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...]
|
|
1.00743475688427937609825359523109914
|
0,15915 49430 91895 33576
|
Constante A de Plouffe
|
|
A
{displaystyle {A}}
|
1
2
π
{displaystyle {frac {1}{2pi }}}
|
1/(2 pi)
|
T
|
A086201
|
[0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...]
|
|
0.15915494309189533576888376337251436
|
0,41245 40336 40107 59778
|
Constante de Thue-Morse
|
|
τ
{displaystyle tau }
|
∑
n
=
0
∞
t
n
2
n
+
1
{displaystyle sum _{n=0}^{infty }{frac {t_{n}}{2^{n+1}}}}
donde
t
n
{displaystyle {t_{n}}}
es la secuencia Thue–Morse y
donde
τ
(
x
)
=
∑
n
=
0
∞
(
−
1
)
t
n
x
n
=
∏
n
=
0
∞
(
1
−
x
2
n
)
{displaystyle tau (x)=sum _{n=0}^{infty }(-1)^{t_{n}},x^{n}=prod _{n=0}^{infty }(1-x^{2^{n}})}
|
|
T
|
A014571
|
[0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...]
|
|
0.41245403364010759778336136825845528
|
0,58057 75582 04892 40229
|
Constante de Pell
|
|
P
P
e
l
l
{displaystyle {{mathcal {P}}_{_{Pell}}}}
|
1
−
∏
n
=
0
∞
(
1
−
1
2
2
n
+
1
)
{displaystyle 1-prod _{n=0}^{infty }left(1-{frac {1}{2^{2n+1}}}right)}
|
N[1-prod[n=0 to ∞] {1-1/(2^(2n+1)}]
|
T ?
|
A141848
|
[0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...]
|
|
0.58057755820489240229004389229702574
|
2,20741 60991 62477 96230
|
Problema moviendo el sofá de Hammersley
|
|
S
H
{displaystyle {S_{_{H}}}}
|
π
2
+
2
π
{displaystyle {frac {pi }{2}}+{frac {2}{pi }},}
¿Cuál es el área más grande de una forma, que pueda ser maniobrada en un pasillo en forma de L y tenga de ancho la unidad ?
|
pi/2 + 2/pi
|
T
|
A086118
|
[2;4,1,4,1,1,2,5,1,11,1,1,5,1,6,1,3,1,1,1,1,7,...]
|
1967
|
2.20741609916247796230685674512980889
|
1,15470 05383 79251 52901
|
Constante de Hermite
|
|
γ
2
{displaystyle gamma _{_{2}}}
|
2
3
=
1
cos
(
π
6
)
{displaystyle {frac {2}{sqrt {3}}}={frac {1}{cos ,({frac {pi }{6}})}}}
|
2/sqrt(3)
|
A
|
1+ A246724
|
[1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] [1;6,2]
|
|
1.15470053837925152901829756100391491
|
0,63092 97535 71457 43709
|
Dimensión fractal del Conjunto de Cantor
|
|
d
f
(
k
)
{displaystyle d_{f}(k)}
|
lim
ε
→
0
log
N
(
ε
)
log
(
1
/
ε
)
=
log
2
log
3
{displaystyle lim _{varepsilon to 0}{frac {log N(varepsilon)}{log(1/varepsilon)}}={frac {log 2}{log 3}}}
|
log(2)/log(3) N[3^x=2]
|
T
|
A102525
|
[0;1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...]
|
|
0.63092975357145743709952711434276085
|
0,17150 04931 41536 06586
|
Constante Hall-Montgomery
|
|
δ
0
{displaystyle {{delta }_{_{0}}}}
|
1
+
π
2
6
+
2
L
i
2
(
−
e
)
L
i
2
= Integral dilogarítmica
{displaystyle 1+{frac {pi ^{2}}{6}}+2;mathrm {Li} _{2}left(-{sqrt {e}};right)quad mathrm {Li} _{2},scriptstyle {text{= Integral dilogarítmica}}}
|
1 + Pi^2/6 + 2*PolyLog[2, -Sqrt[E]]
|
|
A143301
|
[0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...]
|
|
0.17150049314153606586043997155521210
|
1,55138 75245 48320 39226
|
Constante Triángulo Calabi
|
|
C
C
R
{displaystyle {C_{_{CR}}}}
|
1
3
+
(
−
23
+
3
i
237
)
1
3
3
⋅
2
2
3
+
11
3
(
2
(
−
23
+
3
i
237
)
)
1
3
{displaystyle {1 over 3}+{(-23+3i{sqrt {237}})^{tfrac {1}{3}} over 3cdot 2^{tfrac {2}{3}}}+{11 over 3(2(-23+3i{sqrt {237}}))^{tfrac {1}{3}}}}
|
FindRoot[ 2x^3-2x^2-3x+2 ==0, {x, 1.5}, WorkingPrecision->40]
|
A
|
A046095
|
[1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...]
|
1946 ~
|
1.55138752454832039226195251026462381
|
0,97027 01143 92033 92574
|
Constante de Lochs
|
|
£
L
o
{displaystyle {{text{£}}_{_{Lo}}}}
|
6
ln
2
ln
10
π
2
{displaystyle {frac {6ln 2ln 10}{pi ^{2}}}}
|
6*ln(2)*ln(10)/Pi^2
|
|
A086819
|
[0;1,32,1,1,1,2,1,46,7,2,7,10,8,1,71,1,37,1,1,...]
|
1964
|
0.97027011439203392574025601921001083
|
1,30568 67 ≈
|
Dimensión fractal del círculo de Apolonio
|
|
ε
{displaystyle varepsilon }
|
|
|
|
A052483
|
[0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...]
|
|
1.3056867 ≈
|
0,00131 76411 54853 17810
|
Constante de Heath-Brown–Moroz
|
|
C
H
B
M
{displaystyle {C_{_{HBM}}}}
|
∏
n
=
1
∞
(
1
−
1
p
n
)
7
(
1
+
7
p
n
+
1
p
n
2
)
p
n
:
p
r
i
m
o
{displaystyle {underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1-{frac {1}{p_{n}}}right)^{7}left(1+{frac {7p_{n}+1}{p_{n}^{2}}}right)}}}
|
N[prod[n=1 to ∞] {((1-1/prime(n))^7) *(1+(7*prime(n)+1) /(prime(n)^2))}]
|
T ?
|
A118228
|
[0;758,1,13,1,2,3,56,8,1,1,1,1,1,143,1,1,1,2,...]
|
|
0.00131764115485317810981735232251358
|
0,14758 36176 50433 27417
|
Constante gamma de Plouffe
|
|
C
{displaystyle {C}}
|
1
π
arctan
1
2
=
1
π
∑
n
=
0
∞
(
−
1
)
n
(
2
2
n
+
1
)
(
2
n
+
1
)
{displaystyle {frac {1}{pi }}arctan {frac {1}{2}}={frac {1}{pi }}sum _{n=0}^{infty }{frac {(-1)^{n}}{(2^{2n+1})(2n+1)}}}
=
1
π
(
1
2
−
1
3
⋅
2
3
+
1
5
⋅
2
5
−
1
7
⋅
2
7
+
⋯
)
{displaystyle ={frac {1}{pi }}left({frac {1}{2}}-{frac {1}{3cdot 2^{3}}}+{frac {1}{5cdot 2^{5}}}-{frac {1}{7cdot 2^{7}}}+cdots right)}
|
Arctan(1/2)/Pi
|
T
|
A086203
|
[0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...]
|
|
0.14758361765043327417540107622474052
|
0,70523 01717 91800 96514
|
Constante Primorial Suma de productos de inverso de primos
|
|
P
#
{displaystyle {P_{#}}}
|
∑
n
=
1
∞
1
p
n
#
=
1
2
+
1
6
+
1
30
+
1
210
+
.
.
.
=
∑
k
=
1
∞
∏
n
=
1
k
1
p
n
p
n
:
p
r
i
m
o
{displaystyle {underset {p_{n}:,{primo}}{sum _{n=1}^{infty }{frac {1}{p_{n}#}}={frac {1}{2}}+{frac {1}{6}}+{frac {1}{30}}+{frac {1}{210}}+...=sum _{k=1}^{infty }prod _{n=1}^{k}{frac {1}{p_{n}}}}}}
|
Sum[k=1 to ∞](prod[n=1 to k]{1/prime(n)})
|
I
|
A064648
|
[0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...]
|
|
0.70523017179180096514743168288824851
|
0,29156 09040 30818 78013
|
Constante dimer 2D, recubrimiento con dominós ·
|
|
C
π
{displaystyle {frac {C}{pi }}}
C=catalan
|
∫
−
π
π
cosh
−
1
(
cos
(
t
)
+
3
2
)
4
π
d
t
{displaystyle int limits _{-pi }^{pi }{frac {cosh ^{-1}left({frac {sqrt {cos(t)+3}}{sqrt {2}}}right)}{4pi }}dt}
|
N[int[-pi to pi] {arccosh(sqrt( cos(t)+3)/sqrt(2)) /(4*Pi) /, dt}]
|
|
A143233
|
[0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...]
|
|
0.29156090403081878013838445646839491
|
0,72364 84022 98200 00940
|
Constante de Sarnak
|
|
C
s
a
{displaystyle {C_{sa}}}
|
∏
p
>
2
(
1
−
p
+
2
p
3
)
{displaystyle prod _{p>2}{Big (}1-{frac {p+2}{p^{3}}}{Big)}}
|
N[prod[k=2 to ∞] {1-(prime(k)+2) /(prime(k)^3)}]
|
T ?
|
A065476
|
[0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...]
|
|
0.72364840229820000940884914980912759
|
0,63212 05588 28557 67840
|
Constante de tiempo
|
|
τ
{displaystyle {tau }}
|
lim
n
→
∞
1
−
!
n
n
!
=
lim
n
→
∞
P
(
n
)
=
∫
0
1
e
−
x
d
x
=
1
−
1
e
=
{displaystyle lim _{nto infty }1-{frac {!n}{n!}}=lim _{nto infty }P(n)=int _{0}^{1}e^{-x}dx=1-{frac {1}{e}}=}
∑
n
=
0
∞
(
−
1
)
n
n
!
=
1
1
!
−
1
2
!
+
1
3
!
−
1
4
!
+
1
5
!
−
1
6
!
+
⋯
{displaystyle sum limits _{n=0}^{infty }{frac {(-1)^{n}}{n!}}={frac {1}{1!}}-{frac {1}{2!}}+{frac {1}{3!}}-{frac {1}{4!}}+{frac {1}{5!}}-{frac {1}{6!}}+cdots }
|
lim_(n->∞) (1- !n/n!) !n=subfactorial
|
T
|
A068996
|
[0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [0;1,1,1,2n], n∈ℕ
|
|
0.63212055882855767840447622983853913
|
0.30366 30028 98732 65859
|
Constante de Gauss-Kuzmin-Wirsing
|
|
λ
2
{displaystyle {lambda }_{2}}
|
lim
n
→
∞
F
n
(
x
)
−
ln
(
1
−
x
)
(
−
λ
)
n
=
Ψ
(
x
)
,
{displaystyle lim _{nto infty }{frac {F_{n}(x)-ln(1-x)}{(-lambda)^{n}}}=Psi (x),}
donde
Ψ
(
x
)
{displaystyle Psi (x)}
es una función analítica tal que
Ψ
(
0
)
=
Ψ
(
1
)
=
0
{displaystyle Psi (0)!=!Psi (1)!=!0}
.
|
|
|
A038517
|
[0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...]
|
1973
|
0.30366300289873265859744812190155623
|
1,30357 72690 34296 39125
|
Constante de Conway
|
|
λ
{displaystyle {lambda }}
|
x
71
−
x
69
−
2
x
68
−
x
67
+
2
x
66
+
2
x
65
+
x
64
−
x
63
−
x
62
−
x
61
−
x
60
−
x
59
+
2
x
58
+
5
x
57
+
3
x
56
−
2
x
55
−
10
x
54
−
3
x
53
−
2
x
52
+
6
x
51
+
6
x
50
+
x
49
+
9
x
48
−
3
x
47
−
7
x
46
−
8
x
45
−
8
x
44
+
10
x
43
+
6
x
42
+
8
x
41
−
5
x
40
−
12
x
39
+
7
x
38
−
7
x
37
+
7
x
36
+
x
35
−
3
x
34
+
10
x
33
+
x
32
−
6
x
31
−
2
x
30
−
10
x
29
−
3
x
28
+
2
x
27
+
9
x
26
−
3
x
25
+
14
x
24
−
8
x
23
−
7
x
21
+
9
x
20
+
3
x
19
−
4
x
18
−
10
x
17
−
7
x
16
+
12
x
15
+
7
x
14
+
2
x
13
−
12
x
12
−
4
x
11
−
2
x
10
+
5
x
9
+
x
7
−
7
x
6
+
7
x
5
−
4
x
4
+
12
x
3
−
6
x
2
+
3
x
−
6
=
0
{displaystyle {begin{smallmatrix}x^{71}quad -x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}quad -7x^{21}+9x^{20}\+3x^{19}!-4x^{18}!-10x^{17}!-7x^{16}!+12x^{15}!+7x^{14}!+2x^{13}!-12x^{12}!-4x^{11}!-2x^{10}\+5x^{9}+x^{7}quad -7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6 = 0quad quad quad end{smallmatrix}}}
|
|
A
|
A014715
|
[1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...]
|
1987
|
1.30357726903429639125709911215255189
|
1,18656 91104 15625 45282
|
Constante de Lévy
|
|
β
{displaystyle {beta }}
|
π
2
12
ln
2
{displaystyle {frac {pi ^{2}}{12,ln 2}}}
|
pi^2 /(12 ln 2)
|
|
A100199
|
[1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...]
|
1935
|
1.18656911041562545282172297594723712
|
0,83564 88482 64721 05333
|
Constante de Baker
|
|
β
3
{displaystyle beta _{3}}
|
∫
0
1
d
t
1
+
t
3
=
∑
n
=
0
∞
(
−
1
)
n
3
n
+
1
=
1
3
(
ln
2
+
π
3
)
{displaystyle int _{0}^{1}{frac {mathrm {d} t}{1+t^{3}}}=sum _{n=0}^{infty }{frac {(-1)^{n}}{3n+1}}={frac {1}{3}}left(ln 2+{frac {pi }{sqrt {3}}}right)}
|
Sum[n=0 to ∞] {((-1)^(n))/(3n+1)}
|
|
A113476
|
[0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...]
|
|
0.83564884826472105333710345970011076
|
23,10344 79094 20541 6160
|
Serie de Kempner(0)
|
|
K
0
{displaystyle {K_{0}}}
|
1
+
1
2
+
1
3
+
⋯
+
1
9
+
1
11
+
⋯
+
1
19
+
1
21
+
⋯
+
etc.
{displaystyle 1{+}{frac {1}{2}}{+}{frac {1}{3}}{+}cdots {+}{frac {1}{9}}{+}{frac {1}{11}}{+}cdots {+}{frac {1}{19}}{+}{frac {1}{21}}{+}cdots {+},{text{etc.}}}
+
1
99
+
1
111
+
⋯
+
1
119
+
1
121
+
⋯
d
e
n
o
m
i
n
a
d
o
r
e
s
q
u
e
c
o
n
t
i
e
n
e
n
c
e
r
o
s
.
E
x
c
l
u
i
d
o
s
l
o
s
{displaystyle {+}{frac {1}{99}}{+}{frac {1}{111}}{+}cdots {+}{frac {1}{119}}{+}{frac {1}{121}}{+}cdots ;;{overset {Excluidos;los}{underset {contienen;ceros.}{scriptstyle denominadores;que}}}}
|
1+1/2+1/3+1/4+1/5 +1/6+1/7+1/8+1/9 +1/11+1/12+1/13 +1/14+1/15+...
|
|
A082839
|
[23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...]
|
|
23.1034479094205416160340540433255981
|
0,98943 12738 31146 95174
|
Constante de Lebesgue
|
|
C
1
{displaystyle {C_{1}}}
|
lim
n
→
∞
(
L
n
−
4
π
2
ln
(
2
n
+
1
)
)
=
4
π
2
(
∑
k
=
1
∞
2
ln
k
4
k
2
−
1
−
Γ
′
(
1
2
)
Γ
(
1
2
)
)
{displaystyle lim _{nto infty }!!left(!{L_{n}{-}{frac {4}{pi ^{2}}}ln(2n{+}1)}!!right)!{=}{frac {4}{pi ^{2}}}!left({sum _{k=1}^{infty }!{frac {2ln k}{4k^{2}{-}1}}}{-}{frac {Gamma '({tfrac {1}{2}})}{Gamma ({tfrac {1}{2}})}}!!right)}
|
4/pi^2*[(2 Sum[k=1 to ∞] {ln(k)/(4*k^2-1)}) -poligamma(1/2)]
|
|
A243277
|
[0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...]
|
|
0.98943127383114695174164880901886671
|
1,38135 64445 18497 79337
|
Constante Beta Kneser-Mahler
|
|
β
{displaystyle beta }
|
e
2
π
∫
0
π
3
t
tan
t
d
t
=
e
∫
−
1
3
1
3
ln
⌊
1
+
e
2
π
i
t
⌋
d
t
{displaystyle e^{^{textstyle {frac {2}{pi }}displaystyle {int _{0}^{frac {pi }{3}}}textstyle {ttan t dt}}}=e^{^{displaystyle {,int _{frac {-1}{3}}^{frac {1}{3}}}textstyle {,ln lfloor 1+e^{2pi it}}rfloor dt}}}
|
e^((PolyGamma(1,4/3) - PolyGamma(1,2/3) +9)/(4*sqrt(3)*Pi))
|
|
A242710
|
[1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...]
|
1963
|
1.38135644451849779337146695685062412
|
1,18745 23511 26501 05459
|
Constante de Foias α
|
|
F
α
{displaystyle F_{alpha }}
|
x
n
+
1
=
(
1
+
1
x
n
)
n
para
n
=
1
,
2
,
3
,
…
{displaystyle x_{n+1}=left(1+{frac {1}{x_{n}}}right)^{n}{text{ para }}n=1,2,3,ldots }
La constante de Foias es el único número real tal que si x1 = α, entonces la secuencia diverge a ∞. Cuando x1 = α,
lim
n
→
∞
x
n
log
n
n
=
1
{displaystyle ,lim _{nto infty }x_{n}{tfrac {log n}{n}}=1}
|
|
|
A085848
|
[1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...]
|
1970
|
1.18745235112650105459548015839651935
|
2,29316 62874 11861 03150
|
Constante de Foias β
|
|
F
β
{displaystyle F_{beta }}
|
x
x
+
1
=
(
x
+
1
)
x
{displaystyle x^{x+1}=(x+1)^{x}}
|
x^(x+1) = (x+1)^x
|
|
A085846
|
[2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...]
|
2000
|
2.29316628741186103150802829125080586
|
0,66170 71822 67176 23515
|
Constante de Robbins
|
|
Δ
(
3
)
{displaystyle Delta (3)}
|
4
+
17
2
−
6
3
−
7
π
105
+
ln
(
1
+
2
)
5
+
2
ln
(
2
+
3
)
5
{displaystyle {frac {4!+!17{sqrt {2}}!-6{sqrt {3}}!-7pi }{105}}!+!{frac {ln(1!+!{sqrt {2}})}{5}}!+!{frac {2ln(2!+!{sqrt {3}})}{5}}}
|
(4+17*2^(1/2)-6 *3^(1/2)+21*ln(1+ 2^(1/2))+42*ln(2+ 3^(1/2))-7*Pi)/105
|
|
A073012
|
[0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...]
|
1978
|
0.66170718226717623515583113324841358
|
0,78853 05659 11508 96106
|
Constante de Lüroth
|
|
C
L
{displaystyle C_{L}}
|
∑
n
=
2
∞
ln
(
n
n
−
1
)
n
{displaystyle sum _{n=2}^{infty }{frac {ln left({frac {n}{n-1}}right)}{n}}}
|
Sum[n=2 to ∞] log(n/(n-1))/n
|
|
A085361
|
[0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...]
|
|
0.78853056591150896106027632216944432
|
0,92883 58271
|
Constante entre primos gemelos de JJGJJG
|
|
B
1
{displaystyle B_{1}}
|
1
4
+
1
6
+
1
12
+
1
18
+
1
30
+
1
42
+
1
60
+
1
72
+
⋯
{displaystyle {frac {1}{4}}+{frac {1}{6}}+{frac {1}{12}}+{frac {1}{18}}+{frac {1}{30}}+{frac {1}{42}}+{frac {1}{60}}+{frac {1}{72}}+cdots }
|
1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + 1/60 + 1/72 +...
|
|
A241560
|
[0; 1, 13, 19, 4, 2, 3, 1, 1]
|
2014
|
0.928835827131
|
5,24411 51085 84239 62092
|
Constante 2 Lemniscata
|
|
2
ϖ
{displaystyle 2varpi }
|
[
Γ
(
1
4
)
]
2
2
π
=
4
∫
0
1
d
x
(
1
−
x
2
)
(
2
−
x
2
)
{displaystyle {frac {[Gamma ({tfrac {1}{4}})]^{2}}{sqrt {2pi }}}=4int _{0}^{1}{frac {dx}{sqrt {(1-x^{2})(2-x^{2})}}}}
|
Gamma[ 1/4 ]^2 /Sqrt[ 2 Pi ]
|
|
A064853
|
[5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...]
|
1718
|
5.24411510858423962092967917978223883
|
0,57595 99688 92945 43964
|
Constante Stephens
|
|
C
S
{displaystyle C_{S}}
|
∏
n
=
1
∞
(
1
−
p
p
3
−
1
)
{displaystyle prod _{n=1}^{infty }left(1-{frac {p}{p^{3}-1}}right)}
|
Prod[n=1 to ∞] {1-prime(n) /(prime(n)^3-1)}
|
T ?
|
A065478
|
[0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...]
|
?
|
0.57595996889294543964316337549249669
|
0,73908 51332 15160 64165
|
Número de Dottie
|
|
d
{displaystyle d}
|
lim
x
→
∞
cos
x
(
c
)
=
cos
(
cos
(
cos
(
cos
(
⋯
(
cos
(
c
)
)
)
)
)
)
⏟
x
{displaystyle lim _{xto infty }cos ^{x}(c)=underbrace {cos(cos(cos(cos(cdots (cos(c))))))} _{x}}
|
cos(c)=c
|
T
|
A003957
|
[0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...]
|
|
0.73908513321516064165531208767387340
|
0,67823 44919 17391 97803
|
Constante Taniguchi
|
|
C
T
{displaystyle C_{T}}
|
∏
n
=
1
∞
(
1
−
3
p
n
3
+
2
p
n
4
+
1
p
n
5
−
1
p
n
6
)
{displaystyle prod _{n=1}^{infty }left(1-{frac {3}{{p_{n}}^{3}}}+{frac {2}{{p_{n}}^{4}}}+{frac {1}{{p_{n}}^{5}}}-{frac {1}{{p_{n}}^{6}}}right)}
p
n
=
primo
{displaystyle scriptstyle p_{n}=,{text{primo}}}
|
Prod[n=1 to ∞] {1 -3/prime(n)^3 +2/prime(n)^4 +1/prime(n)^5 -1/prime(n)^6}
|
T ?
|
A175639
|
[0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...]
|
?
|
0.67823449191739197803553827948289481
|
1,35845 62741 82988 43520
|
Constante espiral áurea
|
|
c
{displaystyle c}
|
φ
2
π
=
(
1
+
5
2
)
2
π
{displaystyle varphi ^{frac {2}{pi }}=left({frac {1+{sqrt {5}}}{2}}right)^{frac {2}{pi }}}
|
GoldenRatio^(2/Pi)
|
|
A212224
|
[1;2,1,3,1,3,10,8,1,1,8,1,15,6,1,3,1,1,2,3,1,1,...]
|
|
1.35845627418298843520618060050187945
|
2,79128 78474 77920 00329
|
Raíces anidadas S5
|
|
S
5
{displaystyle S_{5}}
|
21
+
1
2
=
5
+
5
+
5
+
5
+
5
+
⋯
{displaystyle displaystyle {frac {{sqrt {21}}+1}{2}}=scriptstyle ,{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5+cdots }}}}}}}}}};}
=
1
+
5
−
5
−
5
−
5
−
5
−
⋯
{displaystyle =1+,scriptstyle {sqrt {5-{sqrt {5-{sqrt {5-{sqrt {5-{sqrt {5-cdots }}}}}}}}}};}
|
(sqrt(21)+1)/2
|
A
|
A222134
|
[2;1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,...] [2;1,3]
|
|
2.79128784747792000329402359686400424
|
1,85407 46773 01371 91843
|
Constante Lemniscata de Gauss
|
|
L
/
2
{displaystyle L{text{/}}{sqrt {2}}}
|
∫
0
∞
d
x
1
+
x
4
=
1
4
π
Γ
(
1
4
)
2
=
4
(
1
4
!
)
2
π
{displaystyle int limits _{0}^{infty }{frac {mathrm {d} x}{sqrt {1+x^{4}}}}={frac {1}{4{sqrt {pi }}}},Gamma left({frac {1}{4}}right)^{2}={frac {4left({frac {1}{4}}!right)^{2}}{sqrt {pi }}}}
Γ() = Función Gamma
|
pi^(3/2)/(2 Gamma(3/4)^2)
|
|
A093341
|
[1;1,5,1,5,1,3,1,6,2,1,4,16,3,112,2,1,1,18,1,...]
|
?
|
1.85407467730137191843385034719526005
|
1,75874 36279 51184 82469
|
Constante Producto infinito, con Alladi-Grinstead
|
|
P
r
1
{displaystyle Pr_{1}}
|
∏
n
=
2
∞
(
1
+
1
n
)
1
n
{displaystyle prod _{n=2}^{infty }{Big (}1+{frac {1}{n}}{Big)}^{frac {1}{n}}}
|
Prod[n=2 to ∞] {(1+1/n)^(1/n)}
|
|
A242623
|
[1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...]
|
1977
|
1.75874362795118482469989684865589317
|
1,73245 47146 00633 47358
|
Constante inversa de Euler-Mascheroni
|
|
1
γ
{displaystyle {frac {1}{gamma }}}
|
(
∫
0
1
−
log
(
log
1
x
)
d
x
)
−
1
=
∑
n
=
1
∞
(
−
1
)
n
(
−
1
+
γ
)
n
{displaystyle left(int _{0}^{1}-log left(log {frac {1}{x}}right),dxright)^{-1}=sum _{n=1}^{infty }(-1)^{n}(-1+gamma)^{n}}
|
1/Integrate_ (x=0 to 1) {-log(log(1/x))}
|
|
A098907
|
[1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...]
|
|
1.73245471460063347358302531586082968
|
1,94359 64368 20759 20505
|
Constante Euler Totient
|
|
E
T
{displaystyle ET}
|
∏
p
(
1
+
1
p
(
p
−
1
)
)
p
= Nros. primos
=
ζ
(
2
)
ζ
(
3
)
ζ
(
6
)
=
315
ζ
(
3
)
2
π
4
{displaystyle {underset {p{text{= Nros. primos}}}{prod _{p}{Big (}1+{frac {1}{p(p-1)}}{Big)}}}={frac {zeta (2);zeta (3)}{zeta (6)}}={frac {315;zeta (3)}{2pi ^{4}}}}
|
zeta(2)*zeta(3) /zeta(6)
|
|
A082695
|
[1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...]
|
1750
|
1.94359643682075920505707036257476343
|
1,49534 87812 21220 54191
|
Raíz cuarta de cinco
|
|
5
4
{displaystyle {sqrt[{4}]{5}}}
|
5
5
5
5
5
⋯
5
5
5
5
5
{displaystyle {sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,cdots }}}}}}}}}}}
|
(5(5(5(5(5(5(5) ^1/5)^1/5)^1/5) ^1/5)^1/5)^1/5) ^1/5...
|
A
|
A011003
|
[1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...]
|
|
1.49534878122122054191189899414091339
|
0,87228 40410 65627 97617
|
Área Círculo de Ford
|
|
A
C
F
{displaystyle A_{CF}}
|
∑
q
≥
1
∑
(
p
,
q
)
=
1
1
≤
p
<
q
π
(
1
2
q
2
)
2
=
π
4
ζ
(
3
)
ζ
(
4
)
=
45
2
ζ
(
3
)
π
3
{displaystyle sum _{qgeq 1}sum _{(p,q)=1 atop 1leq p<q}pi left({frac {1}{2q^{2}}}right)^{2}={frac {pi }{4}}{frac {zeta (3)}{zeta (4)}}={frac {45}{2}}{frac {zeta (3)}{pi ^{3}}}}
ς() = Función zeta
|
pi Zeta(3) /(4 Zeta(4))
|
|
|
[0;1,6,1,4,1,7,5,36,3,29,1,1,10,3,2,8,1,1,1,3,...]
|
?
|
0.87228404106562797617519753217122587
|
1,08232 32337 11138 19151
|
Constante Zeta(4)
|
|
ζ
(
4
)
{displaystyle zeta (4)}
|
π
4
90
=
∑
n
=
1
∞
1
n
4
=
1
1
4
+
1
2
4
+
1
3
4
+
1
4
4
+
1
5
4
+
.
.
.
{displaystyle {frac {pi ^{4}}{90}}=sum _{n=1}^{infty }{frac {1}{n^{4}}}={frac {1}{1^{4}}}+{frac {1}{2^{4}}}+{frac {1}{3^{4}}}+{frac {1}{4^{4}}}+{frac {1}{5^{4}}}+...}
|
Sum[n=1 to ∞] {1/n^4}
|
T
|
A013662
|
[1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...]
|
|
1.08232323371113819151600369654116790
|
1,56155 28128 08830 27491
|
Raíz Triangular de 2.
|
|
R
2
{displaystyle {R_{2}}}
|
17
−
1
2
=
4
+
4
+
4
+
4
+
4
+
4
+
⋯
−
1
{displaystyle {frac {{sqrt {17}}-1}{2}}=,scriptstyle {sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+cdots }}}}}}}}}}}},,-1}
=
4
−
4
−
4
−
4
−
4
−
4
−
⋯
{displaystyle =,scriptstyle {sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-cdots }}}}}}}}}}}}textstyle }
|
(sqrt(17)-1)/2
|
A
|
A222133
|
[1;1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,...] [1;1,1,3]
|
|
1.56155281280883027491070492798703851
|
1,45607 49485 82689 67139
|
Constante de Backhouse
|
|
B
{displaystyle {B}}
|
lim
k
→
∞
|
q
k
+
1
q
k
|
donde:
Q
(
x
)
=
1
P
(
x
)
=
∑
k
=
1
∞
q
k
x
k
{displaystyle lim _{kto infty }left|{frac {q_{k+1}}{q_{k}}}rightvert quad scriptstyle {text{donde:}}displaystyle ;;Q(x)={frac {1}{P(x)}}=!sum _{k=1}^{infty }q_{k}x^{k}}
P
(
x
)
=
∑
k
=
1
∞
p
k
x
k
p
k
:
p
r
i
m
o
=
1
+
2
x
+
3
x
2
+
5
x
3
+
7
x
4
+
.
.
.
{displaystyle P(x)=!sum _{k=1}^{infty }{underset {p_{k}:,{primo}}{p_{k}x^{k}}}!!=1{+}2x{+}3x^{2}{+}5x^{3}{+}7x^{4}{+}...}
|
1/(FindRoot[0 == 1 + Sum[x^n Prime[n], {n, 10000}], {x, {1}})
|
|
A072508
|
[1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,4,...]
|
1995
|
1.45607494858268967139959535111654355
|
1,43599 11241 76917 43235
|
Constante interpolación de Lebesgue ·
|
|
L
1
{displaystyle {L_{1}}}
|
∏
i
=
0
j
≠
i
n
x
−
x
i
x
j
−
x
i
=
1
π
∫
0
π
⌊
sin
3
t
2
⌋
sin
t
2
d
t
=
1
3
+
2
3
π
{displaystyle prod _{begin{smallmatrix}i=0\jneq iend{smallmatrix}}^{n}{frac {x-x_{i}}{x_{j}-x_{i}}}={frac {1}{pi }}int _{0}^{pi }{frac {lfloor sin {frac {3t}{2}}rfloor }{sin {frac {t}{2}}}},dt={frac {1}{3}}+{frac {2{sqrt {3}}}{pi }}}
|
1/3 + 2*sqrt(3)/Pi
|
T
|
A226654
|
[1;2,3,2,2,6,1,1,1,1,4,1,7,1,1,1,2,1,3,1,2,1,1,...]
|
1902 ~
|
1.43599112417691743235598632995927221
|
1,04633 50667 70503 18098
|
Constante mass Minkowski-Siegel
|
|
F
1
{displaystyle F_{1}}
|
∏
n
=
1
∞
n
!
2
π
n
(
n
e
)
n
1
+
1
n
12
{displaystyle prod _{n=1}^{infty }{frac {n!}{{sqrt {2pi n}}left({frac {n}{e}}right)^{n}{sqrt[{12}]{1+{tfrac {1}{n}}}}}}}
|
N[prod[n=1 to ∞] n! /(sqrt(2*Pi*n) *(n/e)^n *(1+1/n) ^(1/12))]
|
|
A213080
|
[1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..]
|
1867 1885 1935
|
1.04633506677050318098095065697776037
|
1,86002 50792 21190 30718
|
Constante espiral de Theodorus
|
|
∂
{displaystyle partial }
|
∑
n
=
1
∞
1
n
3
+
n
=
∑
n
=
1
∞
1
n
(
n
+
1
)
{displaystyle sum _{n=1}^{infty }{frac {1}{{sqrt {n^{3}}}+{sqrt {n}}}}=sum _{n=1}^{infty }{frac {1}{{sqrt {n}}(n+1)}}}
|
Sum[n=1 to ∞] {1/(n^(3/2) +n^(1/2))}
|
|
A226317
|
[1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...]
|
-460 a -399
|
1.86002507922119030718069591571714332
|
0,80939 40205 40639 13071
|
Constante de Alladi-Grinstead
|
|
A
A
G
{displaystyle {{mathcal {A}}_{AG}}}
|
e
−
1
+
∑
k
=
2
∞
∑
n
=
1
∞
1
n
k
n
+
1
=
e
−
1
−
∑
k
=
2
∞
1
k
ln
(
1
−
1
k
)
{displaystyle e^{-1+sum limits _{k=2}^{infty }sum limits _{n=1}^{infty }{frac {1}{nk^{n+1}}}}=e^{-1-sum limits _{k=2}^{infty }{frac {1}{k}}ln left(1-{frac {1}{k}}right)}}
|
e^{(sum[k=2 to ∞] |sum[n=1 to ∞] {1/(n k^(n+1))})-1}
|
|
A085291
|
[0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...]
|
1977
|
0.80939402054063913071793188059409131
|
1,26185 95071 42914 87419
|
Dimensión fractal del Copo de nieve de Koch
|
|
C
k
{displaystyle {C_{k}}}
|
log
4
log
3
{displaystyle {frac {log 4}{log 3}}}
|
log(4)/log(3)
|
T
|
A100831
|
[1;3,1,4,1,1,11,1,46,1,5,112,1,1,1,1,1,3,1,7,...]
|
|
1.26185950714291487419905422868552171
|
1,22674 20107 20353 24441
|
Constante Factorial de Fibonacci
|
|
F
{displaystyle F}
|
∏
n
=
1
∞
(
1
−
(
−
1
φ
2
)
n
)
=
∏
n
=
1
∞
(
1
−
(
5
−
3
2
)
n
)
{displaystyle prod _{n=1}^{infty }left(1-left(-{frac {1}{{varphi }^{2}}}right)^{n}right)=prod _{n=1}^{infty }left(1-left({frac {{sqrt {5}}-3}{2}}right)^{n}right)}
|
prod[n=1 to ∞] {1-((sqrt(5) -3)/2)^n}
|
|
A062073
|
[1;4,2,2,3,2,15,9,1,2,1,2,15,7,6,21,3,5,1,23,...]
|
|
1.22674201072035324441763023045536165
|
0,85073 61882 01867 26036
|
Constante de plegado de papel ·
|
|
P
f
{displaystyle {P_{f}}}
|
∑
n
=
0
∞
8
2
n
2
2
n
+
2
−
1
=
∑
n
=
0
∞
1
2
2
n
1
−
1
2
2
n
+
2
{displaystyle sum _{n=0}^{infty }{frac {8^{2^{n}}}{2^{2^{n+2}}-1}}=sum _{n=0}^{infty }{cfrac {tfrac {1}{2^{2^{n}}}}{1-{tfrac {1}{2^{2^{n+2}}}}}}}
|
N[Sum[n=0 to ∞] {8^2^n/(2^2^ (n+2)-1)},37]
|
|
A143347
|
[0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...]
|
?
|
0.85073618820186726036779776053206660
|
6,58088 59910 17920 97085
|
Constante de Froda
|
|
2
e
{displaystyle 2^{,e}}
|
2
e
{displaystyle 2^{e}}
|
2^e
|
|
|
[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...]
|
|
6.58088599101792097085154240388648649
|
– 0,5 ± 0,86602 54037 84438 64676 i
|
Raíz cúbica de 1
|
|
1
3
{displaystyle {sqrt[{3}]{1}}}
|
{
1
−
1
2
+
3
2
i
−
1
2
−
3
2
i
.
{displaystyle {begin{cases} 1\-{frac {1}{2}}+{frac {sqrt {3}}{2}}i\-{frac {1}{2}}-{frac {sqrt {3}}{2}}i.end{cases}}}
|
1, E^(2i pi/3) E^(-2i pi/3)
|
CA
|
A010527
|
- [0,5] ± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i - [0,5] ± [0; 1, 6, 2] i
|
|
- 0,5 ± 0.8660254037844386467637231707529 i
|
1,11786 41511 89944 97314
|
Constante de Goh-Schmutz
|
|
C
G
S
{displaystyle C_{GS}}
|
∫
0
∞
log
(
s
+
1
)
e
s
−
1
d
s
=
−
∑
n
=
1
∞
e
n
n
E
i
(
−
n
)
I
n
t
e
g
r
a
l
E
x
p
o
n
e
n
c
i
a
l
E
i
:
{displaystyle int _{0}^{infty }{frac {log(s+1)}{e^{s}-1}} ds=!-!sum _{n=1}^{infty }{frac {e^{n}}{n}}Ei(-n){overset {Ei:}{underset {Exponencial}{scriptstyle Integral}}}}
|
Integrate{ log(s+1) /(E^s-1)}
|
|
A143300
|
[1;8,2,15,2,7,2,1,1,1,1,2,3,5,3,5,1,1,4,13,1,...]
|
|
1.11786415118994497314040996202656544
|
1,11072 07345 39591 56175
|
Razón entre un cuadrado y la circunferencia circunscrita
|
|
π
2
2
{displaystyle {frac {pi }{2{sqrt {2}}}}}
|
∑
n
=
1
∞
(
−
1
)
⌊
n
−
1
2
⌋
2
n
+
1
=
1
1
+
1
3
−
1
5
−
1
7
+
1
9
+
1
11
−
.
.
.
{displaystyle sum _{n=1}^{infty }{frac {(-1)^{lfloor {frac {n-1}{2}}rfloor }}{2n+1}}={frac {1}{1}}+{frac {1}{3}}-{frac {1}{5}}-{frac {1}{7}}+{frac {1}{9}}+{frac {1}{11}}-...}
|
Sum[n=1 to ∞] {(-1)^(floor((n-1)/2)) /(2n-1)}
|
T
|
A093954
|
[1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...]
|
|
1.11072073453959156175397024751517342
|
2,82641 99970 67591 57554
|
Constante de Murata
|
|
C
m
{displaystyle {C_{m}}}
|
∏
n
=
1
∞
(
1
+
1
(
p
n
−
1
)
2
)
p
n
:
p
r
i
m
o
{displaystyle prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{{Big (}1+{frac {1}{(p_{n}-1)^{2}}}{Big)}}}}
|
Prod[n=1 to ∞] {1+1/(prime(n) -1)^2}
|
T ?
|
A065485
|
[2;1,4,1,3,5,2,2,2,4,3,2,1,3,2,1,1,1,8,2,2,28,...]
|
|
2.82641999706759157554639174723695374
|
1,52362 70862 02492 10627
|
Dimensión fractal de la frontera de la Curva del dragón
|
|
C
d
{displaystyle {C_{d}}}
|
log
(
1
+
73
−
6
87
3
+
73
+
6
87
3
3
)
log
(
2
)
{displaystyle {frac {log left({frac {1+{sqrt[{3}]{73-6{sqrt {87}}}}+{sqrt[{3}]{73+6{sqrt {87}}}}}{3}}right)}{log(2)}}}
|
(log((1+(73-6 sqrt(87))^1/3+ (73+6 sqrt(87))^1/3) /3))/ log(2)))
|
T
|
|
[1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...]
|
|
1.52362708620249210627768393595421662
|
1,30637 78838 63080 69046
|
Constante de Mills
|
|
θ
{displaystyle {theta }}
Es primo
|
⌊
θ
3
n
⌋
{displaystyle lfloor theta ^{3^{n}}rfloor }
|
Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8)
|
|
A051021
|
[1;3,3,1,3,1,2,1,2,1,4,2,35,21,1,4,4,1,1,3,2,...]
|
1947
|
1.30637788386308069046861449260260571
|
2,02988 32128 19307 25004
|
Volumen hiperbólico del Complemento del Nudo en Forma de Ocho
|
|
V
8
{displaystyle {V_{8}}}
|
2
3
∑
n
=
1
∞
1
n
(
2
n
n
)
∑
k
=
n
2
n
−
1
1
k
=
6
∫
0
π
/
3
log
(
1
2
sin
t
)
d
t
=
{displaystyle 2{sqrt {3}},sum _{n=1}^{infty }{frac {1}{n{2n choose n}}}sum _{k=n}^{2n-1}{frac {1}{k}}=6int limits _{0}^{pi /3}log left({frac {1}{2sin t}}right),dt=}
3
9
∑
n
=
0
∞
(
−
1
)
n
27
n
{
18
(
6
n
+
1
)
2
−
18
(
6
n
+
2
)
2
−
24
(
6
n
+
3
)
2
−
6
(
6
n
+
4
)
2
+
2
(
6
n
+
5
)
2
}
{displaystyle scriptstyle {frac {sqrt {3}}{9}},sum limits _{n=0}^{infty }{frac {(-1)^{n}}{27^{n}}},left{!{frac {18}{(6n+1)^{2}}}-{frac {18}{(6n+2)^{2}}}-{frac {24}{(6n+3)^{2}}}-{frac {6}{(6n+4)^{2}}}+{frac {2}{(6n+5)^{2}}}!right}}
|
6 integral[0 to pi/3] {log(1/(2 sin (n)))}
|
|
A091518
|
[2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...]
|
|
2.02988321281930725004240510854904057
|
1,46707 80794 33975 47289
|
Constante de Porter
|
|
C
{displaystyle {C}}
|
6
ln
2
π
2
(
3
ln
2
+
4
γ
−
24
π
2
ζ
′
(
2
)
−
2
)
−
1
2
{displaystyle {frac {6ln 2}{pi ^{2}}}left(3ln 2+4,gamma -{frac {24}{pi ^{2}}},zeta '(2)-2right)-{frac {1}{2}}}
γ
= Constante de Euler–Mascheroni = 0,5772156649...
{displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}}
ζ
′
(
2
)
= Derivada de
ζ
(
2
)
=
−
∑
n
=
2
∞
ln
n
n
2
= −0,9375482543...
{displaystyle scriptstyle zeta '(2),{text{= Derivada de }}zeta (2),=,-!!sum limits _{n=2}^{infty }{frac {ln n}{n^{2}}},{text{= −0,9375482543...}}}
|
6*ln2/Pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/Pi^2-2)-1/2
|
|
A086237
|
[1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...]
|
1974
|
1.46707807943397547289779848470722995
|
1,85193 70519 82466 17036
|
Constante de Gibbs
|
|
S
i
(
π
)
{displaystyle {Si(pi)}}
Integralsenoidal
|
∫
0
π
sin
t
t
d
t
=
∑
n
=
1
∞
(
−
1
)
n
−
1
π
2
n
−
1
(
2
n
−
1
)
(
2
n
−
1
)
!
{displaystyle int _{0}^{pi }{frac {sin t}{t}},dt=sum limits _{n=1}^{infty }(-1)^{n-1}{frac {pi ^{2n-1}}{(2n-1)(2n-1)!}}}
=
π
−
π
3
3
∗
3
!
+
π
5
5
∗
5
!
−
π
7
7
∗
7
!
+
.
.
.
{displaystyle =pi -{frac {pi ^{3}}{3*3!}}+{frac {pi ^{5}}{5*5!}}-{frac {pi ^{7}}{7*7!}}+...}
|
SinIntegral[Pi]
|
|
A036792
|
[1;1,5,1,3,15,1,5,3,2,7,2,1,62,1,3,110,1,39,...]
|
|
1.85193705198246617036105337015799136
|
1,78221 39781 91369 11177
|
Constante de Grothendieck
|
|
K
R
{displaystyle {K_{R}}}
|
π
2
log
(
1
+
2
)
=
π
2
arsinh
1
{displaystyle {frac {pi }{2log(1+{sqrt {2}})}}={frac {pi }{2operatorname {arsinh} 1}}}
|
pi/(2 log(1+sqrt(2)))
|
|
A088367
|
[1;1,3,1,1,2,4,2,1,1,17,1,12,4,3,5,10,1,1,3,...]
|
|
1.78221397819136911177441345297254934
|
1,74540 56624 07346 86349
|
Constante media armónica de Khinchin
|
|
K
−
1
{displaystyle {K_{-1}}}
|
log
2
∑
n
=
1
∞
1
n
log
(
1
+
1
n
(
n
+
2
)
)
=
lim
n
→
∞
n
1
a
1
+
1
a
2
+
.
.
.
+
1
a
n
{displaystyle {frac {log 2}{sum limits _{n=1}^{infty }{frac {1}{n}}log {bigl (}1+{frac {1}{n(n+2)}}{bigr)}}}=lim _{nto infty }{frac {n}{{frac {1}{a_{1}}}+{frac {1}{a_{2}}}+...+{frac {1}{a_{n}}}}}}
a1...an son elementos de una fracción continua [a0;a1,a2,...,an]
|
(log 2)/ (sum[n=1 to ∞] {1/n log(1+ 1/(n(n+2))}
|
|
A087491
|
[1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...]
|
|
1.74540566240734686349459630968366106
|
0,10841 01512 23111 36151
|
Constante de Trott
|
|
T
1
{displaystyle mathrm {T} _{1}}
|
[
1
,
0
,
8
,
4
,
1
,
0
,
1
,
5
,
1
,
2
,
2
,
3
,
1
,
1
,
1
,
3
,
6
,
.
.
.
]
{displaystyle textstyle [1,0,8,4,1,0,1,5,1,2,2,3,1,1,1,3,6,...]}
1
1
+
1
0
+
1
8
+
1
4
+
1
1
+
1
0
+
1
/
.
.
.
{displaystyle {frac {1}{1+{frac {1}{0+{frac {1}{8+{frac {1}{4+{frac {1}{1+{frac {1}{0+1{/...}}}}}}}}}}}}}}
|
Trott Constant
|
|
A039662
|
[0;9,4,2,5,1,2,2,3,1,1,1,3,6,1,5,1,1,2,...]
|
|
0.10841015122311136151129081140641509
|
1,45136 92348 83381 05028
|
Constante de Ramanujan–Soldner ·
|
|
μ
{displaystyle {mu }}
|
L
i
(
x
)
=
∫
0
x
d
t
ln
t
=
0
L
i
= Integral logarítmica
{displaystyle mathrm {Li} (x)=int _{0}^{x}{frac {dt}{ln t}}=0qquad mathrm {Li} ,scriptstyle {text{= Integral logarítmica}}}
L
i
(
x
)
=
E
i
(
ln
x
)
E
i
= Integral exponencial
{displaystyle mathrm {Li} (x);=;mathrm {Ei} (ln {x});;qquad mathrm {Ei} ,scriptstyle {text{= Integral exponencial}}}
|
FindRoot[li(x) = 0]
|
I
|
A070769
|
[1;2,4,1,1,1,3,1,1,1,2,47,2,4,1,12,1,1,2,2,1,...]
|
1792 a 1809
|
1.45136923488338105028396848589202744
|
0,64341 05462 88338 02618
|
Constante de Cahen
|
|
ξ
2
{displaystyle xi _{2}}
|
∑
k
=
1
∞
(
−
1
)
k
s
k
−
1
=
1
1
−
1
2
+
1
6
−
1
42
+
1
1806
±
⋯
{displaystyle sum _{k=1}^{infty }{frac {(-1)^{k}}{s_{k}-1}}={frac {1}{1}}-{frac {1}{2}}+{frac {1}{6}}-{frac {1}{42}}+{frac {1}{1806}}{,pm cdots }}
sk son términos de la Sucesión de Sylvester 2, 3, 7, 43, 1807...
Definida por
S
0
=
2
,
S
k
=
1
+
∏
n
=
0
k
−
1
S
n
{displaystyle scriptstyle ,S_{0}=,2,,,S_{k}=,1+prod limits _{n=0}^{k-1}S_{n}}
para k>0
|
|
T
|
A118227
|
[0; 1, 1, 1, 4, 9, 196, 16641, 639988804,...]
|
1891
|
0.64341054628833802618225430775756476
|
-4,22745 35333 76265 408
|
Digamma (¼)
|
|
ψ
(
1
4
)
{displaystyle psi ({tfrac {1}{4}})}
|
−
γ
−
π
2
−
3
ln
2
=
−
γ
+
∑
n
=
0
∞
(
1
n
+
1
−
1
n
+
1
4
)
{displaystyle -gamma -{frac {pi }{2}}-3ln {2}=-gamma +sum _{n=0}^{infty }left({frac {1}{n+1}}-{frac {1}{n+{tfrac {1}{4}}}}right)}
|
-EulerGamma -pi/2 -3 log 2
|
|
A020777
|
-[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...]
|
|
-4,2274535333762654080895301460966835
|
1,77245 38509 05516 02729
|
Constante de Carlson-Levin
|
|
Γ
(
1
2
)
{displaystyle {Gamma }({tfrac {1}{2}})}
|
π
=
(
−
1
2
)
!
=
∫
−
∞
∞
1
e
x
2
d
x
=
∫
0
1
1
−
ln
x
d
x
{displaystyle {sqrt {pi }}=left(-{frac {1}{2}}right)!=int _{-infty }^{infty }{frac {1}{e^{x^{2}}}},dx=int _{0}^{1}{frac {1}{sqrt {-ln x}}},dx}
|
sqrt (pi)
|
T
|
A002161
|
[1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...]
|
|
1.77245385090551602729816748334114518
|
0,23571 11317 19232 93137
|
Constante de Copeland-Erdős
|
|
C
C
E
{displaystyle {{mathcal {C}}_{CE}}}
|
∑
n
=
1
∞
p
n
10
n
+
∑
k
=
1
n
⌊
log
10
p
k
⌋
{displaystyle sum _{n=1}^{infty }{frac {p_{n}}{10^{n+sum limits _{k=1}^{n}lfloor log _{10}{p_{k}}rfloor }}}}
|
sum[n=1 to ∞] {prime(n) /(n+(10^ sum[k=1 to n]{floor (log_10 prime(k))}))}
|
I
|
A033308
|
[0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...]
|
|
0.23571113171923293137414347535961677
|
2,09455 14815 42326 59148
|
Constante de Wallis
|
|
W
{displaystyle W}
|
45
−
1929
18
3
+
45
+
1929
18
3
{displaystyle {sqrt[{3}]{frac {45-{sqrt {1929}}}{18}}}+{sqrt[{3}]{frac {45+{sqrt {1929}}}{18}}}}
|
(((45-sqrt(1929)) /18))^(1/3)+ (((45+sqrt(1929)) /18))^(1/3)
|
A
|
A007493
|
[2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...]
|
1616 a 1703
|
2.09455148154232659148238654057930296
|
0,28674 74284 34478 73410
|
Constante Strongly Carefree
|
|
K
2
{displaystyle K_{2}}
|
∏
n
=
1
∞
(
1
−
3
p
n
−
2
p
n
3
)
p
n
:
p
r
i
m
o
=
6
π
2
∏
n
=
1
∞
(
1
−
1
p
n
(
p
n
+
1
)
)
p
n
:
p
r
i
m
o
{displaystyle prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {3p_{n}-2}{{p_{n}}^{3}}}right)}}={frac {6}{pi ^{2}}}prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {1}{p_{n}(p_{n}+1)}}right)}}}
|
N[ prod[k=1 to ∞] {1 - (3*prime(k)-2) /(prime(k)^3)}]
|
|
A065473
|
[0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...]
|
|
0.28674742843447873410789271278983845
|
0,56714 32904 09783 87299
|
Constante Omega, función W(1) de Lambert
|
|
Ω
{displaystyle {Omega }}
|
∑
n
=
1
∞
(
−
n
)
n
−
1
n
!
=
(
1
e
)
(
1
e
)
⋅
⋅
(
1
e
)
=
e
−
Ω
=
e
−
e
−
e
⋅
⋅
−
e
{displaystyle sum _{n=1}^{infty }{frac {(-n)^{n-1}}{n!}}=,left({frac {1}{e}}right)^{left({frac {1}{e}}right)^{cdot ^{cdot ^{left({frac {1}{e}}right)}}}}=e^{-Omega }={e}^{-e^{-e^{cdot ^{cdot ^{-e}}}}}}
|
Sum[n=1 to ∞] {(-n)^(n-1)/n!}
|
T
|
A030178
|
[0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...]
|
1728 a 1777
|
0.56714329040978387299996866221035555
|
0,54325 89653 42976 70695
|
Constante de Bloch-Landau
|
|
L
{displaystyle {L}}
|
Γ
(
1
3
)
Γ
(
5
6
)
Γ
(
1
6
)
=
(
−
2
3
)
!
(
−
1
+
5
6
)
!
(
−
1
+
1
6
)
!
{displaystyle {frac {Gamma ({tfrac {1}{3}});Gamma ({tfrac {5}{6}})}{Gamma ({tfrac {1}{6}})}}={frac {(-{tfrac {2}{3}})!;(-1+{tfrac {5}{6}})!}{(-1+{tfrac {1}{6}})!}}}
|
gamma(1/3) *gamma(5/6) /gamma(1/6)
|
|
A081760
|
[0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...]
|
1929
|
0.54325896534297670695272829530061323
|
0,34053 73295 50999 14282
|
Constante de Pólya Random Walk
|
|
p
(
3
)
{displaystyle {p(3)}}
|
1
−
(
3
(
2
π
)
3
∫
−
π
π
∫
−
π
π
∫
−
π
π
d
x
d
y
d
z
3
−
cos
x
−
cos
y
−
cos
z
)
−
1
{displaystyle 1-!!left({3 over (2pi)^{3}}int limits _{-pi }^{pi }int limits _{-pi }^{pi }int limits _{-pi }^{pi }{dx,dy,dz over 3-!cos x-!cos y-!cos z}right)^{!-1}}
=
1
−
16
2
3
π
3
(
Γ
(
1
24
)
Γ
(
5
24
)
Γ
(
7
24
)
Γ
(
11
24
)
)
−
1
{displaystyle =1-16{sqrt {tfrac {2}{3}}};pi ^{3}left(Gamma ({tfrac {1}{24}})Gamma ({tfrac {5}{24}})Gamma ({tfrac {7}{24}})Gamma ({tfrac {11}{24}})right)^{-1}}
|
1-16*Sqrt[2/3]*Pi^3 /((Gamma[1/24] *Gamma[5/24] *Gamma[7/24] *Gamma[11/24])
|
|
A086230
|
[0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...]
|
|
0.34053732955099914282627318443290289
|
0,35323 63718 54995 98454
|
Constante de Hafner-Sarnak-McCurley (1)
|
|
σ
{displaystyle {sigma }}
|
∏
k
=
1
∞
{
1
−
[
1
−
∏
j
=
1
n
(
1
−
p
k
−
j
)
]
2
}
{displaystyle prod _{k=1}^{infty }left{1-left[1-prod _{j=1}^{n}(1-p_{k}^{-j})right]^{2}right}}
|
prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-prime(k)^-j})^2}
|
|
A085849
|
[0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...]
|
1993
|
0.35323637185499598454351655043268201
|
0,74759 79202 53411 43517
|
Constante Parking de Rényi
|
|
m
{displaystyle {m}}
|
∫
0
∞
e
(
−
2
∫
0
x
1
−
e
−
y
y
d
y
)
d
x
=
e
−
2
γ
∫
0
∞
e
−
2
Γ
(
0
,
n
)
n
2
{displaystyle int limits _{0}^{infty }e^{left(!-2int limits _{0}^{x}{frac {1-e^{-y}}{y}}dyright)}!dx={e^{-2gamma }}int limits _{0}^{infty }{frac {e^{-2Gamma (0,n)}}{n^{2}}}}
|
[e^(-2*Gamma)] * Int{n,0,∞}[ e^(- 2*Gamma(0,n)) /n^2]
|
|
A050996
|
[0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...]
|
1958
|
0.74759792025341143517873094383017817
|
0,60792 71018 54026 62866
|
Constante de Hafner-Sarnak-McCurley (2)
|
|
1
ζ
(
2
)
{displaystyle {frac {1}{zeta (2)}}}
|
6
π
2
=
∏
n
=
0
∞
(
1
−
1
p
n
2
)
p
n
:
p
r
i
m
o
=
(
1
−
1
2
2
)
(
1
−
1
3
2
)
(
1
−
1
5
2
)
.
.
.
{displaystyle {frac {6}{pi ^{2}}}{=}prod _{n=0}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {1}{{p_{n}}^{2}}}right)}}{=}textstyle left(1{-}{frac {1}{2^{2}}}right)left(1{-}{frac {1}{3^{2}}}right)left(1{-}{frac {1}{5^{2}}}right)...}
|
Prod{n=1 to ∞} (1-1/prime(n)^2)
|
T
|
A059956
|
[0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...]
|
|
0.60792710185402662866327677925836583
|
0,12345 67891 01112 13141
|
Constante de Champernowne
|
|
C
10
{displaystyle C_{10}}
|
∑
n
=
1
∞
∑
k
=
10
n
−
1
10
n
−
1
k
10
k
n
−
9
∑
j
=
0
n
−
1
10
j
(
n
−
j
−
1
)
{displaystyle sum _{n=1}^{infty }sum _{k=10^{n-1}}^{10^{n}-1}{frac {k}{10^{kn-9sum _{j=0}^{n-1}10^{j}(n-j-1)}}}}
|
|
T
|
A033307
|
[0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...]
|
1933
|
0.12345678910111213141516171819202123
|
0,76422 36535 89220 66299
|
Constante de Landau-Ramanujan
|
|
K
{displaystyle K}
|
1
2
∏
p
≡
3
mod
4
(
1
−
1
p
2
)
−
1
2
p
:
p
r
i
m
o
=
π
4
∏
p
≡
1
mod
4
(
1
−
1
p
2
)
1
2
p
:
p
r
i
m
o
{displaystyle {frac {1}{sqrt {2}}}prod _{pequiv 3!!!!!mod !4}!!{underset {!!!!!!!!p:,{primo}}{left(1-{frac {1}{p^{2}}}right)^{-{frac {1}{2}}}}}!!={frac {pi }{4}}prod _{pequiv 1!!!!!mod !4}!!{underset {!!!!p:,{primo}}{left(1-{frac {1}{p^{2}}}right)^{frac {1}{2}}}}}
|
|
T ?
|
A064533
|
[0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...]
|
1908
|
0.76422365358922066299069873125009232
|
1,58496 25007 21156 18145
|
Dimensión Hausdorf del triángulo de Sierpinski
|
|
l
o
g
2
3
{displaystyle {log_{2}3}}
|
l
o
g
3
l
o
g
2
=
∑
n
=
0
∞
1
2
2
n
+
1
(
2
n
+
1
)
∑
n
=
0
∞
1
3
2
n
+
1
(
2
n
+
1
)
=
1
2
+
1
24
+
1
160
+
.
.
.
1
3
+
1
81
+
1
1215
+
.
.
.
{displaystyle {frac {log3}{log2}}={frac {sum _{n=0}^{infty }{frac {1}{2^{2n+1}(2n+1)}}}{sum _{n=0}^{infty }{frac {1}{3^{2n+1}(2n+1)}}}}={frac {{frac {1}{2}}+{frac {1}{24}}+{frac {1}{160}}+...}{{frac {1}{3}}+{frac {1}{81}}+{frac {1}{1215}}+...}}}
|
(Sum[n=0 to ∞] {1/(2^(2n+1)(2n+1))})/ (Sum[n=0 to ∞] {1/(3^(2n+1)(2n+1))})
|
T
|
A020857
|
[1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...]
|
|
1.58496250072115618145373894394781651
|
0,11000 10000 00000 00000 0001
|
Número de Liouville
|
|
£
L
i
{displaystyle {text{£}}_{Li}}
|
∑
n
=
1
∞
1
10
n
!
=
1
10
1
!
+
1
10
2
!
+
1
10
3
!
+
1
10
4
!
+
.
.
.
{displaystyle sum _{n=1}^{infty }{frac {1}{10^{n!}}}={frac {1}{10^{1!}}}+{frac {1}{10^{2!}}}+{frac {1}{10^{3!}}}+{frac {1}{10^{4!}}}+...}
|
Sum[n=1 to ∞] {10^(-n!)}
|
T
|
A012245
|
[1;9,1,999,10,9999999999999,1,9,999,1,9]
|
|
0.11000100000000000000000100...
|
0,46364 76090 00806 11621
|
Serie de Machin-Gregory
|
|
arctan
1
2
{displaystyle arctan {frac {1}{2}}}
|
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
2
n
+
1
=
1
2
−
1
3
⋅
2
3
+
1
5
⋅
2
5
−
1
7
⋅
2
7
+
.
.
.
P
a
r
a
x
=
1
/
2
{displaystyle {underset {Para;x=1/2qquad qquad }{sum _{n=0}^{infty }{frac {!!(-1)^{n}x^{2n+1}}{2n+1}}={frac {1}{2}}-!{frac {1}{3cdot 2^{3}}}{+}{frac {1}{5cdot 2^{5}}}-!{frac {1}{7cdot 2^{7}}}{+}{...}}}}
|
Sum[n=0 to ∞] {(-1)^n (1/2) ^(2n+1)/(2n+1)}
|
I
|
A073000
|
[0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...]
|
|
0.46364760900080611621425623146121440
|
1,27323 95447 35162 68615
|
Serie de Ramanujan-Forsyth
|
|
4
π
{displaystyle {frac {4}{pi }}}
|
∑
n
=
0
∞
(
(
2
n
−
3
)
!
!
(
2
n
)
!
!
)
2
=
1
+
(
1
2
)
2
+
(
1
2
⋅
4
)
2
+
(
1
⋅
3
2
⋅
4
⋅
6
)
2
+
.
.
.
{displaystyle displaystyle sum limits _{n=0}^{infty }textstyle left({frac {(2n-3)!!}{(2n)!!}}right)^{2}={1!+!left({frac {1}{2}}right)^{2}!{+}left({frac {1}{2cdot 4}}right)^{2}!{+}left({frac {1cdot 3}{2cdot 4cdot 6}}right)^{2}{+}...}}
|
Sum[n=0 to ∞] {[(2n-3)!! /(2n)!!]^2}
|
I
|
A088538
|
[1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...]
|
|
1.27323954473516268615107010698011489
|
15,15426 22414 79264 1897
|
Constante exponencial reiterado
|
|
e
e
{displaystyle e^{e}}
|
∑
n
=
0
∞
e
n
n
!
=
lim
n
→
∞
(
1
+
n
n
)
n
−
n
(
1
+
n
)
1
+
n
{displaystyle sum _{n=0}^{infty }{frac {e^{n}}{n!}}=lim _{nto infty }left({frac {1+n}{n}}right)^{n^{-n}(1+n)^{1+n}}}
|
Sum[n=0 to ∞] {(e^n)/n!}
|
|
A073226
|
[15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...]
|
|
15.1542622414792641897604302726299119
|
36,46215 96072 07911 77099
|
Pi elevado a pi
|
|
π
π
{displaystyle pi ^{pi }}
|
π
π
{displaystyle pi ^{pi }}
|
pi^pi
|
|
A073233
|
[36;2,6,9,2,1,2,5,1,1,6,2,1,291,1,38,50,1,2,...]
|
|
36.4621596072079117709908260226921236
|
0,53964 54911 90413 18711
|
Constante de Ioachimescu
|
|
2
+
ζ
(
1
2
)
{displaystyle 2+zeta ({tfrac {1}{2}})}
|
2
−
(
1
+
2
)
∑
n
=
1
∞
(
−
1
)
n
+
1
n
=
γ
+
∑
n
=
1
∞
(
−
1
)
2
n
γ
n
2
n
n
!
{displaystyle {2{-}(1{+}{sqrt {2}})sum _{n=1}^{infty }{frac {(-1)^{n+1}}{sqrt {n}}}}=gamma +sum _{n=1}^{infty }{frac {(-1)^{2n};gamma _{n}}{2^{n}n!}}}
|
γ +N [sum[n=1 to ∞] {((-1)^(2n) gamma_n) /(2^n n!)}]
|
|
2- A059750
|
[0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...]
|
|
0.53964549119041318711050084748470198
|
2,58498 17595 79253 21706
|
Constante de Sierpiński
|
|
K
{displaystyle {K}}
|
π
(
2
γ
+
ln
4
π
3
Γ
(
1
4
)
4
)
=
π
(
2
γ
+
4
ln
Γ
(
3
4
)
−
ln
π
)
{displaystyle pi left(2gamma +ln {frac {4pi ^{3}}{Gamma ({tfrac {1}{4}})^{4}}}right)=pi (2gamma +4ln Gamma ({tfrac {3}{4}})-ln pi)}
=
π
(
2
ln
2
+
3
ln
π
+
2
γ
−
4
ln
Γ
(
1
4
)
)
{displaystyle =pi left(2ln 2+3ln pi +2gamma -4ln Gamma ({tfrac {1}{4}})right)}
|
-Pi Log[Pi]+2 Pi EulerGamma +4 Pi Log [Gamma[3/4]]
|
|
A062089
|
[2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...]
|
1907
|
2.58498175957925321706589358738317116
|
1,83928 67552 14161 13255
|
Constante Tribonacci
|
|
ϕ
3
{displaystyle {phi _{}}_{3}}
|
1
+
19
+
3
33
3
+
19
−
3
33
3
3
=
1
+
(
1
2
+
1
2
+
1
2
+
.
.
.
3
3
3
)
−
1
{displaystyle textstyle {frac {1+{sqrt[{3}]{19+3{sqrt {33}}}}+{sqrt[{3}]{19-3{sqrt {33}}}}}{3}}=scriptstyle ,1+left({sqrt[{3}]{{tfrac {1}{2}}+{sqrt[{3}]{{tfrac {1}{2}}+{sqrt[{3}]{{tfrac {1}{2}}+...}}}}}}right)^{-1}}
|
(1/3)*(1+(19+3 *sqrt(33))^(1/3) +(19-3 *sqrt(33))^(1/3))
|
A
|
A058265
|
[1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...]
|
|
1.83928675521416113255185256465328660
|
0,69220 06275 55346 35386
|
Valor mínimo de la función ƒ(x) = xx
|
|
(
1
e
)
1
e
{displaystyle {left({frac {1}{e}}right)}^{frac {1}{e}}}
|
e
−
1
e
{displaystyle {e}^{-{frac {1}{e}}}}
= Inverso de: Número de Steiner
|
e^(-1/e)
|
|
A072364
|
[0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]
|
|
0.69220062755534635386542199718278976
|
0,70710 67811 86547 52440
+0,70710 67811 86547 52440 i
|
Raíz cuadrada de i
|
|
i
{displaystyle {sqrt {i}}}
|
−
1
4
=
1
+
i
2
=
e
i
π
4
=
cos
(
π
4
)
+
i
sin
(
π
4
)
{displaystyle {sqrt[{4}]{-1}}={frac {1+i}{sqrt {2}}}=e^{frac {ipi }{4}}=cos left({frac {pi }{4}}right)+isin left({frac {pi }{4}}right)}
|
(1+i)/(sqrt 2)
|
C A
|
A010503
A010503
|
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] = [0;1,2,...] [0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] i = [0;1,2,...] i
|
|
0.70710678118654752440084436210484903 + 0.70710678118654752440084436210484 i
|
1,15636 26843 32269 71685
|
Constante de recurrencia cúbica
|
|
σ
3
{displaystyle {sigma _{3}}}
|
∏
n
=
1
∞
n
3
−
n
=
1
2
3
⋯
3
3
3
=
1
1
/
3
2
1
/
9
3
1
/
27
⋯
{displaystyle prod _{n=1}^{infty }n^{{3}^{-n}}={sqrt[{3}]{1{sqrt[{3}]{2{sqrt[{3}]{3cdots }}}}}}=1^{1/3};2^{1/9};3^{1/27}cdots }
|
prod[n=1 to ∞] {n ^(1/3)^n}
|
|
A123852
|
[1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...]
|
|
1.15636268433226971685337032288736935
|
1,66168 79496 33594 12129
|
Recurrencia cuadrática de Somos
|
|
σ
{displaystyle {sigma }}
|
∏
n
=
1
∞
n
1
/
2
n
=
1
2
3
4
⋯
=
1
1
/
2
2
1
/
4
3
1
/
8
⋯
{displaystyle prod _{n=1}^{infty }n^{{1/2}^{n}}={sqrt {1{sqrt {2{sqrt {3{sqrt {4cdots }}}}}}}}=1^{1/2};2^{1/4};3^{1/8}cdots }
|
prod[n=1 to ∞] {n ^(1/2)^n}
|
T ?
|
A065481
|
[1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...]
|
|
1.66168794963359412129581892274995074
|
0,95531 66181 24509 27816
|
Ángulo mágico
|
|
θ
m
{displaystyle {theta _{m}}}
|
arctan
(
2
)
=
arccos
(
1
3
)
≈
54
,
7356
∘
{displaystyle arctan left({sqrt {2}}right)=arccos left({sqrt {tfrac {1}{3}}}right)approx textstyle {54,7356}^{circ }}
|
arctan(sqrt(2))
|
T
|
A195696
|
[0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...]
|
|
0.95531661812450927816385710251575775
|
0,59634 73623 23194 07434
|
Constante de Euler-Gompertz
|
|
G
{displaystyle {G}}
|
−
e
E
i
(
−
1
)
=
∫
0
∞
e
−
n
1
+
n
d
n
=
1
1
+
1
1
+
1
1
+
2
1
+
2
1
+
3
1
+
3
1
+
4
/
.
.
.
{displaystyle -emathrm {Ei} (-1)=int limits _{0}^{infty }{frac {e^{-n}}{1{+}n}},dn=textstyle {frac {1}{1+{frac {1}{1+{frac {1}{1+{frac {2}{1+{frac {2}{1+{frac {3}{1+{frac {3}{1+4{/...}}}}}}}}}}}}}}}}
|
N[int[0 to ∞] {(e^-n)/(1+n)}]
|
I
|
A073003
|
[0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...]
|
|
0.59634736232319407434107849936927937
|
0,69777 46579 64007 98200
|
Constante de fracción continua, función de Bessel
|
|
C
C
F
{displaystyle {C}_{CF}}
|
I
1
(
2
)
I
0
(
2
)
=
∑
n
=
0
∞
n
n
!
n
!
∑
n
=
0
∞
1
n
!
n
!
=
1
1
+
1
2
+
1
3
+
1
4
+
1
5
+
1
6
+
1
/
.
.
.
{displaystyle {frac {I_{1}(2)}{I_{0}(2)}}={frac {sum limits _{n=0}^{infty }{frac {n}{n!n!}}}{sum limits _{n=0}^{infty }{frac {1}{n!n!}}}}=textstyle {frac {1}{1+{frac {1}{2+{frac {1}{3+{frac {1}{4+{frac {1}{5+{frac {1}{6+1{/...}}}}}}}}}}}}}}
|
(Sum {n=0 to ∞} n/(n!n!)) / (Sum {n=0 to ∞} 1/(n!n!))
|
I
|
A052119
|
[0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...] = [0;p+1], p∈ℕ
|
|
0.69777465796400798200679059255175260
|
0,36651 29205 81664 32701
|
Mediana distribución de Gumbel
|
|
l
l
2
{displaystyle {ll_{2}}}
|
−
ln
(
ln
(
2
)
)
{displaystyle -ln(ln(2))}
|
-ln(ln(2))
|
|
A074785
|
[0;2,1,2,1,2,6,1,6,6,2,2,2,1,12,1,8,1,1,3,1,...]
|
|
0.36816512920566432701243915823266947
|
0,64624 54398 94813 30426
|
Constante de Masser-Gramain
|
|
C
{displaystyle {C}}
|
γ
β
(
1
)
+
β
′
(
1
)
=
π
(
−
ln
Γ
(
1
4
)
+
3
4
π
+
1
2
ln
2
+
1
2
γ
)
{displaystyle gamma {beta }(1){+}{beta }'(1)=pi !left(-!ln Gamma ({tfrac {1}{4}})+{tfrac {3}{4}}pi +{tfrac {1}{2}}ln 2+{tfrac {1}{2}}gamma right)}
=
π
(
−
ln
(
1
4
!
)
+
3
4
ln
π
−
3
2
ln
2
+
1
2
γ
)
{displaystyle =pi !left(-!ln({tfrac {1}{4}}!)+{tfrac {3}{4}}ln pi -{tfrac {3}{2}}ln 2+{tfrac {1}{2}},gamma right)}
γ
= Constante de Euler–Mascheroni = 0,5772156649...
{displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}}
β() = Función beta, Γ() = Función Gamma
|
Pi/4*(2*Gamma + 2*Log[2] + 3*Log[Pi] - 4 Log[Gamma[1/4]])
|
|
A086057
|
[0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...]
|
|
0.64624543989481330426647339684579279
|
0.69034 71261 14964 31946
|
Límite superior exponencial iterado
|
|
H
2
n
+
1
{displaystyle {H}_{2n+1}}
|
lim
n
→
∞
H
2
n
+
1
=
(
1
2
)
(
1
3
)
(
1
4
)
⋅
⋅
(
1
2
n
+
1
)
=
2
−
3
−
4
⋅
⋅
−
2
n
−
1
{displaystyle lim _{nto infty }{H}_{2n+1}=textstyle left({frac {1}{2}}right)^{left({frac {1}{3}}right)^{left({frac {1}{4}}right)^{cdot ^{cdot ^{left({frac {1}{2n+1}}right)}}}}}={2}^{-3^{-4^{cdot ^{cdot ^{-2n-1}}}}}}
|
2^-3^-4^-5^-6^ -7^-8^-9^-10^ -11^-12^-13 …
|
|
A242760
|
[0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...]
|
|
0.69034712611496431946732843846418942
|
0,65836 55992
|
Límite inferior exponencial iterado
|
|
H
2
n
{displaystyle {H}_{2n}}
|
lim
n
→
∞
H
2
n
=
(
1
2
)
(
1
3
)
(
1
4
)
⋅
⋅
(
1
2
n
)
=
2
−
3
−
4
⋅
⋅
−
2
n
{displaystyle lim _{nto infty }{H}_{2n}=textstyle left({frac {1}{2}}right)^{left({frac {1}{3}}right)^{left({frac {1}{4}}right)^{cdot ^{cdot ^{left({frac {1}{2n}}right)}}}}}={2}^{-3^{-4^{cdot ^{cdot ^{-2n}}}}}}
|
2^-3^-4^-5^-6^ -7^-8^-9^-10^ -11^-12 …
|
|
|
[0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...]
|
|
0.6583655992...
|
2,71828 18284 59045 23536
|
Número e, constante de Euler
|
|
e
{displaystyle {e}}
|
∑
n
=
0
∞
1
n
!
=
1
0
!
+
1
1
+
1
2
!
+
1
3
!
+
1
4
!
+
1
5
!
+
⋯
{displaystyle sum _{n=0}^{infty }{frac {1}{n!}}={frac {1}{0!}}+{frac {1}{1}}+{frac {1}{2!}}+{frac {1}{3!}}+{frac {1}{4!}}+{frac {1}{5!}}+cdots }
2
∏
n
=
1
∞
∏
i
=
1
2
n
−
1
(
2
n
+
2
i
)
∏
i
=
1
2
n
−
1
(
2
n
+
2
i
−
1
)
2
n
=
2
4
3
6
⋅
8
5
⋅
7
4
10
⋅
12
⋅
14
⋅
16
9
⋅
11
⋅
13
⋅
15
8
⋯
{displaystyle 2!prod _{n=1}^{infty }!!textstyle {sqrt[{2^{n}}]{frac {prod _{i=1}^{2^{n-1}}(2^{n}+2i)}{prod _{i=1}^{2^{n-1}}!(2^{n}+2i-1)}}}=2{sqrt {frac {4}{3}}}{sqrt[{4}]{frac {6cdot 8}{5cdot 7}}}{sqrt[{8}]{frac {10cdot 12cdot 14cdot 16}{9cdot 11cdot 13cdot 15}}}cdots }
|
Sum[n=0 to ∞] {1/n!}
|
T
|
A001113
|
[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...] = [2;1,2p,1], p∈ℕ
|
1618
|
2.71828182845904523536028747135266250
|
2,74723 82749 32304 33305
|
Raíces anidadas de Ramanujan R5
|
|
R
5
{displaystyle R_{5}}
|
5
+
5
+
5
−
5
+
5
+
5
+
5
−
⋯
=
2
+
5
+
15
−
6
5
2
{displaystyle scriptstyle {sqrt {5+{sqrt {5+{sqrt {5-{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5-cdots }}}}}}}}}}}}}};=textstyle {frac {2+{sqrt {5}}+{sqrt {15-6{sqrt {5}}}}}{2}}}
|
(2+sqrt(5) +sqrt(15 -6 sqrt(5)))/2
|
A
|
|
[2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...]
|
|
2.74723827493230433305746518613420282
|
2,23606 79774 99789 69640
|
Raíz cuadrada de cinco Suma de Gauss
|
|
5
{displaystyle {sqrt {5}}}
|
(
n
=
5
)
∑
k
=
0
n
−
1
e
2
k
2
π
i
n
=
1
+
e
2
π
i
5
+
e
8
π
i
5
+
e
18
π
i
5
+
e
32
π
i
5
{displaystyle scriptstyle (n=5)displaystyle sum _{k=0}^{n-1}e^{frac {2k^{2}pi i}{n}}=1+e^{frac {2pi i}{5}}+e^{frac {8pi i}{5}}+e^{frac {18pi i}{5}}+e^{frac {32pi i}{5}}}
|
Sum[k=0 to 4] {e^(2k^2 pi i/5)}
|
A
|
A002163
|
[2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...] = [2;4,...]
|
|
2.23606797749978969640917366873127624
|
1,09864 19643 94156 48573
|
Constante París
|
|
C
P
a
{displaystyle C_{Pa}}
|
∏
n
=
2
∞
2
φ
φ
+
φ
n
,
φ
=
F
i
{displaystyle prod _{n=2}^{infty }{frac {2varphi }{varphi +varphi _{n}}};,;varphi {=}{Fi}}
con
φ
n
=
1
+
φ
n
−
1
{displaystyle varphi _{n}{=}{sqrt {1{+}varphi _{n{-}1}}}}
y
φ
1
=
1
{displaystyle varphi _{1}{=}1}
|
|
|
A105415
|
[1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...]
|
|
1.09864196439415648573466891734359621
|
0,11494 20448 53296 20070
|
Constante de Kepler–Bouwkamp
|
|
ρ
{displaystyle {rho }}
|
∏
n
=
3
∞
cos
(
π
n
)
=
cos
(
π
3
)
cos
(
π
4
)
cos
(
π
5
)
.
.
.
{displaystyle prod _{n=3}^{infty }cos left({frac {pi }{n}}right)=cos left({frac {pi }{3}}right)cos left({frac {pi }{4}}right)cos left({frac {pi }{5}}right)...}
|
prod[n=3 to ∞] {cos(pi/n)}
|
|
A085365
|
[0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...]
|
|
0.11494204485329620070104015746959874
|
1,28242 71291 00622 63687
|
Constante de Glaisher–Kinkelin
|
|
A
{displaystyle {A}}
|
e
1
12
−
ζ
′
(
−
1
)
=
e
1
8
−
1
2
∑
n
=
0
∞
1
n
+
1
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
(
k
+
1
)
2
ln
(
k
+
1
)
{displaystyle e^{{frac {1}{12}}-zeta ^{prime }(-1)}=e^{{frac {1}{8}}-{frac {1}{2}}sum limits _{n=0}^{infty }{frac {1}{n+1}}sum limits _{k=0}^{n}left(-1right)^{k}{binom {n}{k}}left(k+1right)^{2}ln(k+1)}}
|
e^(1/2-zeta´{-1})
|
T ?
|
A074962
|
[1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...]
|
1878
|
1.28242712910062263687534256886979172
|
3,62560 99082 21908 31193
|
Gamma(1/4)
|
|
Γ
(
1
4
)
{displaystyle Gamma ({tfrac {1}{4}})}
|
4
(
1
4
)
!
=
(
2
π
)
3
4
∏
k
=
1
∞
tanh
(
π
k
2
)
{displaystyle 4left({frac {1}{4}}right)!=(2pi)^{frac {3}{4}}prod _{k=1}^{infty }tanh left({frac {pi k}{2}}right)}
|
4(1/4)!
|
T
|
A068466
|
[3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...]
|
1729
|
3.62560990822190831193068515586767200
|
1,78107 24179 90197 98523
|
Exp.gamma por función G-Barnes
|
|
e
γ
{displaystyle e^{gamma }}
|
∏
n
=
1
∞
e
1
n
1
+
1
n
=
∏
n
=
0
∞
(
∏
k
=
0
n
(
k
+
1
)
(
−
1
)
k
+
1
(
n
k
)
)
1
n
+
1
=
{displaystyle prod _{n=1}^{infty }{frac {e^{frac {1}{n}}}{1+{tfrac {1}{n}}}}=prod _{n=0}^{infty }left(prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n choose k}}right)^{frac {1}{n+1}}=}
(
2
1
)
1
/
2
(
2
2
1
⋅
3
)
1
/
3
(
2
3
⋅
4
1
⋅
3
3
)
1
/
4
(
2
4
⋅
4
4
1
⋅
3
6
⋅
5
)
1
/
5
.
.
.
{displaystyle textstyle left({frac {2}{1}}right)^{1/2}left({frac {2^{2}}{1cdot 3}}right)^{1/3}left({frac {2^{3}cdot 4}{1cdot 3^{3}}}right)^{1/4}left({frac {2^{4}cdot 4^{4}}{1cdot 3^{6}cdot 5}}right)^{1/5}...}
|
Prod[n=1 to ∞] {e^(1/n)}/{1 + 1/n}
|
|
A073004
|
[1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...]
|
1900
|
1.78107241799019798523650410310717954
|
0,18785 96424 62067 12024
|
MRB Constant, Marvin Ray Burns
|
|
C
M
R
B
{displaystyle C_{{}_{MRB}}}
|
∑
n
=
1
∞
(
−
1
)
n
(
n
1
/
n
−
1
)
=
−
1
1
+
2
2
−
3
3
+
4
4
.
.
.
{displaystyle sum _{n=1}^{infty }({-}1)^{n}(n^{1/n}{-}1)=-{sqrt[{1}]{1}}+{sqrt[{2}]{2}}-{sqrt[{3}]{3}}+{sqrt[{4}]{4}},...}
|
Sum[n=1 to ∞] {(-1)^n (n^(1/n)-1)}
|
|
A037077
|
[0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...]
|
1999
|
0.18785964246206712024851793405427323
|
1,01494 16064 09653 62502
|
Constante de Gieseking
|
|
π
ln
β
{displaystyle {pi ln beta }}
|
3
3
4
(
1
−
∑
n
=
0
∞
1
(
3
n
+
2
)
2
+
∑
n
=
1
∞
1
(
3
n
+
1
)
2
)
=
{displaystyle {frac {3{sqrt {3}}}{4}}left(1-sum _{n=0}^{infty }{frac {1}{(3n+2)^{2}}}+sum _{n=1}^{infty }{frac {1}{(3n+1)^{2}}}right)=}
3
3
4
(
1
−
1
2
2
+
1
4
2
−
1
5
2
+
1
7
2
±
.
.
.
)
=
∫
0
2
π
3
ln
(
2
cos
t
2
)
d
t
{displaystyle textstyle {frac {3{sqrt {3}}}{4}}left(1{-}{frac {1}{2^{2}}}{+}{frac {1}{4^{2}}}{-}{frac {1}{5^{2}}}{+}{frac {1}{7^{2}}}{pm }...right)=displaystyle !int _{0}^{frac {2pi }{3}}!ln !left(2cos {tfrac {t}{2}}right){mathrm {d} }t}
|
sqrt(3)*3/4 *(1 -Sum[n=0 to ∞] {1/((3n+2)^2)} +Sum[n=1 to ∞] {1/((3n+1)^2)})
|
|
A143298
|
[1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...]
|
1912
|
1.01494160640965362502120255427452028
|
2,62205 75542 92119 81046
|
Constante Lemniscata
|
|
ϖ
{displaystyle {varpi }}
|
π
G
=
4
2
π
Γ
(
5
4
)
2
=
1
4
2
π
Γ
(
1
4
)
2
=
4
2
π
(
1
4
!
)
2
{displaystyle pi ,{G}=4{sqrt {tfrac {2}{pi }}},Gamma {left({tfrac {5}{4}}right)^{2}}={tfrac {1}{4}}{sqrt {tfrac {2}{pi }}},Gamma {left({tfrac {1}{4}}right)^{2}}=4{sqrt {tfrac {2}{pi }}}left({tfrac {1}{4}}!right)^{2}}
|
4 sqrt(2/pi) ((1/4)!)^2
|
T
|
A062539
|
[2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...]
|
1798
|
2.62205755429211981046483958989111941
|
0,83462 68416 74073 18628
|
Constante de Gauss
|
|
G
{displaystyle {G}}
|
1
a
g
m
(
1
,
2
)
=
4
2
(
1
4
!
)
2
π
3
/
2
a
g
m
:
M
e
d
i
a
a
r
i
t
m
e
´
t
i
c
a
−
g
e
o
m
e
´
t
r
i
c
a
{displaystyle {underset {agm:;Media;aritm{acute {e}}tica-geom{acute {e}}trica}{{frac {1}{mathrm {agm} (1,{sqrt {2}})}}={frac {4{sqrt {2}},({tfrac {1}{4}}!)^{2}}{pi ^{3/2}}}}}}
|
(4 sqrt(2) ((1/4)!)^2) /pi^(3/2)
|
T
|
A014549
|
[0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...]
|
1799
|
0.83462684167407318628142973279904680
|
0,00787 49969 97812 3844
|
Constante de Chaitin
|
|
Ω
{displaystyle {Omega }}
|
∑
p
∈
P
2
−
|
p
|
|
p
|
:
T
a
m
a
n
~
o
d
e
l
p
r
o
g
r
a
m
a
P
:
C
o
n
j
u
n
t
o
d
e
t
o
d
o
s
l
o
s
p
r
o
g
r
a
m
a
s
q
u
e
s
e
p
a
r
a
n
.
p
:
P
r
o
g
r
a
m
a
q
u
e
s
e
p
a
r
a
{displaystyle sum _{pin P}2^{-|p|}{overset {p:;{Programa;que;se;para}}{underset {P:;Conjunto;de;todos;los;programas;que;se;paran.}{scriptstyle {|p|}:;Tama{tilde {n}}o;del;programa}}}}
Ver también: Problema de la parada
|
|
T
|
A100264
|
[0; 126, 1, 62, 5, 5, 3, 3, 21, 1, 4, 1]
|
1975
|
0.0078749969978123844
|
2,80777 02420 28519 36522
|
Constante Fransén–Robinson
|
|
F
{displaystyle {F}}
|
∫
0
∞
1
Γ
(
x
)
d
x
.
=
e
+
∫
0
∞
e
−
x
π
2
+
ln
2
x
d
x
{displaystyle int _{0}^{infty }{frac {1}{Gamma (x)}},dx.=e+int _{0}^{infty }{frac {e^{-x}}{pi ^{2}+ln ^{2}x}},dx}
|
N[int[0 to ∞] {1/Gamma(x)}]
|
|
A058655
|
[2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...]
|
1978
|
2.80777024202851936522150118655777293
|
1,01734 30619 84449 13971
|
Zeta(6)
|
|
ζ
(
6
)
{displaystyle zeta (6)}
|
π
6
945
=
∏
n
=
1
∞
1
1
−
p
n
−
6
p
n
:
p
r
i
m
o
=
1
1
−
2
−
6
⋅
1
1
−
3
−
6
⋅
1
1
−
5
−
6
.
.
.
{displaystyle {frac {pi ^{6}}{945}}=prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{frac {1}{{1-p_{n}}^{-6}}}}={frac {1}{1{-}2^{-6}}}{cdot }{frac {1}{1{-}3^{-6}}}{cdot }{frac {1}{1{-}5^{-6}}}...}
=
∑
n
=
1
∞
1
n
6
=
1
1
6
+
1
2
6
+
1
3
6
+
1
4
6
+
1
5
6
+
.
.
.
{displaystyle textstyle =sum _{n=1}^{infty }{frac {1}{n^{6}}}={frac {1}{1^{6}}}+{frac {1}{2^{6}}}+{frac {1}{3^{6}}}+{frac {1}{4^{6}}}+{frac {1}{5^{6}}}+...}
|
Prod[n=1 to ∞] {1/(1 -prime(n)^-6)}
|
T
|
A013664
|
[1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...]
|
|
1.01734306198444913971451792979092052
|
1,64872 12707 00128 14684
|
Raíz cuadrada del número e
|
|
e
{displaystyle {sqrt {e}}}
|
∑
n
=
0
∞
1
2
n
n
!
=
∑
n
=
0
∞
1
(
2
n
)
!
!
=
1
1
+
1
2
+
1
8
+
1
48
+
⋯
{displaystyle sum _{n=0}^{infty }{frac {1}{2^{n}n!}}=sum _{n=0}^{infty }{frac {1}{(2n)!!}}={frac {1}{1}}+{frac {1}{2}}+{frac {1}{8}}+{frac {1}{48}}+cdots }
|
sum[n=0 to ∞] {1/(2^n n!)}
|
T
|
A019774
|
[1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...] = [1;1,1,1,4p+1], p∈ℕ
|
|
1.64872127070012814684865078781416357
|
i...
|
Número imaginario
|
|
i
{displaystyle {i}}
|
−
1
=
ln
(
−
1
)
π
e
i
π
=
−
1
{displaystyle {sqrt {-1}}={frac {ln(-1)}{pi }}qquad qquad mathrm {e} ^{i,pi }=-1}
|
sqrt(-1)
|
CI
|
|
|
1501 à 1576
|
i
|
4,81047 73809 65351 65547
|
Constante de John
|
|
γ
{displaystyle gamma }
|
i
i
=
i
−
i
=
i
1
i
=
(
i
i
)
−
1
=
e
π
2
{displaystyle {sqrt[{i}]{i}}=i^{-i}=i^{frac {1}{i}}=(i^{i})^{-1}=e^{frac {pi }{2}}}
|
e^(π/2)
|
T
|
A042972
|
[4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...]
|
|
4.81047738096535165547303566670383313
|
0.49801 56681 18356 04271
0.15494 98283 01810 68512 i
|
Factorial de i
|
|
i
!
{displaystyle {i},!}
|
Γ
(
1
+
i
)
=
i
Γ
(
i
)
=
∫
0
∞
t
i
e
t
d
t
{displaystyle Gamma (1+i)=i,Gamma (i)=int limits _{0}^{infty }{frac {t^{i}}{e^{t}}}mathrm {d} t}
|
Gamma(1+i)
|
C
|
A212877 A212878
|
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...] - [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i
|
|
0.49801566811835604271369111746219809 - 0.15494982830181068512495513048388 i
|
0,43828 29367 27032 11162
0,36059 24718 71385 485 i
|
Tetración infinita de i
|
|
∞
i
{displaystyle {}^{infty }{i}}
|
lim
n
→
∞
n
i
=
lim
n
→
∞
i
i
⋅
⋅
i
⏟
n
{displaystyle lim _{nto infty }{}^{n}i=lim _{nto infty }underbrace {i^{i^{cdot ^{cdot ^{i}}}}} _{n}}
|
i^i^i^...
|
C
|
A077589 A077590
|
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1,...] + [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i
|
|
0.43828293672703211162697516355126482 + 0.36059247187138548595294052690600 i
|
0,56755 51633 06957 82538
|
Módulo de la Tetración infinita de i
|
|
|
∞
i
|
{displaystyle |{}^{infty }{i}|}
|
lim
n
→
∞
|
n
i
|
=
|
lim
n
→
∞
i
i
⋅
⋅
i
⏟
n
|
{displaystyle lim _{nto infty }left|{}^{n}iright|=left|lim _{nto infty }underbrace {i^{i^{cdot ^{cdot ^{i}}}}} _{n}right|}
|
Mod(i^i^i^...)
|
|
A212479
|
[0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...]
|
|
0.56755516330695782538461314419245334
|
0,26149 72128 47642 78375
|
Constante de Meissel-Mertens
|
|
M
{displaystyle {M}}
|
lim
n
→
∞
(
∑
p
≤
n
1
p
−
ln
(
ln
(
n
)
)
)
=
γ
+
∑
p
(
ln
(
1
−
1
p
)
+
1
p
)
γ
:
Constante de Euler
,
p
:
primo
{displaystyle lim _{nrightarrow infty }!!left(sum _{pleq n}{frac {1}{p}}!-ln(ln(n))!right)!!={underset {!!!!gamma:,{text{Constante de Euler}},,,p:,{text{primo}}}{!gamma !+!!sum _{p}!left(!ln !left(!1!-!{frac {1}{p}}!right)!!+!{frac {1}{p}}!right)}}}
|
gamma+ Sum[n=1 to ∞] {ln(1-1/prime(n)) +1/prime(n)}
|
|
A077761
|
[0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...]
|
1866 y 1873
|
0.26149721284764278375542683860869585
|
1,92878 00...
|
Constante de Wright
|
|
ω
{displaystyle {omega }}
|
⌊
2
2
2
⋅
⋅
2
ω
⌋
{displaystyle leftlfloor 2^{2^{2^{cdot ^{cdot ^{2^{omega }}}}}}rightrfloor }
= primos:
{displaystyle quad }
⌊
2
ω
⌋
{displaystyle leftlfloor 2^{omega }rightrfloor }
=3,
⌊
2
2
ω
⌋
{displaystyle leftlfloor 2^{2^{omega }}rightrfloor }
=13,
⌊
2
2
2
ω
⌋
{displaystyle leftlfloor 2^{2^{2^{omega }}}rightrfloor }
=16381,
…
{displaystyle dots }
|
|
|
A086238
|
[1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3]
|
|
1.9287800..
|
0,37395 58136 19202 28805
|
Constante de Artin
|
|
C
A
r
t
i
n
{displaystyle {C}_{Artin}}
|
∏
n
=
1
∞
(
1
−
1
p
n
(
p
n
−
1
)
)
p
n
= primos
{displaystyle prod _{n=1}^{infty }left(1-{frac {1}{p_{n}(p_{n}-1)}}right)quad p_{n}scriptstyle {text{ = primos}}}
|
Prod[n=1 to ∞] {1-1/(prime(n) (prime(n)-1))}
|
|
A005596
|
[0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...]
|
1999
|
0.37395581361920228805472805434641641
|
4,66920 16091 02990 67185
|
Constante δ de Feigenbaum δ
|
|
δ
{displaystyle {delta }}
|
lim
n
→
∞
x
n
+
1
−
x
n
x
n
+
2
−
x
n
+
1
x
∈
(
3
,
8284
;
3
,
8495
)
{displaystyle lim _{nto infty }{frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}qquad scriptstyle xin (3,8284;,3,8495)}
x
n
+
1
=
a
x
n
(
1
−
x
n
)
o
x
n
+
1
=
a
sin
(
x
n
)
{displaystyle scriptstyle x_{n+1}=,ax_{n}(1-x_{n})quad {o}quad x_{n+1}=,asin(x_{n})}
|
|
|
A006890
|
[4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...]
|
1975
|
4.66920160910299067185320382046620161
|
2,50290 78750 95892 82228
|
Constante α de Feigenbaum
|
|
α
{displaystyle alpha }
|
lim
n
→
∞
d
n
d
n
+
1
{displaystyle lim _{nto infty }{frac {d_{n}}{d_{n+1}}}}
|
|
|
A006891
|
[2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...]
|
1979
|
2.50290787509589282228390287321821578
|
5,97798 68121 78349 12266
|
Constante hexagonal Madelung 2
|
|
H
2
(
2
)
{displaystyle {H}_{2}(2)}
|
π
ln
(
3
)
3
{displaystyle pi ln(3){sqrt {3}}}
|
Pi Log[3]Sqrt[3]
|
|
A086055
|
[5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...]
|
|
5.97798681217834912266905331933922774
|
0,96894 61462 59369 38048
|
Constante Beta(3)
|
|
β
(
3
)
{displaystyle {beta }(3)}
|
π
3
32
=
∑
n
=
1
∞
−
1
n
+
1
(
−
1
+
2
n
)
3
=
1
1
3
−
1
3
3
+
1
5
3
−
1
7
3
+
.
.
.
{displaystyle {frac {pi ^{3}}{32}}=sum _{n=1}^{infty }{frac {-1^{n+1}}{(-1+2n)^{3}}}={frac {1}{1^{3}}}{-}{frac {1}{3^{3}}}{+}{frac {1}{5^{3}}}{-}{frac {1}{7^{3}}}{+}...}
|
Sum[n=1 to ∞] {(-1)^(n+1) /(-1+2n)^3}
|
T
|
A153071
|
[0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...]
|
|
0.96894614625936938048363484584691860
|
1,90216 05831 04
|
Constante de Brun 2 = Σ inverso primos gemelos
|
|
B
2
{displaystyle {B}_{,2}}
|
∑
(
1
p
+
1
p
+
2
)
p
,
p
+
2
:
p
r
i
m
o
s
=
(
1
3
+
1
5
)
+
(
1
5
+
1
7
)
+
(
1
11
+
1
13
)
+
.
.
.
{displaystyle textstyle {underset {p,,p+2:,{primos}}{sum ({frac {1}{p}}+{frac {1}{p+2}})}}=({frac {1}{3}}{+}{frac {1}{5}})+({tfrac {1}{5}}{+}{tfrac {1}{7}})+({tfrac {1}{11}}{+}{tfrac {1}{13}})+...}
|
N[prod[n=2 to 0,870∞] [1-1/(prime(n) -1)^2]]
|
|
A065421
|
[1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2]
|
1919
|
1.902160583104
|
0,87058 83799 75
|
Constante de Brun 4 = Σ inverso primos gemelos
|
|
B
4
{displaystyle {B}_{,4}}
|
(
1
5
+
1
7
+
1
11
+
1
13
)
p
,
p
+
2
,
p
+
6
,
p
+
8
:
p
r
i
m
o
s
+
(
1
11
+
1
13
+
1
17
+
1
19
)
+
…
{displaystyle {underset {p,,p+2,,p+6,,p+8:,{primos}}{left({tfrac {1}{5}}+{tfrac {1}{7}}+{tfrac {1}{11}}+{tfrac {1}{13}}right)}}+left({tfrac {1}{11}}+{tfrac {1}{13}}+{tfrac {1}{17}}+{tfrac {1}{19}}right)+dots }
|
|
|
A213007
|
[0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1]
|
1919
|
0.87058837997
|
22,45915 77183 61045 47342
|
pi^e
|
|
π
e
{displaystyle pi ^{e}}
|
π
e
{displaystyle pi ^{e}}
|
pi^e
|
|
A059850
|
[22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...]
|
|
22.4591577183610454734271522045437350
|
3,14159 26535 89793 23846
|
Número π, constante de Arquímedes ·
|
|
π
{displaystyle {pi }}
|
lim
n
→
∞
2
n
2
−
2
+
2
+
...
+
2
⏟
n
{displaystyle lim _{nto infty },2^{n}underbrace {sqrt {2-{sqrt {2+{sqrt {2+{text{...}}+{sqrt {2}}}}}}}} _{n}}
|
Sum[n=0 to ∞] {(-1)^n 4/(2n+1)}
|
T
|
A000796
|
[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...]
|
-250 ~
|
3.14159265358979323846264338327950288
|
0,28878 80950 86602 42127
|
Flajolet and Richmond
|
|
Q
{displaystyle {Q}}
|
∏
n
=
1
∞
(
1
−
1
2
n
)
=
(
1
−
1
2
1
)
(
1
−
1
2
2
)
(
1
−
1
2
3
)
.
.
.
{displaystyle prod _{n=1}^{infty }left(1-{frac {1}{2^{n}}}right)=left(1{-}{frac {1}{2^{1}}}right)left(1{-}{frac {1}{2^{2}}}right)left(1{-}{frac {1}{2^{3}}}right)...}
|
prod[n=1 to ∞] {1-1/2^n}
|
|
A048651
|
[0;3,2,6,4,1,2,1,9,2,1,2,3,2,3,5,1,2,1,1,6,1,...]
|
1992
|
0.28878809508660242127889972192923078
|
0,06598 80358 45312 53707
|
Límite inferior de Tetración
|
|
e
−
e
{displaystyle {e}^{-e}}
|
(
1
e
)
e
{displaystyle left({frac {1}{e}}right)^{e}}
|
1/(e^e)
|
|
A073230
|
[0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...]
|
|
0.06598803584531253707679018759684642
|
0,31830 98861 83790 67153
|
Inverso de Pi, Ramanujan
|
|
1
π
{displaystyle {frac {1}{pi }}}
|
2
2
9801
∑
n
=
0
∞
(
4
n
)
!
(
1103
+
26390
n
)
(
n
!
)
4
396
4
n
{displaystyle {frac {2{sqrt {2}}}{9801}}sum _{n=0}^{infty }{frac {(4n)!,(1103+26390;n)}{(n!)^{4},396^{4n}}}}
|
2 sqrt(2)/9801 *Sum[n=0 to ∞] {((4n)!/n!^4)*(1103+ 26390n)/396^(4n)}
|
T
|
A049541
|
[0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...]
|
|
0.31830988618379067153776752674502872
|
0,63661 97723 67581 34307
|
Constante de Buffon
|
Aguja interseca línea
|
2
π
{displaystyle {frac {2}{pi }}}
|
2
2
⋅
2
+
2
2
⋅
2
+
2
+
2
2
⋯
{displaystyle {frac {sqrt {2}}{2}}cdot {frac {sqrt {2+{sqrt {2}}}}{2}}cdot {frac {sqrt {2+{sqrt {2+{sqrt {2}}}}}}{2}}cdots }
Producto de François Viète
|
2/Pi
|
T
|
A060294
|
[0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...]
|
1540 a 1603
|
0.63661977236758134307553505349005745
|
0,47494 93799 87920 65033
|
Constante de Weierstrass
|
|
σ
(
1
2
)
{displaystyle sigma ({tfrac {1}{2}})}
|
e
π
8
π
4
∗
2
3
/
4
(
1
4
!
)
2
{displaystyle {frac {e^{frac {pi }{8}}{sqrt {pi }}}{4*2^{3/4}{({frac {1}{4}}!)^{2}}}}}
|
(E^(Pi/8) Sqrt[Pi]) /(4 2^(3/4) (1/4)!^2)
|
|
A094692
|
[0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...]
|
1872 ?
|
0.47494937998792065033250463632798297
|
0,57721 56649 01532 86060
|
Constante de Euler-Mascheroni
|
|
γ
{displaystyle {gamma }}
|
∑
n
=
1
∞
∑
k
=
0
∞
(
−
1
)
k
2
n
+
k
=
∑
n
=
1
∞
1
n
−
ln
(
n
)
=
∫
0
1
−
ln
(
ln
1
x
)
d
x
{displaystyle sum _{n=1}^{infty }sum _{k=0}^{infty }{frac {(-1)^{k}}{2^{n}+k}}!=!sum _{n=1}^{infty }{frac {1}{n}}-ln(n)!=!!int _{0}^{1}!!-ln(ln {frac {1}{x}}),dx}
|
sum[n=1 to ∞] |sum[k=0 to ∞] {((-1)^k)/(2^n+k)}
|
|
A001620
|
[0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,...]
|
1735
|
0.57721566490153286060651209008240243
|
1,70521 11401 05367 76428
|
Constante de Niven
|
|
C
{displaystyle {C}}
|
1
+
∑
n
=
2
∞
(
1
−
1
ζ
(
n
)
)
{displaystyle 1+sum _{n=2}^{infty }left(1-{frac {1}{zeta (n)}}right)}
|
1+ Sum[n=2 to ∞] {1-(1/Zeta(n))}
|
|
A033150
|
[1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...]
|
1969
|
1.70521114010536776428855145343450816
|
0,60459 97880 78072 61686
|
Relación entre el área de un triángulo equilátero y su círculo inscrito.
|
|
π
3
3
{displaystyle {frac {pi }{3{sqrt {3}}}}}
|
∑
n
=
1
∞
1
n
(
2
n
n
)
=
1
−
1
2
+
1
4
−
1
5
+
1
7
−
1
8
+
⋯
{displaystyle sum _{n=1}^{infty }{frac {1}{n{2n choose n}}}=1-{frac {1}{2}}+{frac {1}{4}}-{frac {1}{5}}+{frac {1}{7}}-{frac {1}{8}}+cdots }
Serie de Dirichlet
|
Sum[1/(n Binomial[2 n, n]) , {n, 1, ∞}]
|
T
|
A073010
|
[0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...]
|
|
0.60459978807807261686469275254738524
|
3,24697 96037 17467 06105
|
Constante Silver de Tutte–Beraha
|
|
ς
{displaystyle varsigma }
|
2
+
2
cos
2
π
7
=
2
+
2
+
7
+
7
7
+
7
7
+
⋯
3
3
3
1
+
7
+
7
7
+
7
7
+
⋯
3
3
3
{displaystyle 2+2cos {frac {2pi }{7}}=textstyle 2+{frac {2+{sqrt[{3}]{7+7{sqrt[{3}]{7+7{sqrt[{3}]{,7+cdots }}}}}}}{1+{sqrt[{3}]{7+7{sqrt[{3}]{7+7{sqrt[{3}]{,7+cdots }}}}}}}}}
|
2+2 cos(2Pi/7)
|
A
|
A116425
|
[3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...]
|
|
3.24697960371746706105000976800847962
|
0,69314 71805 59945 30941
|
Logaritmo natural de 2
|
|
L
n
(
2
)
{displaystyle Ln(2)}
|
∑
n
=
1
∞
1
n
2
n
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
=
1
1
−
1
2
+
1
3
−
1
4
+
⋯
{displaystyle sum _{n=1}^{infty }{frac {1}{n2^{n}}}=sum _{n=1}^{infty }{frac {({-}1)^{n+1}}{n}}={frac {1}{1}}-{frac {1}{2}}+{frac {1}{3}}-{frac {1}{4}}+{cdots }}
|
Sum[n=1 to ∞] {(-1)^(n+1)/n}
|
T
|
A002162
|
[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...]
|
1550 a 1617
|
0.69314718055994530941723212145817657
|
0,66016 18158 46869 57392
|
Constante de los primos gemelos
|
|
C
2
{displaystyle {C}_{2}}
|
∏
p
=
3
∞
p
(
p
−
2
)
(
p
−
1
)
2
{displaystyle prod _{p=3}^{infty }{frac {p(p-2)}{(p-1)^{2}}}}
|
prod[p=3 to ∞] {p(p-2)/(p-1)^2
|
|
A005597
|
[0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...]
|
1922
|
0.66016181584686957392781211001455577
|
0,66274 34193 49181 58097
|
Constante límite de Laplace
|
|
λ
{displaystyle {lambda }}
|
x
e
x
2
+
1
x
2
+
1
+
1
=
1
{displaystyle {frac {x;e^{sqrt {x^{2}+1}}}{{sqrt {x^{2}+1}}+1}}=1}
|
(x e^sqrt(x^2+1)) /(sqrt(x^2+1)+1) = 1
|
|
A033259
|
[0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...]
|
1782 ~
|
0.66274341934918158097474209710925290
|
0,28016 94990 23869 13303
|
Constante de Bernstein
|
|
β
{displaystyle {beta }}
|
1
2
π
{displaystyle {frac {1}{2{sqrt {pi }}}}}
|
1/(2 sqrt(pi))
|
T
|
A073001
|
[0;3,1,1,3,9,6,3,1,3,14,34,2,1,1,60,2,2,1,1,...]
|
1913
|
0.28016949902386913303643649123067200
|
0,78343 05107 12134 40705
|
Sophomore's Dream 1 Johann Bernoulli
|
|
I
1
{displaystyle {I}_{1}}
|
∫
0
1
x
−
x
d
x
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
n
=
1
1
1
−
1
2
2
+
1
3
3
−
⋯
{displaystyle int _{0}^{1}!x^{-x},dx=sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n^{n}}}={frac {1}{1^{1}}}-{frac {1}{2^{2}}}+{frac {1}{3^{3}}}-{cdots }}
|
Sum[n=1 to ∞] {-(-1)^n /n^n}
|
|
A083648
|
[0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...]
|
1697
|
0.78343051071213440705926438652697546
|
1,29128 59970 62663 54040
|
Sophomore's Dream 2 Johann Bernoulli
|
|
I
2
{displaystyle {I}_{2}}
|
∫
0
1
1
x
x
d
x
=
∑
n
=
1
∞
1
n
n
=
1
1
1
+
1
2
2
+
1
3
3
+
1
4
4
+
⋯
{displaystyle int _{0}^{1}!{frac {1}{x^{x}}},dx=sum _{n=1}^{infty }{frac {1}{n^{n}}}={frac {1}{1^{1}}}+{frac {1}{2^{2}}}+{frac {1}{3^{3}}}+{frac {1}{4^{4}}}+cdots }
|
Sum[n=1 to ∞] {1/(n^n)}
|
|
A073009
|
[1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...]
|
1697
|
1.29128599706266354040728259059560054
|
0,82246 70334 24113 21823
|
Constante Nielsen-Ramanujan
|
|
ζ
(
2
)
2
{displaystyle {frac {{zeta }(2)}{2}}}
|
π
2
12
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
2
=
1
1
2
−
1
2
2
+
1
3
2
−
1
4
2
+
1
5
2
−
.
.
.
{displaystyle {frac {pi ^{2}}{12}}=sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n^{2}}}={frac {1}{1^{2}}}{-}{frac {1}{2^{2}}}{+}{frac {1}{3^{2}}}{-}{frac {1}{4^{2}}}{+}{frac {1}{5^{2}}}{-}...}
|
Sum[n=1 to ∞] {((-1)^(n+1))/n^2}
|
T
|
A072691
|
[0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...]
|
1909
|
0.82246703342411321823620758332301259
|
0,78539 81633 97448 30961
|
Beta(1)
|
|
β
(
1
)
{displaystyle {beta }(1)}
|
π
4
=
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
=
1
1
−
1
3
+
1
5
−
1
7
+
1
9
−
⋯
{displaystyle {frac {pi }{4}}=sum _{n=0}^{infty }{frac {(-1)^{n}}{2n+1}}={frac {1}{1}}-{frac {1}{3}}+{frac {1}{5}}-{frac {1}{7}}+{frac {1}{9}}-cdots }
|
Sum[n=0 to ∞] {(-1)^n/(2n+1)}
|
T
|
A003881
|
[0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...]
|
1805 a 1859
|
0.78539816339744830961566084581987572
|
0,91596 55941 77219 01505
|
Constante de Catalan
|
|
C
{displaystyle {C}}
|
∫
0
1
∫
0
1
1
1
+
x
2
y
2
d
x
d
y
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
2
=
1
1
2
−
1
3
2
+
⋯
{displaystyle int _{0}^{1}!!int _{0}^{1}!!{frac {1}{1{+}x^{2}y^{2}}},dx,dy=!sum _{n=0}^{infty }!{frac {(-1)^{n}}{(2n{+}1)^{2}}}!=!{frac {1}{1^{2}}}{-}{frac {1}{3^{2}}}{+}{cdots }}
|
Sum[n=0 to ∞] {(-1)^n/(2n+1)^2}
|
T ?
|
A006752
|
[0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...]
|
1864
|
0.91596559417721901505460351493238411
|
1,05946 30943 59295 26456
|
Intervalo entre semitonos de la escala musical
|
|
2
12
{displaystyle {sqrt[{12}]{2}}}
|
440
H
z
.
2
1
12
2
2
12
2
3
12
2
4
12
2
5
12
2
6
12
2
7
12
2
8
12
2
9
12
2
10
12
2
11
12
2
{displaystyle scriptstyle 440,Hz.textstyle 2^{frac {1}{12}},2^{frac {2}{12}},2^{frac {3}{12}},2^{frac {4}{12}},2^{frac {5}{12}},2^{frac {6}{12}},2^{frac {7}{12}},2^{frac {8}{12}},2^{frac {9}{12}},2^{frac {10}{12}},2^{frac {11}{12}},2}
.
.
.
D
o
1
D
o
#
R
e
R
e
#
M
i
F
a
F
a
#
S
o
l
S
o
l
#
L
a
L
a
#
S
i
D
o
2
{displaystyle scriptstyle {color {white}...color {black}Do_{1};;Do#;,Re;,Re#;,Mi;;Fa;;Fa#;Sol;,Sol#,La;;La#;;Si;,Do_{2}}}
.
.
.
.
C
1
C
#
D
D
#
E
F
F
#
G
G
#
A
A
#
B
C
2
{displaystyle scriptstyle {color {white}....color {black}C_{1};;;;C#;;;,D;;;D#;;,E;;;;,F;;;,F#;;;G;;;;G#;;;A;;;,A#;;;,B;;;C_{2}}}
|
2^(1/12)
|
A
|
A010774
|
[1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...]
|
|
1.05946309435929526456182529494634170
|
1,13198 82487 943
|
Constante de Viswanath
|
|
C
V
i
{displaystyle {C}_{Vi}}
|
lim
n
→
∞
|
a
n
|
1
n
{displaystyle lim _{nto infty }|a_{n}|^{frac {1}{n}}}
donde an = Sucesión de Fibonacci
|
lim_(n->∞) |a_n|^(1/n)
|
T ?
|
A078416
|
[1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...]
|
1997
|
1.1319882487943...
|
1,20205 69031 59594 28539
|
Constante de Apéry
|
|
ζ
(
3
)
{displaystyle zeta (3)}
|
∑
n
=
1
∞
1
n
3
=
1
1
3
+
1
2
3
+
1
3
3
+
1
4
3
+
1
5
3
+
⋯
=
{displaystyle sum _{n=1}^{infty }{frac {1}{n^{3}}}={frac {1}{1^{3}}}+{frac {1}{2^{3}}}+{frac {1}{3^{3}}}+{frac {1}{4^{3}}}+{frac {1}{5^{3}}}+cdots =}
1
2
∑
n
=
1
∞
H
n
n
2
=
1
2
∑
i
=
1
∞
∑
j
=
1
∞
1
i
j
(
i
+
j
)
=
∫
0
1
∫
0
1
∫
0
1
d
x
d
y
d
z
1
−
x
y
z
{displaystyle {frac {1}{2}}sum _{n=1}^{infty }{frac {H_{n}}{n^{2}}}={frac {1}{2}}sum _{i=1}^{infty }sum _{j=1}^{infty }{frac {1}{ij(i{+}j)}}=!!int limits _{0}^{1}!!int limits _{0}^{1}!!int limits _{0}^{1}{frac {mathrm {d} xmathrm {d} ymathrm {d} z}{1-xyz}}}
|
Sum[n=1 to ∞] {1/n^3}
|
I
|
A010774
|
[1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...]
|
1979
|
1.20205690315959428539973816151144999
|
1,22541 67024 65177 64512
|
Gamma(3/4)
|
|
Γ
(
3
4
)
{displaystyle Gamma ({tfrac {3}{4}})}
|
(
−
1
+
3
4
)
!
=
(
−
1
4
)
!
{displaystyle left(-1+{frac {3}{4}}right)!=left(-{frac {1}{4}}right)!}
|
(-1+3/4)!
|
|
A068465
|
[1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,8,...]
|
|
1.22541670246517764512909830336289053
|
1,25992 10498 94873 16476
|
Raíz cúbica de dos, constante Delian
|
|
2
3
{displaystyle {sqrt[{3}]{2}}}
|
2
3
{displaystyle {sqrt[{3}]{2}}}
|
2^(1/3)
|
A
|
A002580
|
[1;3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,...]
|
|
1.25992104989487316476721060727822835
|
9,86960 44010 89358 61883
|
Pi al Cuadrado
|
|
π
2
{displaystyle {pi }^{2}}
|
6
ζ
(
2
)
=
6
∑
n
=
1
∞
1
n
2
=
6
1
2
+
6
2
2
+
6
3
2
+
6
4
2
+
⋯
{displaystyle 6zeta (2)=6sum _{n=1}^{infty }{frac {1}{n^{2}}}={frac {6}{1^{2}}}+{frac {6}{2^{2}}}+{frac {6}{3^{2}}}+{frac {6}{4^{2}}}+cdots }
|
6 Sum[n=1 to ∞] {1/n^2}
|
T
|
A002388
|
[9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...]
|
|
9.86960440108935861883449099987615114
|
1,41421 35623 73095 04880
|
Raíz cuadrada de 2, constante de Pitágoras
|
|
2
{displaystyle {sqrt {2}}}
|
∏
n
=
1
∞
1
+
(
−
1
)
n
+
1
2
n
−
1
=
(
1
+
1
1
)
(
1
−
1
3
)
(
1
+
1
5
)
⋯
{displaystyle prod _{n=1}^{infty }1+{frac {(-1)^{n+1}}{2n-1}}=left(1{+}{frac {1}{1}}right)left(1{-}{frac {1}{3}}right)left(1{+}{frac {1}{5}}right)cdots }
|
prod[n=1 to ∞] {1+(-1)^(n+1) /(2n-1)}
|
A
|
A002193
|
[1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...] = [1;2...]
|
< -800
|
1.41421356237309504880168872420969808
|
262 53741 26407 68743 99999 99999 99250 073
|
Constante de Hermite-Ramanujan
|
|
R
{displaystyle {R}}
|
e
π
163
{displaystyle e^{pi {sqrt {163}}}}
|
e^(π sqrt(163))
|
T
|
A060295
|
[262537412640768743;1,1333462407511,1,8,1,1,5,...]
|
1859
|
262537412640768743.999999999999250073
|
0,76159 41559 55764 88811
|
Tangente hiperbólica de 1
|
|
t
h
1
{displaystyle {th},1}
|
−
i
tan
(
i
)
=
e
−
1
e
e
+
1
e
=
e
2
−
1
e
2
+
1
{displaystyle -itan(i)={frac {e-{frac {1}{e}}}{e+{frac {1}{e}}}}={frac {e^{2}-1}{e^{2}+1}}}
|
(e-1/e)/(e+1/e)
|
T
|
A073744
|
[0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...] = [0;2p+1], p∈ℕ
|
|
0.76159415595576488811945828260479359
|
0,36787 94411 71442 32159
|
Inverso del Número e
|
|
1
e
{displaystyle {frac {1}{e}}}
|
∑
n
=
0
∞
(
−
1
)
n
n
!
=
1
0
!
−
1
1
!
+
1
2
!
−
1
3
!
+
1
4
!
−
1
5
!
+
⋯
{displaystyle sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}={frac {1}{0!}}-{frac {1}{1!}}+{frac {1}{2!}}-{frac {1}{3!}}+{frac {1}{4!}}-{frac {1}{5!}}+cdots }
|
sum[n=2 to ∞] {(-1)^n/n!}
|
T
|
A068985
|
[0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...] = [0;2,1,1,2p,1], p∈ℕ
|
1618
|
0.36787944117144232159552377016146086
|
1,53960 07178 39002 03869
|
Constante Square Ice de Lieb
|
|
W
2
D
{displaystyle {W}_{2D}}
|
lim
n
→
∞
(
f
(
n
)
)
n
−
2
=
(
4
3
)
3
2
=
8
3
9
{displaystyle lim _{nto infty }(f(n))^{n^{-2}}=left({frac {4}{3}}right)^{frac {3}{2}}={frac {8{sqrt {3}}}{9}}}
|
(4/3)^(3/2)
|
A
|
A118273
|
[1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...]
|
1967
|
1.53960071783900203869106341467188655
|
1,23370 05501 36169 82735
|
Constante de Favard
|
|
3
4
ζ
(
2
)
{displaystyle {tfrac {3}{4}}zeta (2)}
|
π
2
8
=
∑
n
=
0
∞
1
(
2
n
−
1
)
2
=
1
1
2
+
1
3
2
+
1
5
2
+
1
7
2
+
⋯
{displaystyle {frac {pi ^{2}}{8}}=sum _{n=0}^{infty }{frac {1}{(2n-1)^{2}}}={frac {1}{1^{2}}}+{frac {1}{3^{2}}}+{frac {1}{5^{2}}}+{frac {1}{7^{2}}}+cdots }
|
sum[n=1 to ∞] {1/((2n-1)^2)}
|
T
|
A111003
|
[1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...]
|
1902 a 1965
|
1.23370055013616982735431137498451889
|
7,38905 60989 30650 22723
|
Constante cónica de Schwarzschild
|
|
e
2
{displaystyle e^{2}}
|
∑
n
=
0
∞
2
n
n
!
=
1
+
2
+
2
2
2
!
+
2
3
3
!
+
2
4
4
!
+
2
5
5
!
+
.
.
.
{displaystyle sum _{n=0}^{infty }{frac {2^{n}}{n!}}=1+2+{frac {2^{2}}{2!}}+{frac {2^{3}}{3!}}+{frac {2^{4}}{4!}}+{frac {2^{5}}{5!}}+...}
|
Sum[n=0 to ∞] {2^n/n!}
|
T
|
A072334
|
[7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...] = [7,2,1,1,n,4*n+6,n+2], n = 3, 6, 9, etc.
|
|
7.38905609893065022723042746057500781
|
0,20787 95763 50761 90854
|
i^i
|
|
i
i
{displaystyle {i}^{i}}
|
e
−
π
2
{displaystyle e^{frac {-pi }{2}}}
|
e^(-pi/2)
|
T
|
A049006
|
[0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...]
|
1746
|
0.20787957635076190854695561983497877
|
1,44466 78610 09766 13365
|
Número de Steiner
|
|
e
e
{displaystyle {sqrt[{e}]{e}}}
|
e
1
/
e
{displaystyle e^{1/e}}
Límite superior de Tetración
|
e^(1/e)
|
|
A073229
|
[1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]
|
1796 a 1863
|
1.44466786100976613365833910859643022
|
4,53236 01418 27193 80962
|
Constante de van der Pauw
|
|
α
{displaystyle {alpha }}
|
π
l
n
(
2
)
=
∑
n
=
0
∞
4
(
−
1
)
n
2
n
+
1
∑
n
=
1
∞
(
−
1
)
n
+
1
n
=
4
1
−
4
3
+
4
5
−
4
7
+
4
9
−
.
.
.
1
1
−
1
2
+
1
3
−
1
4
+
1
5
−
.
.
.
{displaystyle {frac {pi }{ln(2)}}={frac {sum _{n=0}^{infty }{frac {4(-1)^{n}}{2n+1}}}{sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n}}}}={frac {{frac {4}{1}}{-}{frac {4}{3}}{+}{frac {4}{5}}{-}{frac {4}{7}}{+}{frac {4}{9}}-...}{{frac {1}{1}}{-}{frac {1}{2}}{+}{frac {1}{3}}{-}{frac {1}{4}}{+}{frac {1}{5}}-...}}}
|
π/ln(2)
|
|
A163973
|
[4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...]
|
|
4.53236014182719380962768294571666681
|
1,57079 63267 94896 61923
|
Constante de Favard K1 Producto de Wallis
|
|
π
2
{displaystyle {frac {pi }{2}}}
|
∏
n
=
1
∞
(
4
n
2
4
n
2
−
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
8
7
⋅
8
9
⋯
{displaystyle prod _{n=1}^{infty }left({frac {4n^{2}}{4n^{2}-1}}right)={frac {2}{1}}cdot {frac {2}{3}}cdot {frac {4}{3}}cdot {frac {4}{5}}cdot {frac {6}{5}}cdot {frac {6}{7}}cdot {frac {8}{7}}cdot {frac {8}{9}}cdots }
|
Prod[n=1 to ∞] {(4n^2)/(4n^2-1)}
|
|
A019669
|
[1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...]
|
1655
|
1.57079632679489661923132169163975144
|
3,27582 29187 21811 15978
|
Constante de Khinchin-Lévy ·
|
|
γ
{displaystyle gamma }
|
e
π
2
/
(
12
ln
2
)
{displaystyle e^{pi ^{2}/(12ln 2)}}
|
e^(pi^2/(12 ln(2))
|
|
A086702
|
[3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...]
|
1936
|
3.27582291872181115978768188245384386
|
1,61803 39887 49894 84820
|
Fi, Número áureo ·
|
|
φ
{displaystyle {varphi }}
|
1
+
5
2
=
1
+
1
+
1
+
1
+
⋯
{displaystyle {frac {1+{sqrt {5}}}{2}}={sqrt {1+{sqrt {1+{sqrt {1+{sqrt {1+cdots }}}}}}}}}
|
(1+5^(1/2))/2
|
A
|
A001622
|
[0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...] = [0;1,...]
|
-300 ~
|
1.61803398874989484820458683436563811
|
1,64493 40668 48226 43647
|
Función Zeta (2) de Riemann
|
|
ζ
(
2
)
{displaystyle {zeta }(,2)}
|
π
2
6
=
∑
n
=
1
∞
1
n
2
=
1
1
2
+
1
2
2
+
1
3
2
+
1
4
2
+
⋯
{displaystyle {frac {pi ^{2}}{6}}=sum _{n=1}^{infty }{frac {1}{n^{2}}}={frac {1}{1^{2}}}+{frac {1}{2^{2}}}+{frac {1}{3^{2}}}+{frac {1}{4^{2}}}+cdots }
|
Sum[n=1 to ∞] {1/n^2}
|
T
|
A013661
|
[1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...]
|
1826 a 1866
|
1.64493406684822643647241516664602519
|
1,73205 08075 68877 29352
|
Constante de Theodorus
|
|
3
{displaystyle {sqrt {3}}}
|
3
3
3
3
3
⋯
3
3
3
3
3
{displaystyle {sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,cdots }}}}}}}}}}}
|
(3(3(3(3(3(3(3) ^1/3)^1/3)^1/3) ^1/3)^1/3)^1/3) ^1/3...
|
A
|
A002194
|
[1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...] = [1;1,2,...]
|
-465 a -398
|
1.73205080756887729352744634150587237
|
1,75793 27566 18004 53270
|
Número de Kasner
|
|
R
{displaystyle {R}}
|
1
+
2
+
3
+
4
+
⋯
{displaystyle {sqrt {1+{sqrt {2+{sqrt {3+{sqrt {4+cdots }}}}}}}}}
|
|
|
A072449
|
[1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...]
|
1878 a 1955
|
1.75793275661800453270881963821813852
|
2,29558 71493 92638 07403
|
Constante universal parabólica
|
|
P
2
{displaystyle {P}_{,2}}
|
ln
(
1
+
2
)
+
2
=
arcsinh
(
1
)
+
2
{displaystyle ln(1+{sqrt {2}})+{sqrt {2}};=;operatorname {arcsinh} (1)+{sqrt {2}}}
|
ln(1+sqrt 2)+sqrt 2
|
T
|
A103710
|
[2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,7,2,1,...]
|
|
2.29558714939263807403429804918949038
|
3,30277 56377 31994 64655
|
Número de bronce
|
|
σ
R
r
{displaystyle {sigma }_{,Rr}}
|
3
+
13
2
=
1
+
3
+
3
+
3
+
3
+
⋯
{displaystyle {frac {3+{sqrt {13}}}{2}}=1+{sqrt {3+{sqrt {3+{sqrt {3+{sqrt {3+cdots }}}}}}}}}
|
(3+sqrt 13)/2
|
A
|
A098316
|
[3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...] = [3;3,...]
|
|
3.30277563773199464655961063373524797
|
2,37313 82208 31250 90564
|
Constante de Lévy 2
|
|
2
l
n
γ
{displaystyle 2,ln,gamma }
|
π
2
6
l
n
(
2
)
{displaystyle {frac {pi ^{2}}{6ln(2)}}}
|
Pi^(2)/(6*ln(2))
|
T
|
A174606
|
[2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...]
|
1936
|
2.37313822083125090564344595189447424
|
2,50662 82746 31000 50241
|
Raíz cuadrada de 2 pi
|
|
2
π
{displaystyle {sqrt {2pi }}}
|
2
π
=
lim
n
→
∞
n
!
e
n
n
n
n
.
.
.
.
{displaystyle {sqrt {2pi }}=lim _{nto infty }{frac {n!;e^{n}}{n^{n}{sqrt {n}}}}{color {white}....color {black}}}
Fórmula de Stirling
|
sqrt (2*pi)
|
T
|
A019727
|
[2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...]
|
1692 a 1770
|
2.50662827463100050241576528481104525
|
2,66514 41426 90225 18865
|
Constante de Gelfond-Schneider
|
|
G
G
S
{displaystyle G_{,GS}}
|
2
2
{displaystyle 2^{sqrt {2}}}
|
2^sqrt{2}
|
T
|
A007507
|
[2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...]
|
1934
|
2.66514414269022518865029724987313985
|
2,68545 20010 65306 44530
|
Constante de Khinchin
|
|
K
0
{displaystyle K_{,0}}
|
∏
n
=
1
∞
[
1
+
1
n
(
n
+
2
)
]
ln
n
ln
2
=
lim
n
→
∞
(
∏
k
=
1
n
a
k
)
1
n
{displaystyle prod _{n=1}^{infty }left[{1{+}{1 over n(n{+}2)}}right]^{frac {ln n}{ln 2}}=lim _{nto infty }left(prod _{k=1}^{n}a_{k}right)^{frac {1}{n}}}
... donde ak son elementos de la fracción continua [a0; a1, a2, a3,...]
|
prod[n=1 to ∞] {(1+1/(n(n+2))) ^((ln(n)/ln(2))}
|
T
|
A002210
|
[2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...]
|
1934
|
2.68545200106530644530971483548179569
|
3,35988 56662 43177 55317
|
Constante de Prévost, sum. inversos de Fibonacci
|
|
Ψ
{displaystyle Psi }
|
∑
n
=
1
∞
1
F
n
=
1
1
+
1
1
+
1
2
+
1
3
+
1
5
+
1
8
+
1
13
+
⋯
{displaystyle sum _{n=1}^{infty }{frac {1}{F_{n}}}={frac {1}{1}}+{frac {1}{1}}+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{5}}+{frac {1}{8}}+{frac {1}{13}}+cdots }
|
|
I
|
A079586
|
[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...]
|
1977
|
3.35988566624317755317201130291892717
|
1,32471 79572 44746 02596
|
Número plástico
|
|
ρ
{displaystyle {rho }}
|
1
+
1
+
1
+
⋯
3
3
3
=
1
2
+
1
6
23
3
3
+
1
2
−
1
6
23
3
3
{displaystyle textstyle {sqrt[{3}]{1{+}{sqrt[{3}]{1{+}{sqrt[{3}]{1{+}cdots }}}}}}={sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}}}
|
|
A
|
A060006
|
[1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...]
|
1929
|
1.32471795724474602596090885447809734
|
4,13273 13541 22492 93846
|
Raíz de 2 e pi
|
|
2
e
π
{displaystyle {sqrt {2epi }}}
|
2
e
π
{displaystyle {sqrt {2epi }}}
|
sqrt(2e pi)
|
|
A019633
|
[4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...]
|
|
4.13273135412249293846939188429985264
|
2,66514 41426 90225 18865
|
Constante de Gelfond
|
|
e
π
{displaystyle {e}^{pi }}
|
(
−
1
)
−
i
=
i
−
2
i
=
∑
n
=
0
∞
π
n
n
!
=
π
1
1
+
π
2
2
!
+
π
3
3
!
+
⋯
{displaystyle (-1)^{-i}=i^{-2i}=sum _{n=0}^{infty }{frac {pi ^{n}}{n!}}={frac {pi ^{1}}{1}}+{frac {pi ^{2}}{2!}}+{frac {pi ^{3}}{3!}}+cdots }
|
Sum[n=0 to ∞] {(pi^n)/n!}
|
T
|
A039661
|
[23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...]
|
1906 a 1968
|
23.1406926327792690057290863679485474
|