Annex: Mathematical constants

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar

The following is an addendum about mathematical constants.

Mathematical constants and functions

The structure of the table is as follows:

  • Value numerical of the constant and link to MathWorld or OEIS Wiki.
  • LaTeX: Formula or series in the TeX format.
  • Formula: To use in Wolfram Alpha. If in the calculations, ∞ takes a long time, it can be changed by 20000, to obtain an approximate result.
  • OEIS: On-Line Encyclopedia of Integer Sequences.
  • Continuous fracture: In the simple format [Full part; frac1, frac2, frac3,...] suprarayed if it's periodic.
  • Year: From the discovery of the constant, or data of the author.
  • Web format: Constant value, in format suitable for web search engines.
  • N.o: Number Type
    • R - Rational
    • I - Irrational
    • A - Algebraic
    • T - Transcendental
    • C - Complex
(The table can be ordered ascendant or descendant, by any of the fields, but press in the heading titles.)
Constantes y funciones matemáticas
Valor Nombre Gráfico Símbolo LaTeX Fórmula N.º OEIS Fracción continua Año Formato web
0,88622 69254 52758 01364 ​ Factorial de
un medio​
.5 ! {displaystyle {.5},!} Γ ( 3 2 ) = 1 2 π = ∫ 0 ∞ x 1 / 2 e − x d x {displaystyle Gamma left({tfrac {3}{2}}right),={tfrac {1}{2}}{sqrt {pi }},=int _{0}^{infty }x^{1/2}e^{-x}dx} sqrt(Pi)/2 A019704 [0;1,7,1,3,1,2,1,57,6,1,3,1,37,3,41,1,10,2,1,1,...] 0.88622692545275801364908374167057259
0,74048 04896 93061 04116 ​ Constante de Hermite Empaquetamiento óptimo de esferas 3D Conjetura de Kepler ​ Pyramid of 35 spheres animation large.gif μ K {displaystyle {mu _{_{K}}}} π 3 2 . . . . {displaystyle {frac {pi }{3{sqrt {2}}}}{color {white}....color {black}}} Después de 400 años, Thomas Hales demostró en 2014 con El Proyecto Flyspeck, que la Conjetura de Kepler era cierta. ​ pi/(3 sqrt(2)) A093825 [0;1,2,1,5,1,4,2,2,1,1,2,2,2,6,1,1,1,5,2,1,1,1,...] 1611 0.74048048969306104116931349834344894
1,60669 51524 15291 76378 ​ Constante de Erdős–Borwein​​


E B {displaystyle {E}_{,B}} m = 1 ∞ n = 1 ∞ 1 2 m n = ∑ n = 1 ∞ 1 2 n − 1 = 1 1 + 1 3 + 1 7 + 1 15 + . . . {displaystyle sum _{m=1}^{infty }sum _{n=1}^{infty }{frac {1}{2^{mn}}}=sum _{n=1}^{infty }{frac {1}{2^{n}-1}}={frac {1}{1}}!+!{frac {1}{3}}!+!{frac {1}{7}}!+!{frac {1}{15}}!+!...} sum[n=1 to ∞]
{1/(2^n-1)}
I A065442 [1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,6,1,2,...] 1949 1.60669515241529176378330152319092458
0,07077 60393 11528 80353

-0,68400 03894 37932 129 i

Constante MKB
··
M I {displaystyle M_{I}} lim n → 1 2 n ( − 1 ) x x x d x = ∫ 1 2 n e i π x x 1 / x d x {displaystyle lim _{nrightarrow infty }int _{1}^{2n}(-1)^{x}~{sqrt[{x}]{x}}~dx=int _{1}^{2n}e^{ipi x}~x^{1/x}~dx} lim_(2n->∞) int[1 to 2n]
{exp(i*Pi*x)*x^(1/x) dx}
C A255727
A255728
[0;14,7,1,2,1,23,2,1,8,16,1,1,3,1,26,1,6,1,1,...]
- [0;1,2,6,13,41,112,1,25,1,1,1,1,3,13,2,1,...] i
2009 0.07077603931152880353952802183028200
-0.68400038943793212918274445999266 i
3,05940 74053 42576 14453 ​ ​ Constante
Doble factorial
Double factorial.PNG C n ! ! {displaystyle {C_{_{n!!}}}} n = 0 ∞ 1 n ! ! = e [ 1 2 + γ ( 1 2 , 1 2 ) ] {displaystyle sum _{n=0}^{infty }{frac {1}{n!!}}={sqrt {e}}left[{frac {1}{sqrt {2}}}+gamma ({tfrac {1}{2}},{tfrac {1}{2}})right]} Sum[n=0 to ∞]{1/n!!} A143280 [3;16,1,4,1,66,10,1,1,1,1,2,5,1,2,1,1,1,1,1,2,...] 3.05940740534257614453947549923327861
0,62481 05338 43826 58687
+ 1,30024 25902 20120 419 i
Fracción continua generalizada de i F C G ( i ) {displaystyle {{F}_{CG}}_{(i)}} i + i i + i i + i i + i i + i i + i i + i / . . . = 17 − 1 8 + i ( 1 2 + 2 17 − 1 ) {displaystyle textstyle i{+}{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+{frac {i}{i+i{/...}}}}}}}}}}}}}={sqrt {frac {{sqrt {17}}-1}{8}}}+ileft({tfrac {1}{2}}{+}{sqrt {frac {2}{{sqrt {17}}-1}}}right)} i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(i+i/(
...)))))))))))))))))))))
C A A156590

A156548
[i;1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,..]
= [0;1,i]
0.62481053384382658687960444744285144
+ 1.30024259022012041915890982074952 i
0,91893 85332 04672 74178 ​ Fórmula de Raabe ​


ζ ′ ( 0 ) {displaystyle {zeta '(0)}} a a + 1 log ⁡ Γ ( t ) d t = 1 2 log ⁡ 2 π + a log ⁡ a − a , a ≥ 0 {displaystyle int limits _{a}^{a+1}log Gamma (t),mathrm {d} t={tfrac {1}{2}}log 2pi +alog a-a,quad ageq 0} integral_a^(a+1) {log(Gamma(x))+a-a log(a)} dx A075700 [0;1,11,2,1,36,1,1,3,3,5,3,1,18,2,1,1,2,2,1,1,...] 0.91893853320467274178032973640561763
0,42215 77331 15826 62702 ​ Volumen del Tetraedro de Reuleaux ​ ReuleauxTetrahedron Animation.gif V R {displaystyle {V_{_{R}}}} s 3 12 ( 3 2 − 49 π + 162 arctan ⁡ 2 ) {displaystyle {frac {s^{3}}{12}}(3{sqrt {2}}-49,pi +162,arctan {sqrt {2}})} (3*Sqrt[2] - 49*Pi + 162*ArcTan[Sqrt[2]])/12 A102888 [0;2,2,1,2,2,7,4,4,287,1,6,1,2,1,8,5,1,1,1,1,...] 0.42215773311582662702336591662385075
1,17628 08182 59917 50654 ​ Constante de Salem, conjetura de Lehmer ​


σ 10 {displaystyle {sigma _{_{10}}}} x 10 + x 9 − x 7 − x 6 − x 5 − x 4 − x 3 + x + 1 {displaystyle x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1} x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1 A A073011 [1;5,1,2,17,1,7,2,1,1,2,4,7,2,2,1,1,15,1,1,... 1983? 1.17628081825991750654407033847403505
2,39996 32297 28653 32223 ​
Radianes
Ángulo áureo ​ Golden Angle.svgSunflower.svg b {displaystyle {b}} ( 4 − 2 Φ ) π = ( 3 − 5 ) π {displaystyle (4-2,Phi),pi =(3-{sqrt {5}}),pi } = 137.507764050037854646...° (4-2*Phi)*Pi T A131988 [2;2,1,1,1087,4,4,120,2,1,1,2,1,1,7,7,2,11,...] 1907 2.39996322972865332223155550663361385
1,26408 47353 05301 11307 ​ Constante de Vardi ​


V c {displaystyle {V_{c}}} 3 2 ∏ n ≥ 1 ( 1 + 1 ( 2 e n − 1 ) 2 ) 1 / 2 n + 1 {displaystyle {frac {sqrt {3}}{sqrt {2}}}prod _{ngeq 1}left(1+{1 over (2e_{n}-1)^{2}}right)^{!1/2^{n+1}}} A076393 [1;3,1,3,1,2,5,54,7,1,2,1,2,3,15,1,2,1,1,2,1,...] 1991 1.26408473530530111307959958416466949
1,5065918849 ± 0,0000000028 Área del fractal de Mandelbrot ​ Mandelbrot sequence new.gif γ {displaystyle gamma } Se conjetura que el valor exacto es: 6 π 1 − e {displaystyle {sqrt {6pi -1}}-e} = 1,506591651... A098403 [1;1,1,37,2,2,1,10,1,1,2,2,4,1,1,1,1,5,4,...] 1912 1.50659177 +/- 0.00000008

1,61111 49258 08376 736
111•••111 27224 36828 ​
183213 unos
Constante
Factorial exponencial
S E f {displaystyle {S_{Ef}}} n = 1 ∞ 1 n ( n − 1 ) ⋅ 2 1 = 1 + 1 2 1 + 1 3 2 1 + 1 4 3 2 1 + 1 5 4 3 2 1 + ⋯ {displaystyle sum _{n=1}^{infty }{frac {1}{n^{(n{-}1)^{cdot ^{cdot ^{cdot ^{2^{1}}}}}}}}=1{+}{frac {1}{2^{1}}}{+}{frac {1}{3^{2^{1}}}}+{frac {1}{4^{3^{2^{1}}}}}+{frac {1}{5^{4^{3^{2^{1}}}}}}{+}cdots } T A080219 [1; 1, 1, 1, 1, 2, 1, 808, 2, 1, 2, 1, 14,...] 1.61111492580837673611111111111111111
0,31813 15052 04764 13531

±1,33723 57014 30689 40 i

Punto fijo
Super-logaritmo ​·
Slogez01.jpg W ( − 1 ) {displaystyle {-W(-1)}} lim n → {displaystyle lim _{nrightarrow infty }} f ( x ) = log ⁡ ( log ⁡ ( log ⁡ ( log ⁡ ( ⋯ log ⁡ ( log ⁡ ( x ) ) ) ) ) ) ⏟ log s ⁡ anidados n veces {displaystyle f(x)=underbrace {log(log(log(log(cdots log(log(x)))))),!} atop {log _{s}{text{ anidados n veces}}}}

Para un valor inicial de x distinto a 0, 1, e, e^e, e^(e^e), etc.

-W(-1)
Donde W=ProductLog
Lambert W function
C A059526
A059527
[-i;1 +2i,1+i,6-i,1+2i,-7+3i,2i,2,1-2i,-1+i,-,...] 0.31813150520476413531265425158766451
-1.33723570143068940890116214319371 i
1,09317 04591 95490 89396 ​ Constante de Smarandache 1.ª ​ S 1 {displaystyle {S_{1}}} n = 2 ∞ 1 μ ( n ) ! . . . . {displaystyle sum _{n=2}^{infty }{frac {1}{mu (n)!}}{color {white}....color {black}}} La función Kempner μ(n) se define como sigue:

μ(n) es el número más pequeño por el que μ(n)! es divisible por n

A048799 [1;10,1,2,1,2,1,13,3,1,6,1,2,11,4,6,2,15,1,1,...] 1.09317045919549089396820137014520832
1,64218 84352 22121 13687 ​ Constante de Lebesgue L2 ​


L 2 {displaystyle {L2}} 1 5 + 25 − 2 5 π = 1 π 0 π | sin ⁡ ( 5 t 2 ) | sin ⁡ ( t 2 ) d t {displaystyle {frac {1}{5}}+{frac {sqrt {25-2{sqrt {5}}}}{pi }}={frac {1}{pi }}int _{0}^{pi }{frac {left|sin({frac {5t}{2}})right|}{sin({frac {t}{2}})}},dt} 1/5 + sqrt(25 -
2*sqrt(5))/Pi
T A226655 [1;1,1,1,3,1,6,1,5,2,2,3,1,2,7,1,3,5,2,2,1,1,...] 1910 1.64218843522212113687362798892294034
0,82699 33431 32688 07426 ​ Disk Covering ​ COVER5.gif C 5 {displaystyle {C_{5}}} 1 ∑ n = 0 ∞ 1 ( 3 n + 2 2 ) = 3 3 2 π {displaystyle {frac {1}{sum _{n=0}^{infty }{frac {1}{binom {3n+2}{2}}}}}={frac {3{sqrt {3}}}{2pi }}} 3 Sqrt[3]/(2 Pi) T A086089 [0;1,4,1,3,1,1,4,1,2,2,1,1,7,1,4,4,2,1,1,1,1,...] 1939
1949
0.82699334313268807426698974746945416
1,78723 16501 82965 93301 ​ Constante de Komornik–Loreti ​


q {displaystyle {q}} 1 = ∑ n = 1 ∞ t k q k Raiz real de ∏ n = 0 ∞ ( 1 − 1 q 2 n ) + q − 2 q − 1 = 0 {displaystyle 1=!sum _{n=1}^{infty }{frac {t_{k}}{q^{k}}}qquad scriptstyle {text{Raiz real de}}displaystyle prod _{n=0}^{infty }!left(!1{-}{frac {1}{q^{2^{n}}}}!right)!{+}{frac {q{-}2}{q{-}1}}=0}

t k = Sucesión de Thue-Morse

FindRoot[(prod[n=0
to ∞] {1-1/(x^2^n)}+
(x-2)/(x-1))= 0, {x, 1.7}, WorkingPrecision->30]
T A055060 [1;1,3,1,2,3,188,1,12,1,1,22,33,1,10,1,1,7,...] 1998 1.78723165018296593301327489033700839
0,59017 02995 08048 11302 ​ Constante de Chebyshev ​ ·



λ C h {displaystyle {lambda _{Ch}}} Γ ( 1 4 ) 2 4 π 3 / 2 = 4 ( 1 4 ! ) 2 π 3 / 2 {displaystyle {frac {Gamma ({tfrac {1}{4}})^{2}}{4pi ^{3/2}}}={frac {4({tfrac {1}{4}}!)^{2}}{pi ^{3/2}}}} (Gamma(1/4)^2)
/(4 pi^(3/2))
A249205 [0;1,1,2,3,1,2,41,1,6,5,124,5,2,2,1,1,6,1,2,...] 0.59017029950804811302266897027924429
0,52382 25713 89864 40645 ​ Función Chi
Coseno hiperbólico integral
Chi function.png C h i ( ) {displaystyle {operatorname {Chi()} }}
γ + ∫ 0 x cosh ⁡ t − 1 t d t {displaystyle gamma +int _{0}^{x}{frac {cosh t-1}{t}},dt}

γ = Constante de Euler–Mascheroni = 0,5772156649... {displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}}

Chi(x) A133746 [0;1,1,9,1,172,1,7,1,11,1,1,2,1,8,1,1,1,1,1,...] 0.52382257138986440645095829438325566
0,62432 99885 43550 87099 ​ Constante de Golomb–Dickman​



λ {displaystyle {lambda }} 0 ∞ f ( x ) x 2 d x P a r a x > 2 = ∫ 0 1 e L i ( n ) d n Li = Integral logarítmica {displaystyle int limits _{0}^{infty }{underset {Para;x>2}{{frac {f(x)}{x^{2}}}dx}}=int limits _{0}^{1}e^{Li(n)}dnquad scriptstyle {text{Li = Integral logarítmica}}} N[Int{n,0,1}[e^Li(n)],34] A084945 [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] 1930
y
1964
0.62432998854355087099293638310083724
0,98770 03907 36053 46013 ​ Área delimitada por la
rotación excéntrica del
Triángulo de Reuleaux ​
Rotation of Reuleaux triangle.gif T R {displaystyle {mathcal {T}}_{R}} a 2 ⋅ ( 2 3 + π 6 − 3 ) {displaystyle a^{2}cdot left(2{sqrt {3}}+{frac {pi }{6}}-3right)} donde a= lado del cuadrado 2 sqrt(3)+pi/6-3 T A066666 [0;1,80,3,3,2,1,1,1,4,2,2,1,1,1,8,1,2,10,1,2,...] 1914 0.98770039073605346013199991355832854
0,70444 22009 99165 59273 Constante Carefree2



C 2 {displaystyle {mathcal {C}}_{2}} n = 1 ∞ ( 1 − 1 p n ( p n + 1 ) ) p n : p r i m o {displaystyle {underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1-{frac {1}{p_{n}(p_{n}+1)}}right)}}} N[prod[n=1 to ∞]
{1 - 1/(prime(n)*
(prime(n)+1))}]
A065463 [0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...] 0.70444220099916559273660335032663721
1,84775 90650 22573 51225 ​ Constante camino auto-evitante en red hexagonal ​ · HEX-LATTICE-20.gif μ {displaystyle {mu }} 2 + 2 = lim n → c n 1 / n {displaystyle {sqrt {2+{sqrt {2}}}};=lim _{nrightarrow infty }c_{n}^{1/n}}

La menor raíz real de : x 4 − 4 x 2 + 2 = 0 {displaystyle:;x^{4}-4x^{2}+2=0}

sqrt(2+sqrt(2)) A A179260 [1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...] 1.84775906502257351225636637879357657
0,19452 80494 65325 11361 ​ 2ª Constante Du Bois Reymond ​


C 2 {displaystyle {C_{2}}} e 2 − 7 2 = ∫ 0 ∞ | d d t ( sin ⁡ t t ) n | d t − 1 {displaystyle {frac {e^{2}-7}{2}}=int _{0}^{infty }left|{{frac {d}{dt}}left({frac {sin t}{t}}right)^{n}}right|,dt-1} (e^2-7)/2 T A062546 [0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...]
= [0;2p+3], p∈ℕ
0.19452804946532511361521373028750390
2,59807 62113 53315 94029 ​ Área de un hexágono
de lado unitario ​
Esagono.png A 6 {displaystyle {mathcal {A}}_{6}} 3 3 2 l 2 {displaystyle {frac {3{sqrt {3}}}{2}},l^{2}} 3 sqrt(3)/2 A A104956 [2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...]
[2;1,1,2,20,2,1,1,4]
2.59807621135331594029116951225880855
1,78657 64593 65922 46345 ​ Constante de
Silverman ​




S m {displaystyle {{mathcal {S}}_{_{m}}}} n = 1 ∞ 1 ϕ ( n ) σ 1 ( n ) = ∏ n = 1 ∞ ( 1 + ∑ k = 1 ∞ 1 p n 2 k − p n k − 1 ) p n : p r i m o {displaystyle sum _{n=1}^{infty }{frac {1}{phi (n)sigma _{1}(n)}}={underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1+sum _{k=1}^{infty }{frac {1}{p_{n}^{2k}-p_{n}^{k-1}}}right)}}}
ø() = Función totien de Euler, σ1() = Función divisor.
Sum[n=1 to ∞]
{1/[EulerPhi(n)
DivisorSigma(1,n)]}
A093827 [1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...] 1.78657645936592246345859047554131575
1,46099 84862 06318 35815 ​ Constante
cuatro-colores
de Baxter ​
Mapamundi World map with four colours.svg Coloreado 4C C 2 {displaystyle {mathcal {C}}^{2}} n = 1 ∞ ( 3 n − 1 ) 2 ( 3 n − 2 ) ( 3 n ) = 3 4 π 2 Γ ( 1 3 ) 3 {displaystyle prod _{n=1}^{infty }{frac {(3n-1)^{2}}{(3n-2)(3n)}}={frac {3}{4pi ^{2}}},Gamma left({frac {1}{3}}right)^{3}} Γ() = Función Gamma 3×Gamma(1/3)
^3/(4 pi^2)
A224273 [1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...] 1970 1.46099848620631835815887311784605969
0,66131 70494 69622 33528 ​ Constante de
Feller-Tornier ​




C F T {displaystyle {{mathcal {C}}_{_{FT}}}} 1 2 ∏ n = 1 ∞ ( 1 − 2 p n 2 ) + 1 2 p n : p r i m o = 3 π 2 ∏ n = 1 ∞ ( 1 − 1 p n 2 − 1 ) + 1 2 {displaystyle {underset {p_{n}:,{primo}}{{frac {1}{2}}prod _{n=1}^{infty }left(1-{frac {2}{p_{n}^{2}}}right){+}{frac {1}{2}}}}={frac {3}{pi ^{2}}}prod _{n=1}^{infty }left(1-{frac {1}{p_{n}^{2}-1}}right){+}{frac {1}{2}}} [prod[n=1 to ∞]
{1-2/prime(n)^2}]
/2 + 1/2
T ? A065493 [0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...] 1932 0.66131704946962233528976584627411853
1,92756 19754 82925 30426 ​ Constante Tetranacci

T {displaystyle {mathcal {T}}} La mayor raíz real de : x 4 − x 3 − x 2 − x − 1 = 0 {displaystyle:;;x^{4}-x^{3}-x^{2}-x-1=0} Root[x+x^-4-2=0] A A086088 [1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...] 1.92756197548292530426190586173662216
1,00743 47568 84279 37609 ​ Constante DeVicci's Teseracto 8-cell-orig.gif f ( 3 , 4 ) {displaystyle {f_{(3,4)}}} Arista del mayor cubo, dentro de un hipercubo unitario 4D.

La menor raíz real de : 4 x 4 − 28 x 3 − 7 x 2 + 16 x + 16 = 0 {displaystyle:;;4x^{4}{-}28x^{3}{-}7x^{2}{+}16x{+}16=0}

Root[4*x^8-28*x^6
-7*x^4+16*x^2+16
=0]
A A243309 [1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...] 1.00743475688427937609825359523109914
0,15915 49430 91895 33576 ​ Constante A de Plouffe ​


A {displaystyle {A}} 1 2 π {displaystyle {frac {1}{2pi }}} 1/(2 pi) T A086201 [0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...] 0.15915494309189533576888376337251436
0,41245 40336 40107 59778 ​ Constante de Thue-Morse ​ Thue-MorseRecurrence.gif τ {displaystyle tau } n = 0 ∞ t n 2 n + 1 {displaystyle sum _{n=0}^{infty }{frac {t_{n}}{2^{n+1}}}} donde t n {displaystyle {t_{n}}} es la secuencia Thue–Morse y

donde τ ( x ) = ∑ n = 0 ∞ ( − 1 ) t n x n = ∏ n = 0 ∞ ( 1 − x 2 n ) {displaystyle tau (x)=sum _{n=0}^{infty }(-1)^{t_{n}},x^{n}=prod _{n=0}^{infty }(1-x^{2^{n}})}

T A014571 [0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...] 0.41245403364010759778336136825845528
0,58057 75582 04892 40229 ​ Constante de Pell​


P P e l l {displaystyle {{mathcal {P}}_{_{Pell}}}} 1 − n = 0 ∞ ( 1 − 1 2 2 n + 1 ) {displaystyle 1-prod _{n=0}^{infty }left(1-{frac {1}{2^{2n+1}}}right)} N[1-prod[n=0 to ∞]
{1-1/(2^(2n+1)}]
T ? A141848 [0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...] 0.58057755820489240229004389229702574
2,20741 60991 62477 96230 ​ Problema moviendo el sofá de Hammersley ​ Hammersley sofa animated.gif S H {displaystyle {S_{_{H}}}} π 2 + 2 π {displaystyle {frac {pi }{2}}+{frac {2}{pi }},} ¿Cuál es el área más grande de una forma, que pueda ser maniobrada en un pasillo en forma de L y tenga de ancho la unidad ? pi/2 + 2/pi T A086118 [2;4,1,4,1,1,2,5,1,11,1,1,5,1,6,1,3,1,1,1,1,7,...] 1967 2.20741609916247796230685674512980889
1,15470 05383 79251 52901 ​ Constante de Hermite ​ γ 2 {displaystyle gamma _{_{2}}} 2 3 = 1 cos ( π 6 ) {displaystyle {frac {2}{sqrt {3}}}={frac {1}{cos ,({frac {pi }{6}})}}} 2/sqrt(3) A 1+
A246724
[1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...]
[1;6,2]
1.15470053837925152901829756100391491
0,63092 97535 71457 43709 ​ Dimensión fractal del Conjunto de Cantor ​ Cantor5.svg d f ( k ) {displaystyle d_{f}(k)} lim ε 0 log ⁡ N ( ε ) log ⁡ ( 1 / ε ) = log ⁡ 2 log ⁡ 3 {displaystyle lim _{varepsilon to 0}{frac {log N(varepsilon)}{log(1/varepsilon)}}={frac {log 2}{log 3}}} log(2)/log(3)
N[3^x=2]
T A102525 [0;1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 0.63092975357145743709952711434276085
0,17150 04931 41536 06586 ​ Constante
Hall-Montgomery ​
δ 0 {displaystyle {{delta }_{_{0}}}} 1 + π 2 6 + 2 L i 2 ( − e ) L i 2 = Integral dilogarítmica {displaystyle 1+{frac {pi ^{2}}{6}}+2;mathrm {Li} _{2}left(-{sqrt {e}};right)quad mathrm {Li} _{2},scriptstyle {text{= Integral dilogarítmica}}} 1 + Pi^2/6 + 2*PolyLog[2, -Sqrt[E]] A143301 [0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...] 0.17150049314153606586043997155521210
1,55138 75245 48320 39226 ​ Constante
Triángulo Calabi ​
Calabi triangle.svg C C R {displaystyle {C_{_{CR}}}} 1 3 + ( − 23 + 3 i 237 ) 1 3 3 ⋅ 2 2 3 + 11 3 ( 2 ( − 23 + 3 i 237 ) ) 1 3 {displaystyle {1 over 3}+{(-23+3i{sqrt {237}})^{tfrac {1}{3}} over 3cdot 2^{tfrac {2}{3}}}+{11 over 3(2(-23+3i{sqrt {237}}))^{tfrac {1}{3}}}} FindRoot[
2x^3-2x^2-3x+2
==0, {x, 1.5},
WorkingPrecision->40]
A A046095 [1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...] 1946 ~ 1.55138752454832039226195251026462381
0,97027 01143 92033 92574 ​ Constante de Lochs ​


£ L o {displaystyle {{text{£}}_{_{Lo}}}} 6 ln ⁡ 2 ln ⁡ 10 π 2 {displaystyle {frac {6ln 2ln 10}{pi ^{2}}}} 6*ln(2)*ln(10)/Pi^2 A086819 [0;1,32,1,1,1,2,1,46,7,2,7,10,8,1,71,1,37,1,1,...] 1964 0.97027011439203392574025601921001083
1,30568 67 ≈ ​ Dimensión fractal del círculo de Apolonio ​ ApollonianGasket-15 32 32 33.svg
ε {displaystyle varepsilon }
A052483 [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 1.3056867 ≈
0,00131 76411 54853 17810 ​ Constante de Heath-Brown–Moroz​ C H B M {displaystyle {C_{_{HBM}}}} n = 1 ∞ ( 1 − 1 p n ) 7 ( 1 + 7 p n + 1 p n 2 ) p n : p r i m o {displaystyle {underset {p_{n}:,{primo}}{prod _{n=1}^{infty }left(1-{frac {1}{p_{n}}}right)^{7}left(1+{frac {7p_{n}+1}{p_{n}^{2}}}right)}}} N[prod[n=1 to ∞]
{((1-1/prime(n))^7)
*(1+(7*prime(n)+1)
/(prime(n)^2))}]
T ? A118228 [0;758,1,13,1,2,3,56,8,1,1,1,1,1,143,1,1,1,2,...] 0.00131764115485317810981735232251358
0,14758 36176 50433 27417 ​ Constante gamma de Plouffe ​ Trigo-arctan-animation.gif C {displaystyle {C}} 1 π arctan ⁡ 1 2 = 1 π n = 0 ∞ ( − 1 ) n ( 2 2 n + 1 ) ( 2 n + 1 ) {displaystyle {frac {1}{pi }}arctan {frac {1}{2}}={frac {1}{pi }}sum _{n=0}^{infty }{frac {(-1)^{n}}{(2^{2n+1})(2n+1)}}}
= 1 π ( 1 2 − 1 3 ⋅ 2 3 + 1 5 ⋅ 2 5 − 1 7 ⋅ 2 7 + ⋯ ) {displaystyle ={frac {1}{pi }}left({frac {1}{2}}-{frac {1}{3cdot 2^{3}}}+{frac {1}{5cdot 2^{5}}}-{frac {1}{7cdot 2^{7}}}+cdots right)}
Arctan(1/2)/Pi T A086203 [0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...] 0.14758361765043327417540107622474052
0,70523 01717 91800 96514 ​ Constante Primorial
Suma de productos de inverso de primos
P # {displaystyle {P_{#}}} n = 1 ∞ 1 p n # = 1 2 + 1 6 + 1 30 + 1 210 + . . . = ∑ k = 1 ∞ n = 1 k 1 p n p n : p r i m o {displaystyle {underset {p_{n}:,{primo}}{sum _{n=1}^{infty }{frac {1}{p_{n}#}}={frac {1}{2}}+{frac {1}{6}}+{frac {1}{30}}+{frac {1}{210}}+...=sum _{k=1}^{infty }prod _{n=1}^{k}{frac {1}{p_{n}}}}}} Sum[k=1 to ∞](prod[n=1 to k]{1/prime(n)}) I A064648 [0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...] 0.70523017179180096514743168288824851
0,29156 09040 30818 78013 ​ Constante dimer 2D,
recubrimiento con dominós ​ ·
Dominoes tiling 8x8.svg
C π {displaystyle {frac {C}{pi }}}

C=catalan

π π cosh − 1 ⁡ ( cos ⁡ ( t ) + 3 2 ) 4 π d t {displaystyle int limits _{-pi }^{pi }{frac {cosh ^{-1}left({frac {sqrt {cos(t)+3}}{sqrt {2}}}right)}{4pi }}dt} N[int[-pi to pi] {arccosh(sqrt(
cos(t)+3)/sqrt(2))
/(4*Pi) /, dt}]
A143233 [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 0.29156090403081878013838445646839491
0,72364 84022 98200 00940 ​ Constante de Sarnak C s a {displaystyle {C_{sa}}} p > 2 ( 1 − p + 2 p 3 ) {displaystyle prod _{p>2}{Big (}1-{frac {p+2}{p^{3}}}{Big)}} N[prod[k=2 to ∞]
{1-(prime(k)+2)
/(prime(k)^3)}]
T ? A065476 [0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...] 0.72364840229820000940884914980912759
0,63212 05588 28557 67840 ​ Constante de tiempo ​ Seq1.png τ {displaystyle {tau }} lim n → 1 − ! n n ! = lim n → P ( n ) = ∫ 0 1 e − x d x = 1 − 1 e = {displaystyle lim _{nto infty }1-{frac {!n}{n!}}=lim _{nto infty }P(n)=int _{0}^{1}e^{-x}dx=1-{frac {1}{e}}=}

n = 0 ∞ ( − 1 ) n n ! = 1 1 ! − 1 2 ! + 1 3 ! − 1 4 ! + 1 5 ! − 1 6 ! + ⋯ {displaystyle sum limits _{n=0}^{infty }{frac {(-1)^{n}}{n!}}={frac {1}{1!}}-{frac {1}{2!}}+{frac {1}{3!}}-{frac {1}{4!}}+{frac {1}{5!}}-{frac {1}{6!}}+cdots }

lim_(n->∞) (1- !n/n!)
!n=subfactorial
T A068996 [0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [0;1,1,1,2n], n∈ℕ
0.63212055882855767840447622983853913
0.30366 30028 98732 65859 ​ Constante de Gauss-Kuzmin-Wirsing​ λ 2 {displaystyle {lambda }_{2}} lim n → F n ( x ) − ln ⁡ ( 1 − x ) ( − λ ) n = Ψ ( x ) , {displaystyle lim _{nto infty }{frac {F_{n}(x)-ln(1-x)}{(-lambda)^{n}}}=Psi (x),}

donde Ψ ( x ) {displaystyle Psi (x)} es una función analítica tal que Ψ ( 0 ) = Ψ ( 1 ) = 0 {displaystyle Psi (0)!=!Psi (1)!=!0} .

A038517 [0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...] 1973 0.30366300289873265859744812190155623
1,30357 72690 34296 39125 ​ Constante de Conway ​ Conway constant.png λ {displaystyle {lambda }} x 71 − x 69 − 2 x 68 − x 67 + 2 x 66 + 2 x 65 + x 64 − x 63 − x 62 − x 61 − x 60 − x 59 + 2 x 58 + 5 x 57 + 3 x 56 − 2 x 55 − 10 x 54 − 3 x 53 − 2 x 52 + 6 x 51 + 6 x 50 + x 49 + 9 x 48 − 3 x 47 − 7 x 46 − 8 x 45 − 8 x 44 + 10 x 43 + 6 x 42 + 8 x 41 − 5 x 40 − 12 x 39 + 7 x 38 − 7 x 37 + 7 x 36 + x 35 − 3 x 34 + 10 x 33 + x 32 − 6 x 31 − 2 x 30 − 10 x 29 − 3 x 28 + 2 x 27 + 9 x 26 − 3 x 25 + 14 x 24 − 8 x 23 − 7 x 21 + 9 x 20 + 3 x 19 − 4 x 18 − 10 x 17 − 7 x 16 + 12 x 15 + 7 x 14 + 2 x 13 − 12 x 12 − 4 x 11 − 2 x 10 + 5 x 9 + x 7 − 7 x 6 + 7 x 5 − 4 x 4 + 12 x 3 − 6 x 2 + 3 x − 6 = 0 {displaystyle {begin{smallmatrix}x^{71}quad -x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}quad -7x^{21}+9x^{20}\+3x^{19}!-4x^{18}!-10x^{17}!-7x^{16}!+12x^{15}!+7x^{14}!+2x^{13}!-12x^{12}!-4x^{11}!-2x^{10}\+5x^{9}+x^{7}quad -7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6 = 0quad quad quad end{smallmatrix}}} A A014715 [1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...] 1987 1.30357726903429639125709911215255189
1,18656 91104 15625 45282 ​ Constante de Lévy ​


β {displaystyle {beta }} π 2 12 ln ⁡ 2 {displaystyle {frac {pi ^{2}}{12,ln 2}}} pi^2 /(12 ln 2) A100199 [1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...] 1935 1.18656911041562545282172297594723712
0,83564 88482 64721 05333 Constante de Baker ​ Baker constant.png β 3 {displaystyle beta _{3}} 0 1 d t 1 + t 3 = ∑ n = 0 ∞ ( − 1 ) n 3 n + 1 = 1 3 ( ln ⁡ 2 + π 3 ) {displaystyle int _{0}^{1}{frac {mathrm {d} t}{1+t^{3}}}=sum _{n=0}^{infty }{frac {(-1)^{n}}{3n+1}}={frac {1}{3}}left(ln 2+{frac {pi }{sqrt {3}}}right)} Sum[n=0 to ∞]
{((-1)^(n))/(3n+1)}
A113476 [0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...] 0.83564884826472105333710345970011076
23,10344 79094 20541 6160 ​ Serie de Kempner(0) ​ K 0 {displaystyle {K_{0}}} 1 + 1 2 + 1 3 + ⋯ + 1 9 + 1 11 + ⋯ + 1 19 + 1 21 + ⋯ + etc. {displaystyle 1{+}{frac {1}{2}}{+}{frac {1}{3}}{+}cdots {+}{frac {1}{9}}{+}{frac {1}{11}}{+}cdots {+}{frac {1}{19}}{+}{frac {1}{21}}{+}cdots {+},{text{etc.}}}

+ 1 99 + 1 111 + ⋯ + 1 119 + 1 121 + ⋯ d e n o m i n a d o r e s q u e c o n t i e n e n c e r o s . E x c l u i d o s l o s {displaystyle {+}{frac {1}{99}}{+}{frac {1}{111}}{+}cdots {+}{frac {1}{119}}{+}{frac {1}{121}}{+}cdots ;;{overset {Excluidos;los}{underset {contienen;ceros.}{scriptstyle denominadores;que}}}}

1+1/2+1/3+1/4+1/5
+1/6+1/7+1/8+1/9
+1/11+1/12+1/13
+1/14+1/15+...
A082839 [23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...] 23.1034479094205416160340540433255981
0,98943 12738 31146 95174 ​ Constante de Lebesgue ​ Fourier synthesis.svg C 1 {displaystyle {C_{1}}} lim n → ( L n − 4 π 2 ln ⁡ ( 2 n + 1 ) ) = 4 π 2 ( ∑ k = 1 ∞ 2 ln ⁡ k 4 k 2 − 1 − Γ ′ ( 1 2 ) Γ ( 1 2 ) ) {displaystyle lim _{nto infty }!!left(!{L_{n}{-}{frac {4}{pi ^{2}}}ln(2n{+}1)}!!right)!{=}{frac {4}{pi ^{2}}}!left({sum _{k=1}^{infty }!{frac {2ln k}{4k^{2}{-}1}}}{-}{frac {Gamma '({tfrac {1}{2}})}{Gamma ({tfrac {1}{2}})}}!!right)} 4/pi^2*[(2
Sum[k=1 to ∞]
{ln(k)/(4*k^2-1)})
-poligamma(1/2)]
A243277 [0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...] 0.98943127383114695174164880901886671
1,38135 64445 18497 79337 Constante Beta Kneser-Mahler ​



β {displaystyle beta } e 2 π 0 π 3 t tan ⁡ t d t = e ∫ 1 3 1 3 ln ⁡ 1 + e 2 π i t ⌋ d t {displaystyle e^{^{textstyle {frac {2}{pi }}displaystyle {int _{0}^{frac {pi }{3}}}textstyle {ttan t dt}}}=e^{^{displaystyle {,int _{frac {-1}{3}}^{frac {1}{3}}}textstyle {,ln lfloor 1+e^{2pi it}}rfloor dt}}} e^((PolyGamma(1,4/3)
- PolyGamma(1,2/3)
+9)/(4*sqrt(3)*Pi))
A242710 [1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...] 1963 1.38135644451849779337146695685062412
1,18745 23511 26501 05459 ​ Constante de Foias α ​ F α {displaystyle F_{alpha }} x n + 1 = ( 1 + 1 x n ) n para n = 1 , 2 , 3 , … {displaystyle x_{n+1}=left(1+{frac {1}{x_{n}}}right)^{n}{text{ para }}n=1,2,3,ldots }

La constante de Foias es el único número real tal que si x1 = α, entonces la secuencia diverge a ∞. Cuando x1 = α, lim n → x n log ⁡ n n = 1 {displaystyle ,lim _{nto infty }x_{n}{tfrac {log n}{n}}=1}

A085848 [1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...] 1970 1.18745235112650105459548015839651935
2,29316 62874 11861 03150 ​ Constante de Foias β Foias constant.png F β {displaystyle F_{beta }} x x + 1 = ( x + 1 ) x {displaystyle x^{x+1}=(x+1)^{x}} x^(x+1)
= (x+1)^x
A085846 [2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...] 2000 2.29316628741186103150802829125080586
0,66170 71822 67176 23515 ​ Constante de Robbins ​ Δ ( 3 ) {displaystyle Delta (3)} 4 + 17 2 − 6 3 − 7 π 105 + ln ⁡ ( 1 + 2 ) 5 + 2 ln ⁡ ( 2 + 3 ) 5 {displaystyle {frac {4!+!17{sqrt {2}}!-6{sqrt {3}}!-7pi }{105}}!+!{frac {ln(1!+!{sqrt {2}})}{5}}!+!{frac {2ln(2!+!{sqrt {3}})}{5}}} (4+17*2^(1/2)-6
*3^(1/2)+21*ln(1+
2^(1/2))+42*ln(2+
3^(1/2))-7*Pi)/105
A073012 [0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...] 1978 0.66170718226717623515583113324841358
0,78853 05659 11508 96106 ​ Constante de Lüroth ​ Constante de Lüroth.svg C L {displaystyle C_{L}} n = 2 ∞ ln ⁡ ( n n − 1 ) n {displaystyle sum _{n=2}^{infty }{frac {ln left({frac {n}{n-1}}right)}{n}}} Sum[n=2 to ∞]
log(n/(n-1))/n
A085361 [0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...] 0.78853056591150896106027632216944432
0,92883 58271 ​ Constante entre primos gemelos de JJGJJG ​ B 1 {displaystyle B_{1}} 1 4 + 1 6 + 1 12 + 1 18 + 1 30 + 1 42 + 1 60 + 1 72 + ⋯ {displaystyle {frac {1}{4}}+{frac {1}{6}}+{frac {1}{12}}+{frac {1}{18}}+{frac {1}{30}}+{frac {1}{42}}+{frac {1}{60}}+{frac {1}{72}}+cdots } 1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + 1/60 + 1/72 +... A241560 [0; 1, 13, 19, 4, 2, 3, 1, 1] 2014 0.928835827131
5,24411 51085 84239 62092 ​ Constante
2 Lemniscata ​
Lemniscate of Bernoulli.gif 2 ϖ {displaystyle 2varpi } [ Γ ( 1 4 ) ] 2 2 π = 4 ∫ 0 1 d x ( 1 − x 2 ) ( 2 − x 2 ) {displaystyle {frac {[Gamma ({tfrac {1}{4}})]^{2}}{sqrt {2pi }}}=4int _{0}^{1}{frac {dx}{sqrt {(1-x^{2})(2-x^{2})}}}} Gamma[ 1/4 ]^2
/Sqrt[ 2 Pi ]
A064853 [5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...] 1718 5.24411510858423962092967917978223883
0,57595 99688 92945 43964 ​ Constante Stephens ​ C S {displaystyle C_{S}} n = 1 ∞ ( 1 − p p 3 − 1 ) {displaystyle prod _{n=1}^{infty }left(1-{frac {p}{p^{3}-1}}right)} Prod[n=1 to ∞]
{1-prime(n)
/(prime(n)^3-1)}
T ? A065478 [0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...] ? 0.57595996889294543964316337549249669
0,73908 51332 15160 64165 ​ Número de Dottie ​ Dottie number.png d {displaystyle d} lim x → cos x ⁡ ( c ) = cos ⁡ ( cos ⁡ ( cos ⁡ ( cos ⁡ ( ⋯ ( cos ⁡ ( c ) ) ) ) ) ) ⏟ x {displaystyle lim _{xto infty }cos ^{x}(c)=underbrace {cos(cos(cos(cos(cdots (cos(c))))))} _{x}} cos(c)=c T A003957 [0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...] 0.73908513321516064165531208767387340
0,67823 44919 17391 97803 ​ Constante Taniguchi ​ C T {displaystyle C_{T}} n = 1 ∞ ( 1 − 3 p n 3 + 2 p n 4 + 1 p n 5 − 1 p n 6 ) {displaystyle prod _{n=1}^{infty }left(1-{frac {3}{{p_{n}}^{3}}}+{frac {2}{{p_{n}}^{4}}}+{frac {1}{{p_{n}}^{5}}}-{frac {1}{{p_{n}}^{6}}}right)} p n = primo {displaystyle scriptstyle p_{n}=,{text{primo}}} Prod[n=1 to ∞] {1
-3/prime(n)^3
+2/prime(n)^4
+1/prime(n)^5
-1/prime(n)^6}
T ? A175639 [0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...] ? 0.67823449191739197803553827948289481
1,35845 62741 82988 43520 ​ Constante espiral áurea FakeRealLogSpiral.svg c {displaystyle c} φ 2 π = ( 1 + 5 2 ) 2 π {displaystyle varphi ^{frac {2}{pi }}=left({frac {1+{sqrt {5}}}{2}}right)^{frac {2}{pi }}} GoldenRatio^(2/Pi) A212224 [1;2,1,3,1,3,10,8,1,1,8,1,15,6,1,3,1,1,2,3,1,1,...] 1.35845627418298843520618060050187945
2,79128 78474 77920 00329 Raíces anidadas S5 S 5 {displaystyle S_{5}} 21 + 1 2 = 5 + 5 + 5 + 5 + 5 + ⋯ {displaystyle displaystyle {frac {{sqrt {21}}+1}{2}}=scriptstyle ,{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5+cdots }}}}}}}}}};}

= 1 + 5 − 5 − 5 − 5 − 5 − {displaystyle =1+,scriptstyle {sqrt {5-{sqrt {5-{sqrt {5-{sqrt {5-{sqrt {5-cdots }}}}}}}}}};}

(sqrt(21)+1)/2 A A222134 [2;1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,...]
[2;1,3]
2.79128784747792000329402359686400424
1,85407 46773 01371 91843 ​ Constante Lemniscata de Gauss ​ Lemniscate Building.gif L / 2 {displaystyle L{text{/}}{sqrt {2}}} 0 ∞ d x 1 + x 4 = 1 4 π Γ ( 1 4 ) 2 = 4 ( 1 4 ! ) 2 π {displaystyle int limits _{0}^{infty }{frac {mathrm {d} x}{sqrt {1+x^{4}}}}={frac {1}{4{sqrt {pi }}}},Gamma left({frac {1}{4}}right)^{2}={frac {4left({frac {1}{4}}!right)^{2}}{sqrt {pi }}}} Γ() = Función Gamma pi^(3/2)/(2 Gamma(3/4)^2) A093341 [1;1,5,1,5,1,3,1,6,2,1,4,16,3,112,2,1,1,18,1,...] ? 1.85407467730137191843385034719526005
1,75874 36279 51184 82469 Constante Producto infinito, con Alladi-Grinstead ​ P r 1 {displaystyle Pr_{1}} n = 2 ∞ ( 1 + 1 n ) 1 n {displaystyle prod _{n=2}^{infty }{Big (}1+{frac {1}{n}}{Big)}^{frac {1}{n}}} Prod[n=2 to ∞]
{(1+1/n)^(1/n)}
A242623 [1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...] 1977 1.75874362795118482469989684865589317
1,73245 47146 00633 47358 ​ Constante inversa de Euler-Mascheroni 1 γ {displaystyle {frac {1}{gamma }}} ( ∫ 0 1 − log ⁡ ( log ⁡ 1 x ) d x ) − 1 = ∑ n = 1 ∞ ( − 1 ) n ( − 1 + γ ) n {displaystyle left(int _{0}^{1}-log left(log {frac {1}{x}}right),dxright)^{-1}=sum _{n=1}^{infty }(-1)^{n}(-1+gamma)^{n}} 1/Integrate_
(x=0 to 1)
{-log(log(1/x))}
A098907 [1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...] 1.73245471460063347358302531586082968
1,94359 64368 20759 20505 ​ Constante Euler Totient ​ ​ EulerPhi100.PNG E T {displaystyle ET} p ( 1 + 1 p ( p − 1 ) ) p = Nros. primos = ζ ( 2 ) ζ ( 3 ) ζ ( 6 ) = 315 ζ ( 3 ) 2 π 4 {displaystyle {underset {p{text{= Nros. primos}}}{prod _{p}{Big (}1+{frac {1}{p(p-1)}}{Big)}}}={frac {zeta (2);zeta (3)}{zeta (6)}}={frac {315;zeta (3)}{2pi ^{4}}}} zeta(2)*zeta(3)
/zeta(6)
A082695 [1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...] 1750 1.94359643682075920505707036257476343
1,49534 87812 21220 54191 Raíz cuarta de cinco ​ 5 4 {displaystyle {sqrt[{4}]{5}}} 5 5 5 5 5 ⋯ 5 5 5 5 5 {displaystyle {sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,{sqrt[{5}]{5,cdots }}}}}}}}}}} (5(5(5(5(5(5(5)
^1/5)^1/5)^1/5)
^1/5)^1/5)^1/5)
^1/5...
A A011003 [1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...] 1.49534878122122054191189899414091339
0,87228 40410 65627 97617 ​ Área Círculo de Ford ​ Circumferències de Ford.svg A C F {displaystyle A_{CF}} q ≥ 1 ∑ ( p , q ) = 1 1 ≤ p < q π ( 1 2 q 2 ) 2 = π 4 ζ ( 3 ) ζ ( 4 ) = 45 2 ζ ( 3 ) π 3 {displaystyle sum _{qgeq 1}sum _{(p,q)=1 atop 1leq p<q}pi left({frac {1}{2q^{2}}}right)^{2}={frac {pi }{4}}{frac {zeta (3)}{zeta (4)}}={frac {45}{2}}{frac {zeta (3)}{pi ^{3}}}} ς() = Función zeta pi Zeta(3) /(4 Zeta(4)) [0;1,6,1,4,1,7,5,36,3,29,1,1,10,3,2,8,1,1,1,3,...] ? 0.87228404106562797617519753217122587
1,08232 32337 11138 19151 ​ Constante Zeta(4) ​


ζ ( 4 ) {displaystyle zeta (4)} π 4 90 = ∑ n = 1 ∞ 1 n 4 = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + 1 5 4 + . . . {displaystyle {frac {pi ^{4}}{90}}=sum _{n=1}^{infty }{frac {1}{n^{4}}}={frac {1}{1^{4}}}+{frac {1}{2^{4}}}+{frac {1}{3^{4}}}+{frac {1}{4^{4}}}+{frac {1}{5^{4}}}+...} Sum[n=1 to ∞]
{1/n^4}
T A013662 [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...] 1.08232323371113819151600369654116790
1,56155 28128 08830 27491 Raíz Triangular de 2. ​ Números triangulares.png R 2 {displaystyle {R_{2}}} 17 − 1 2 = 4 + 4 + 4 + 4 + 4 + 4 + ⋯ 1 {displaystyle {frac {{sqrt {17}}-1}{2}}=,scriptstyle {sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+{sqrt {4+cdots }}}}}}}}}}}},,-1}

= 4 − 4 − 4 − 4 − 4 − 4 − {displaystyle =,scriptstyle {sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-{sqrt {4-cdots }}}}}}}}}}}}textstyle }

(sqrt(17)-1)/2 A A222133 [1;1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,...]
[1;1,1,3]
1.56155281280883027491070492798703851
1,45607 49485 82689 67139 ​ Constante de Backhouse ​ B {displaystyle {B}} lim k → | q k + 1 q k | donde: Q ( x ) = 1 P ( x ) = ∑ k = 1 ∞ q k x k {displaystyle lim _{kto infty }left|{frac {q_{k+1}}{q_{k}}}rightvert quad scriptstyle {text{donde:}}displaystyle ;;Q(x)={frac {1}{P(x)}}=!sum _{k=1}^{infty }q_{k}x^{k}}

P ( x ) = ∑ k = 1 ∞ p k x k p k : p r i m o = 1 + 2 x + 3 x 2 + 5 x 3 + 7 x 4 + . . . {displaystyle P(x)=!sum _{k=1}^{infty }{underset {p_{k}:,{primo}}{p_{k}x^{k}}}!!=1{+}2x{+}3x^{2}{+}5x^{3}{+}7x^{4}{+}...}

1/(FindRoot[0 == 1
+ Sum[x^n Prime[n],
{n, 10000}], {x, {1}})
A072508 [1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,4,...] 1995 1.45607494858268967139959535111654355
1,43599 11241 76917 43235 ​ Constante interpolación de Lebesgue ​ · Fourier series integral identities.gif L 1 {displaystyle {L_{1}}} i = 0 j ≠ i n x − x i x j − x i = 1 π 0 π sin ⁡ 3 t 2 ⌋ sin ⁡ t 2 d t = 1 3 + 2 3 π {displaystyle prod _{begin{smallmatrix}i=0\jneq iend{smallmatrix}}^{n}{frac {x-x_{i}}{x_{j}-x_{i}}}={frac {1}{pi }}int _{0}^{pi }{frac {lfloor sin {frac {3t}{2}}rfloor }{sin {frac {t}{2}}}},dt={frac {1}{3}}+{frac {2{sqrt {3}}}{pi }}} 1/3 + 2*sqrt(3)/Pi T A226654 [1;2,3,2,2,6,1,1,1,1,4,1,7,1,1,1,2,1,3,1,2,1,1,...] 1902 ~ 1.43599112417691743235598632995927221
1,04633 50667 70503 18098 Constante mass Minkowski-Siegel ​ F 1 {displaystyle F_{1}} n = 1 ∞ n ! 2 π n ( n e ) n 1 + 1 n 12 {displaystyle prod _{n=1}^{infty }{frac {n!}{{sqrt {2pi n}}left({frac {n}{e}}right)^{n}{sqrt[{12}]{1+{tfrac {1}{n}}}}}}} N[prod[n=1 to ∞]
n! /(sqrt(2*Pi*n)
*(n/e)^n *(1+1/n)
^(1/12))]
A213080 [1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..] 1867
1885
1935
1.04633506677050318098095065697776037
1,86002 50792 21190 30718 Constante espiral de Theodorus ​ Spiral of Theodorus.svg {displaystyle partial } n = 1 ∞ 1 n 3 + n = ∑ n = 1 ∞ 1 n ( n + 1 ) {displaystyle sum _{n=1}^{infty }{frac {1}{{sqrt {n^{3}}}+{sqrt {n}}}}=sum _{n=1}^{infty }{frac {1}{{sqrt {n}}(n+1)}}} Sum[n=1 to ∞]
{1/(n^(3/2)
+n^(1/2))}
A226317 [1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...] -460
a
-399
1.86002507922119030718069591571714332
0,80939 40205 40639 13071 ​ Constante de Alladi-Grinstead​ A A G {displaystyle {{mathcal {A}}_{AG}}} e − 1 + ∑ k = 2 ∞ n = 1 ∞ 1 n k n + 1 = e − 1 − k = 2 ∞ 1 k ln ⁡ ( 1 − 1 k ) {displaystyle e^{-1+sum limits _{k=2}^{infty }sum limits _{n=1}^{infty }{frac {1}{nk^{n+1}}}}=e^{-1-sum limits _{k=2}^{infty }{frac {1}{k}}ln left(1-{frac {1}{k}}right)}} e^{(sum[k=2 to ∞]
|sum[n=1 to ∞]
{1/(n k^(n+1))})-1}
A085291 [0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...] 1977 0.80939402054063913071793188059409131
1,26185 95071 42914 87419 ​ Dimensión fractal del Copo de nieve de Koch ​ C k {displaystyle {C_{k}}} log ⁡ 4 log ⁡ 3 {displaystyle {frac {log 4}{log 3}}} log(4)/log(3) T A100831 [1;3,1,4,1,1,11,1,46,1,5,112,1,1,1,1,1,3,1,7,...] 1.26185950714291487419905422868552171
1,22674 20107 20353 24441 ​ Constante Factorial de Fibonacci ​ F {displaystyle F} n = 1 ∞ ( 1 − ( − 1 φ 2 ) n ) = ∏ n = 1 ∞ ( 1 − ( 5 − 3 2 ) n ) {displaystyle prod _{n=1}^{infty }left(1-left(-{frac {1}{{varphi }^{2}}}right)^{n}right)=prod _{n=1}^{infty }left(1-left({frac {{sqrt {5}}-3}{2}}right)^{n}right)} prod[n=1 to ∞]
{1-((sqrt(5) -3)/2)^n}
A062073 [1;4,2,2,3,2,15,9,1,2,1,2,15,7,6,21,3,5,1,23,...] 1.22674201072035324441763023045536165
0,85073 61882 01867 26036 ​ Constante de plegado de papel ​ · Miura-ori.gif P f {displaystyle {P_{f}}} n = 0 ∞ 8 2 n 2 2 n + 2 − 1 = ∑ n = 0 ∞ 1 2 2 n 1 − 1 2 2 n + 2 {displaystyle sum _{n=0}^{infty }{frac {8^{2^{n}}}{2^{2^{n+2}}-1}}=sum _{n=0}^{infty }{cfrac {tfrac {1}{2^{2^{n}}}}{1-{tfrac {1}{2^{2^{n+2}}}}}}} N[Sum[n=0 to ∞]
{8^2^n/(2^2^
(n+2)-1)},37]
A143347 [0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...] ? 0.85073618820186726036779776053206660
6,58088 59910 17920 97085 Constante de Froda ​

2 e {displaystyle 2^{,e}} 2 e {displaystyle 2^{e}} 2^e [6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] 6.58088599101792097085154240388648649
– 0,5
± 0,86602 54037 84438 64676 i
Raíz cúbica de 1 ​ 3rd roots of unity.svg 1 3 {displaystyle {sqrt[{3}]{1}}} { 1 − 1 2 + 3 2 i − 1 2 − 3 2 i . {displaystyle {begin{cases} 1\-{frac {1}{2}}+{frac {sqrt {3}}{2}}i\-{frac {1}{2}}-{frac {sqrt {3}}{2}}i.end{cases}}} 1,
E^(2i pi/3)
E^(-2i pi/3)
CA A010527 - [0,5]
± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i
- [0,5]
± [0; 1, 6, 2] i
- 0,5
± 0.8660254037844386467637231707529 i
1,11786 41511 89944 97314 ​ Constante de Goh-Schmutz ​ C G S {displaystyle C_{GS}} 0 ∞ log ⁡ ( s + 1 ) e s − 1 d s = − n = 1 ∞ e n n E i ( − n ) I n t e g r a l E x p o n e n c i a l E i : {displaystyle int _{0}^{infty }{frac {log(s+1)}{e^{s}-1}} ds=!-!sum _{n=1}^{infty }{frac {e^{n}}{n}}Ei(-n){overset {Ei:}{underset {Exponencial}{scriptstyle Integral}}}} Integrate{
log(s+1)
/(E^s-1)}
A143300 [1;8,2,15,2,7,2,1,1,1,1,2,3,5,3,5,1,1,4,13,1,...] 1.11786415118994497314040996202656544
1,11072 07345 39591 56175 ​ Razón entre un cuadrado y la circunferencia circunscrita ​ Circumscribed2.png π 2 2 {displaystyle {frac {pi }{2{sqrt {2}}}}} n = 1 ∞ ( − 1 ) ⌊ n − 1 2 ⌋ 2 n + 1 = 1 1 + 1 3 − 1 5 − 1 7 + 1 9 + 1 11 − . . . {displaystyle sum _{n=1}^{infty }{frac {(-1)^{lfloor {frac {n-1}{2}}rfloor }}{2n+1}}={frac {1}{1}}+{frac {1}{3}}-{frac {1}{5}}-{frac {1}{7}}+{frac {1}{9}}+{frac {1}{11}}-...} Sum[n=1 to ∞]
{(-1)^(floor((n-1)/2))
/(2n-1)}
T A093954 [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] 1.11072073453959156175397024751517342
2,82641 99970 67591 57554 ​ Constante de Murata ​ C m {displaystyle {C_{m}}} n = 1 ∞ ( 1 + 1 ( p n − 1 ) 2 ) p n : p r i m o {displaystyle prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{{Big (}1+{frac {1}{(p_{n}-1)^{2}}}{Big)}}}} Prod[n=1 to ∞]
{1+1/(prime(n)
-1)^2}
T ? A065485 [2;1,4,1,3,5,2,2,2,4,3,2,1,3,2,1,1,1,8,2,2,28,...] 2.82641999706759157554639174723695374
1,52362 70862 02492 10627 ​ Dimensión fractal de la frontera de la Curva del dragón ​ Fractal dragon curve.jpg C d {displaystyle {C_{d}}} log ⁡ ( 1 + 73 − 6 87 3 + 73 + 6 87 3 3 ) log ⁡ ( 2 ) {displaystyle {frac {log left({frac {1+{sqrt[{3}]{73-6{sqrt {87}}}}+{sqrt[{3}]{73+6{sqrt {87}}}}}{3}}right)}{log(2)}}} (log((1+(73-6
sqrt(87))^1/3+ (73+6 sqrt(87))^1/3)
/3))/ log(2)))
T [1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...] 1.52362708620249210627768393595421662
1,30637 78838 63080 69046 ​ Constante de Mills ​ θ {displaystyle {theta }} Es primo θ 3 n ⌋ {displaystyle lfloor theta ^{3^{n}}rfloor } Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8) A051021 [1;3,3,1,3,1,2,1,2,1,4,2,35,21,1,4,4,1,1,3,2,...] 1947 1.30637788386308069046861449260260571
2,02988 32128 19307 25004 ​ Volumen hiperbólico del Complemento del Nudo en Forma de Ocho ​ Blue Figure-Eight Knot.png V 8 {displaystyle {V_{8}}} 2 3 ∑ n = 1 ∞ 1 n ( 2 n n ) ∑ k = n 2 n − 1 1 k = 6 ∫ 0 π / 3 log ⁡ ( 1 2 sin ⁡ t ) d t = {displaystyle 2{sqrt {3}},sum _{n=1}^{infty }{frac {1}{n{2n choose n}}}sum _{k=n}^{2n-1}{frac {1}{k}}=6int limits _{0}^{pi /3}log left({frac {1}{2sin t}}right),dt=}

3 9 ∑ n = 0 ∞ ( − 1 ) n 27 n { 18 ( 6 n + 1 ) 2 − 18 ( 6 n + 2 ) 2 − 24 ( 6 n + 3 ) 2 − 6 ( 6 n + 4 ) 2 + 2 ( 6 n + 5 ) 2 } {displaystyle scriptstyle {frac {sqrt {3}}{9}},sum limits _{n=0}^{infty }{frac {(-1)^{n}}{27^{n}}},left{!{frac {18}{(6n+1)^{2}}}-{frac {18}{(6n+2)^{2}}}-{frac {24}{(6n+3)^{2}}}-{frac {6}{(6n+4)^{2}}}+{frac {2}{(6n+5)^{2}}}!right}}

6 integral[0 to pi/3]
{log(1/(2 sin (n)))}
A091518 [2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...] 2.02988321281930725004240510854904057
1,46707 80794 33975 47289 ​ Constante de Porter​

C {displaystyle {C}} 6 ln ⁡ 2 π 2 ( 3 ln ⁡ 2 + 4 γ 24 π 2 ζ ′ ( 2 ) − 2 ) − 1 2 {displaystyle {frac {6ln 2}{pi ^{2}}}left(3ln 2+4,gamma -{frac {24}{pi ^{2}}},zeta '(2)-2right)-{frac {1}{2}}}

γ = Constante de Euler–Mascheroni = 0,5772156649... {displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}} ζ ′ ( 2 ) = Derivada de ζ ( 2 ) = − n = 2 ∞ ln ⁡ n n 2 = −0,9375482543... {displaystyle scriptstyle zeta '(2),{text{= Derivada de }}zeta (2),=,-!!sum limits _{n=2}^{infty }{frac {ln n}{n^{2}}},{text{= −0,9375482543...}}}

6*ln2/Pi^2(3*ln2+ 4 EulerGamma- WeierstrassZeta'(2) *24/Pi^2-2)-1/2 A086237 [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...] 1974 1.46707807943397547289779848470722995
1,85193 70519 82466 17036 ​ Constante de Gibbs ​ Int si(x).PNG S i ( π ) {displaystyle {Si(pi)}}
Integralsenoidal
0 π sin ⁡ t t d t = ∑ n = 1 ∞ ( − 1 ) n − 1 π 2 n − 1 ( 2 n − 1 ) ( 2 n − 1 ) ! {displaystyle int _{0}^{pi }{frac {sin t}{t}},dt=sum limits _{n=1}^{infty }(-1)^{n-1}{frac {pi ^{2n-1}}{(2n-1)(2n-1)!}}}

= π π 3 3 ∗ 3 ! + π 5 5 ∗ 5 ! − π 7 7 ∗ 7 ! + . . . {displaystyle =pi -{frac {pi ^{3}}{3*3!}}+{frac {pi ^{5}}{5*5!}}-{frac {pi ^{7}}{7*7!}}+...}

SinIntegral[Pi] A036792 [1;1,5,1,3,15,1,5,3,2,7,2,1,62,1,3,110,1,39,...] 1.85193705198246617036105337015799136
1,78221 39781 91369 11177 ​ Constante de Grothendieck ​


K R {displaystyle {K_{R}}} π 2 log ⁡ ( 1 + 2 ) = π 2 arsinh ⁡ 1 {displaystyle {frac {pi }{2log(1+{sqrt {2}})}}={frac {pi }{2operatorname {arsinh} 1}}} pi/(2 log(1+sqrt(2))) A088367 [1;1,3,1,1,2,4,2,1,1,17,1,12,4,3,5,10,1,1,3,...] 1.78221397819136911177441345297254934
1,74540 56624 07346 86349 ​ Constante media armónica de Khinchin ​ Plot harmonic mean.png K − 1 {displaystyle {K_{-1}}} log ⁡ 2 ∑ n = 1 ∞ 1 n log ⁡ ( 1 + 1 n ( n + 2 ) ) = lim n → n 1 a 1 + 1 a 2 + . . . + 1 a n {displaystyle {frac {log 2}{sum limits _{n=1}^{infty }{frac {1}{n}}log {bigl (}1+{frac {1}{n(n+2)}}{bigr)}}}=lim _{nto infty }{frac {n}{{frac {1}{a_{1}}}+{frac {1}{a_{2}}}+...+{frac {1}{a_{n}}}}}}

a1...an son elementos de una fracción continua [a0;a1,a2,...,an]

(log 2)/
(sum[n=1 to ∞]
{1/n log(1+
1/(n(n+2))}
A087491 [1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...] 1.74540566240734686349459630968366106
0,10841 01512 23111 36151 ​ Constante de Trott

T 1 {displaystyle mathrm {T} _{1}} [ 1 , 0 , 8 , 4 , 1 , 0 , 1 , 5 , 1 , 2 , 2 , 3 , 1 , 1 , 1 , 3 , 6 , . . . ] {displaystyle textstyle [1,0,8,4,1,0,1,5,1,2,2,3,1,1,1,3,6,...]}

1 1 + 1 0 + 1 8 + 1 4 + 1 1 + 1 0 + 1 / . . . {displaystyle {frac {1}{1+{frac {1}{0+{frac {1}{8+{frac {1}{4+{frac {1}{1+{frac {1}{0+1{/...}}}}}}}}}}}}}}

Trott Constant A039662 [0;9,4,2,5,1,2,2,3,1,1,1,3,6,1,5,1,1,2,...] 0.10841015122311136151129081140641509
1,45136 92348 83381 05028 ​ Constante de Ramanujan–Soldner ​ · Integrallogrithm.png μ {displaystyle {mu }} L i ( x ) = ∫ 0 x d t ln ⁡ t = 0 L i = Integral logarítmica {displaystyle mathrm {Li} (x)=int _{0}^{x}{frac {dt}{ln t}}=0qquad mathrm {Li} ,scriptstyle {text{= Integral logarítmica}}}

L i ( x ) = E i ( ln ⁡ x ) E i = Integral exponencial {displaystyle mathrm {Li} (x);=;mathrm {Ei} (ln {x});;qquad mathrm {Ei} ,scriptstyle {text{= Integral exponencial}}}

FindRoot[li(x) = 0] I A070769 [1;2,4,1,1,1,3,1,1,1,2,47,2,4,1,12,1,1,2,2,1,...] 1792
a
1809
1.45136923488338105028396848589202744
0,64341 05462 88338 02618 ​ Constante de Cahen ​ ξ 2 {displaystyle xi _{2}} k = 1 ∞ ( − 1 ) k s k − 1 = 1 1 − 1 2 + 1 6 − 1 42 + 1 1806 ± {displaystyle sum _{k=1}^{infty }{frac {(-1)^{k}}{s_{k}-1}}={frac {1}{1}}-{frac {1}{2}}+{frac {1}{6}}-{frac {1}{42}}+{frac {1}{1806}}{,pm cdots }}

sk son términos de la Sucesión de Sylvester 2, 3, 7, 43, 1807...
Definida por S 0 = 2 , S k = 1 + ∏ n = 0 k − 1 S n {displaystyle scriptstyle ,S_{0}=,2,,,S_{k}=,1+prod limits _{n=0}^{k-1}S_{n}} para k>0

T A118227 [0; 1, 1, 1, 4, 9, 196, 16641, 639988804,...] 1891 0.64341054628833802618225430775756476
-4,22745 35333 76265 408 ​ Digamma (¼) ​ Complex Polygamma 0.jpg ψ ( 1 4 ) {displaystyle psi ({tfrac {1}{4}})} γ π 2 − 3 ln ⁡ 2 = − γ + ∑ n = 0 ∞ ( 1 n + 1 − 1 n + 1 4 ) {displaystyle -gamma -{frac {pi }{2}}-3ln {2}=-gamma +sum _{n=0}^{infty }left({frac {1}{n+1}}-{frac {1}{n+{tfrac {1}{4}}}}right)} -EulerGamma
-pi/2 -3 log 2
A020777 -[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...] -4,2274535333762654080895301460966835
1,77245 38509 05516 02729 ​ Constante de Carlson-Levin​


Γ ( 1 2 ) {displaystyle {Gamma }({tfrac {1}{2}})} π = ( − 1 2 ) ! = ∫ 1 e x 2 d x = ∫ 0 1 1 − ln ⁡ x d x {displaystyle {sqrt {pi }}=left(-{frac {1}{2}}right)!=int _{-infty }^{infty }{frac {1}{e^{x^{2}}}},dx=int _{0}^{1}{frac {1}{sqrt {-ln x}}},dx} sqrt (pi) T A002161 [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] 1.77245385090551602729816748334114518
0,23571 11317 19232 93137 ​ Constante de Copeland-Erdős​ C C E {displaystyle {{mathcal {C}}_{CE}}} n = 1 ∞ p n 10 n + ∑ k = 1 n ⌊ log 10 ⁡ p k ⌋ {displaystyle sum _{n=1}^{infty }{frac {p_{n}}{10^{n+sum limits _{k=1}^{n}lfloor log _{10}{p_{k}}rfloor }}}} sum[n=1 to ∞]
{prime(n) /(n+(10^
sum[k=1 to n]{floor
(log_10 prime(k))}))}
I A033308 [0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...] 0.23571113171923293137414347535961677
2,09455 14815 42326 59148 ​ Constante de Wallis​ Wallis's Constant.png W {displaystyle W} 45 − 1929 18 3 + 45 + 1929 18 3 {displaystyle {sqrt[{3}]{frac {45-{sqrt {1929}}}{18}}}+{sqrt[{3}]{frac {45+{sqrt {1929}}}{18}}}} (((45-sqrt(1929))
/18))^(1/3)+
(((45+sqrt(1929))
/18))^(1/3)
A A007493 [2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...] 1616
a
1703
2.09455148154232659148238654057930296
0,28674 74284 34478 73410 ​ Constante Strongly Carefree​ K 2 {displaystyle K_{2}} n = 1 ∞ ( 1 − 3 p n − 2 p n 3 ) p n : p r i m o = 6 π 2 ∏ n = 1 ∞ ( 1 − 1 p n ( p n + 1 ) ) p n : p r i m o {displaystyle prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {3p_{n}-2}{{p_{n}}^{3}}}right)}}={frac {6}{pi ^{2}}}prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {1}{p_{n}(p_{n}+1)}}right)}}} N[ prod[k=1 to ∞]
{1 - (3*prime(k)-2)
/(prime(k)^3)}]
A065473 [0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...] 0.28674742843447873410789271278983845
0,56714 32904 09783 87299 ​ Constante Omega, función W(1) de Lambert ​ Lambert-w.svg Ω {displaystyle {Omega }} n = 1 ∞ ( − n ) n − 1 n ! = ( 1 e ) ( 1 e ) ⋅ ( 1 e ) = e − Ω = e − e − e ⋅ e {displaystyle sum _{n=1}^{infty }{frac {(-n)^{n-1}}{n!}}=,left({frac {1}{e}}right)^{left({frac {1}{e}}right)^{cdot ^{cdot ^{left({frac {1}{e}}right)}}}}=e^{-Omega }={e}^{-e^{-e^{cdot ^{cdot ^{-e}}}}}} Sum[n=1 to ∞]
{(-n)^(n-1)/n!}
T A030178 [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...] 1728
a
1777
0.56714329040978387299996866221035555
0,54325 89653 42976 70695 ​ Constante de Bloch-Landau ​ L {displaystyle {L}} Γ ( 1 3 ) Γ ( 5 6 ) Γ ( 1 6 ) = ( − 2 3 ) ! ( − 1 + 5 6 ) ! ( − 1 + 1 6 ) ! {displaystyle {frac {Gamma ({tfrac {1}{3}});Gamma ({tfrac {5}{6}})}{Gamma ({tfrac {1}{6}})}}={frac {(-{tfrac {2}{3}})!;(-1+{tfrac {5}{6}})!}{(-1+{tfrac {1}{6}})!}}} gamma(1/3)
*gamma(5/6)
/gamma(1/6)
A081760 [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...] 1929 0.54325896534297670695272829530061323
0,34053 73295 50999 14282 ​ Constante de Pólya Random Walk​ Walk3d 0.png p ( 3 ) {displaystyle {p(3)}} 1 − ( 3 ( 2 π ) 3 ∫ π π π π π π d x d y d z 3 − cos ⁡ x − cos ⁡ y − cos ⁡ z ) − 1 {displaystyle 1-!!left({3 over (2pi)^{3}}int limits _{-pi }^{pi }int limits _{-pi }^{pi }int limits _{-pi }^{pi }{dx,dy,dz over 3-!cos x-!cos y-!cos z}right)^{!-1}}

= 1 − 16 2 3 π 3 ( Γ ( 1 24 ) Γ ( 5 24 ) Γ ( 7 24 ) Γ ( 11 24 ) ) − 1 {displaystyle =1-16{sqrt {tfrac {2}{3}}};pi ^{3}left(Gamma ({tfrac {1}{24}})Gamma ({tfrac {5}{24}})Gamma ({tfrac {7}{24}})Gamma ({tfrac {11}{24}})right)^{-1}}

1-16*Sqrt[2/3]*Pi^3
/((Gamma[1/24]
*Gamma[5/24]
*Gamma[7/24]
*Gamma[11/24])
A086230 [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...] 0.34053732955099914282627318443290289
0,35323 63718 54995 98454 ​ Constante de Hafner-Sarnak-McCurley (1)​ σ {displaystyle {sigma }} k = 1 ∞ { 1 − [ 1 − j = 1 n ( 1 − p k − j ) ] 2 } {displaystyle prod _{k=1}^{infty }left{1-left[1-prod _{j=1}^{n}(1-p_{k}^{-j})right]^{2}right}} prod[k=1 to ∞] {1-(1-prod[j=1 to n] {1-prime(k)^-j})^2} A085849 [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...] 1993 0.35323637185499598454351655043268201
0,74759 79202 53411 43517 ​ Constante Parking de Rényi​ Random car parking problem.svg ParallelParkingAnimation2.gif m {displaystyle {m}} 0 ∞ e ( − 2 ∫ 0 x 1 − e − y y d y ) d x = e − 2 γ 0 ∞ e − 2 Γ ( 0 , n ) n 2 {displaystyle int limits _{0}^{infty }e^{left(!-2int limits _{0}^{x}{frac {1-e^{-y}}{y}}dyright)}!dx={e^{-2gamma }}int limits _{0}^{infty }{frac {e^{-2Gamma (0,n)}}{n^{2}}}} [e^(-2*Gamma)] * Int{n,0,∞}[ e^(- 2*Gamma(0,n)) /n^2] A050996 [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...] 1958 0.74759792025341143517873094383017817
0,60792 71018 54026 62866 ​ Constante de Hafner-Sarnak-McCurley (2)​ 1 ζ ( 2 ) {displaystyle {frac {1}{zeta (2)}}} 6 π 2 = ∏ n = 0 ∞ ( 1 − 1 p n 2 ) p n : p r i m o = ( 1 − 1 2 2 ) ( 1 − 1 3 2 ) ( 1 − 1 5 2 ) . . . {displaystyle {frac {6}{pi ^{2}}}{=}prod _{n=0}^{infty }{underset {p_{n}:,{primo}}{left(1-{frac {1}{{p_{n}}^{2}}}right)}}{=}textstyle left(1{-}{frac {1}{2^{2}}}right)left(1{-}{frac {1}{3^{2}}}right)left(1{-}{frac {1}{5^{2}}}right)...} Prod{n=1 to ∞}
(1-1/prime(n)^2)
T A059956 [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] 0.60792710185402662866327677925836583
0,12345 67891 01112 13141 ​ Constante de Champernowne​ Champernowne constant.svg C 10 {displaystyle C_{10}} n = 1 ∞ k = 10 n − 1 10 n − 1 k 10 k n − 9 ∑ j = 0 n − 1 10 j ( n − j − 1 ) {displaystyle sum _{n=1}^{infty }sum _{k=10^{n-1}}^{10^{n}-1}{frac {k}{10^{kn-9sum _{j=0}^{n-1}10^{j}(n-j-1)}}}} T A033307 [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] 1933 0.12345678910111213141516171819202123
0,76422 36535 89220 66299 ​ Constante de Landau-Ramanujan​ K {displaystyle K} 1 2 ∏ p ≡ 3 mod 4 ( 1 − 1 p 2 ) − 1 2 p : p r i m o = π 4 ∏ p ≡ 1 mod 4 ( 1 − 1 p 2 ) 1 2 p : p r i m o {displaystyle {frac {1}{sqrt {2}}}prod _{pequiv 3!!!!!mod !4}!!{underset {!!!!!!!!p:,{primo}}{left(1-{frac {1}{p^{2}}}right)^{-{frac {1}{2}}}}}!!={frac {pi }{4}}prod _{pequiv 1!!!!!mod !4}!!{underset {!!!!p:,{primo}}{left(1-{frac {1}{p^{2}}}right)^{frac {1}{2}}}}} T ? A064533 [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...] 1908 0.76422365358922066299069873125009232
1,58496 25007 21156 18145 ​ Dimensión Hausdorf del triángulo de Sierpinski​ SierpinskiTriangle-ani-0-7.gif l o g 2 3 {displaystyle {log_{2}3}} l o g 3 l o g 2 = ∑ n = 0 ∞ 1 2 2 n + 1 ( 2 n + 1 ) ∑ n = 0 ∞ 1 3 2 n + 1 ( 2 n + 1 ) = 1 2 + 1 24 + 1 160 + . . . 1 3 + 1 81 + 1 1215 + . . . {displaystyle {frac {log3}{log2}}={frac {sum _{n=0}^{infty }{frac {1}{2^{2n+1}(2n+1)}}}{sum _{n=0}^{infty }{frac {1}{3^{2n+1}(2n+1)}}}}={frac {{frac {1}{2}}+{frac {1}{24}}+{frac {1}{160}}+...}{{frac {1}{3}}+{frac {1}{81}}+{frac {1}{1215}}+...}}} (Sum[n=0 to ∞]
{1/(2^(2n+1)(2n+1))})/
(Sum[n=0 to ∞]
{1/(3^(2n+1)(2n+1))})
T A020857 [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 1.58496250072115618145373894394781651
0,11000 10000 00000 00000 0001 Número de Liouville ​


£ L i {displaystyle {text{£}}_{Li}} n = 1 ∞ 1 10 n ! = 1 10 1 ! + 1 10 2 ! + 1 10 3 ! + 1 10 4 ! + . . . {displaystyle sum _{n=1}^{infty }{frac {1}{10^{n!}}}={frac {1}{10^{1!}}}+{frac {1}{10^{2!}}}+{frac {1}{10^{3!}}}+{frac {1}{10^{4!}}}+...} Sum[n=1 to ∞]
{10^(-n!)}
T A012245 [1;9,1,999,10,9999999999999,1,9,999,1,9] 0.11000100000000000000000100...
0,46364 76090 00806 11621 Serie de Machin-Gregory​ Arctangent.svg arctan ⁡ 1 2 {displaystyle arctan {frac {1}{2}}} n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = 1 2 − 1 3 ⋅ 2 3 + 1 5 ⋅ 2 5 − 1 7 ⋅ 2 7 + . . . P a r a x = 1 / 2 {displaystyle {underset {Para;x=1/2qquad qquad }{sum _{n=0}^{infty }{frac {!!(-1)^{n}x^{2n+1}}{2n+1}}={frac {1}{2}}-!{frac {1}{3cdot 2^{3}}}{+}{frac {1}{5cdot 2^{5}}}-!{frac {1}{7cdot 2^{7}}}{+}{...}}}} Sum[n=0 to ∞]
{(-1)^n (1/2)
^(2n+1)/(2n+1)}
I A073000 [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...] 0.46364760900080611621425623146121440
1,27323 95447 35162 68615 Serie de Ramanujan-Forsyth ​ 4 π {displaystyle {frac {4}{pi }}} n = 0 ∞ ( ( 2 n − 3 ) ! ! ( 2 n ) ! ! ) 2 = 1 + ( 1 2 ) 2 + ( 1 2 ⋅ 4 ) 2 + ( 1 ⋅ 3 2 ⋅ 4 ⋅ 6 ) 2 + . . . {displaystyle displaystyle sum limits _{n=0}^{infty }textstyle left({frac {(2n-3)!!}{(2n)!!}}right)^{2}={1!+!left({frac {1}{2}}right)^{2}!{+}left({frac {1}{2cdot 4}}right)^{2}!{+}left({frac {1cdot 3}{2cdot 4cdot 6}}right)^{2}{+}...}} Sum[n=0 to ∞]
{[(2n-3)!!
/(2n)!!]^2}
I A088538 [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] 1.27323954473516268615107010698011489
15,15426 22414 79264 1897 ​ Constante exponencial reiterado ​ Exp-esc.png e e {displaystyle e^{e}} n = 0 ∞ e n n ! = lim n → ( 1 + n n ) n − n ( 1 + n ) 1 + n {displaystyle sum _{n=0}^{infty }{frac {e^{n}}{n!}}=lim _{nto infty }left({frac {1+n}{n}}right)^{n^{-n}(1+n)^{1+n}}} Sum[n=0 to ∞]
{(e^n)/n!}
A073226 [15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...] 15.1542622414792641897604302726299119
36,46215 96072 07911 77099 Pi elevado a pi ​

π π {displaystyle pi ^{pi }} π π {displaystyle pi ^{pi }} pi^pi A073233 [36;2,6,9,2,1,2,5,1,1,6,2,1,291,1,38,50,1,2,...] 36.4621596072079117709908260226921236
0,53964 54911 90413 18711 Constante de Ioachimescu ​ 2 + ζ ( 1 2 ) {displaystyle 2+zeta ({tfrac {1}{2}})} 2 − ( 1 + 2 ) ∑ n = 1 ∞ ( − 1 ) n + 1 n = γ + ∑ n = 1 ∞ ( − 1 ) 2 n γ n 2 n n ! {displaystyle {2{-}(1{+}{sqrt {2}})sum _{n=1}^{infty }{frac {(-1)^{n+1}}{sqrt {n}}}}=gamma +sum _{n=1}^{infty }{frac {(-1)^{2n};gamma _{n}}{2^{n}n!}}} γ +N
[sum[n=1 to ∞]
{((-1)^(2n)
gamma_n)
/(2^n n!)}]
2-
A059750
[0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...] 0.53964549119041318711050084748470198
2,58498 17595 79253 21706 ​ Constante de Sierpiński ​ Random Sierpinski Triangle animation.gif K {displaystyle {K}} π ( 2 γ + ln ⁡ 4 π 3 Γ ( 1 4 ) 4 ) = π ( 2 γ + 4 ln ⁡ Γ ( 3 4 ) − ln ⁡ π ) {displaystyle pi left(2gamma +ln {frac {4pi ^{3}}{Gamma ({tfrac {1}{4}})^{4}}}right)=pi (2gamma +4ln Gamma ({tfrac {3}{4}})-ln pi)}

= π ( 2 ln ⁡ 2 + 3 ln ⁡ π + 2 γ 4 ln ⁡ Γ ( 1 4 ) ) {displaystyle =pi left(2ln 2+3ln pi +2gamma -4ln Gamma ({tfrac {1}{4}})right)}

-Pi Log[Pi]+2 Pi
EulerGamma
+4 Pi Log
[Gamma[3/4]]
A062089 [2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...] 1907 2.58498175957925321706589358738317116
1,83928 67552 14161 13255 Constante Tribonacci ​ TRIBONACCI.jpg ϕ 3 {displaystyle {phi _{}}_{3}} 1 + 19 + 3 33 3 + 19 − 3 33 3 3 = 1 + ( 1 2 + 1 2 + 1 2 + . . . 3 3 3 ) − 1 {displaystyle textstyle {frac {1+{sqrt[{3}]{19+3{sqrt {33}}}}+{sqrt[{3}]{19-3{sqrt {33}}}}}{3}}=scriptstyle ,1+left({sqrt[{3}]{{tfrac {1}{2}}+{sqrt[{3}]{{tfrac {1}{2}}+{sqrt[{3}]{{tfrac {1}{2}}+...}}}}}}right)^{-1}} (1/3)*(1+(19+3
*sqrt(33))^(1/3)
+(19-3
*sqrt(33))^(1/3))
A A058265 [1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...] 1.83928675521416113255185256465328660
0,69220 06275 55346 35386 ​ Valor mínimo de la función
ƒ(x) = xx
( 1 e ) 1 e {displaystyle {left({frac {1}{e}}right)}^{frac {1}{e}}} e − 1 e {displaystyle {e}^{-{frac {1}{e}}}} = Inverso de: Número de Steiner e^(-1/e) A072364 [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 0.69220062755534635386542199718278976
0,70710 67811 86547 52440

+0,70710 67811 86547 52440 i

Raíz cuadrada de i Imaginary2Root.svg i {displaystyle {sqrt {i}}} 1 4 = 1 + i 2 = e i π 4 = cos ⁡ ( π 4 ) + i sin ⁡ ( π 4 ) {displaystyle {sqrt[{4}]{-1}}={frac {1+i}{sqrt {2}}}=e^{frac {ipi }{4}}=cos left({frac {pi }{4}}right)+isin left({frac {pi }{4}}right)} (1+i)/(sqrt 2) C A A010503

A010503
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..]
= [0;1,2,...]
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] i
= [0;1,2,...] i
0.70710678118654752440084436210484903
+ 0.70710678118654752440084436210484 i
1,15636 26843 32269 71685 ​ Constante de recurrencia cúbica ​


σ 3 {displaystyle {sigma _{3}}} n = 1 ∞ n 3 − n = 1 2 3 ⋯ 3 3 3 = 1 1 / 3 2 1 / 9 3 1 / 27 ⋯ {displaystyle prod _{n=1}^{infty }n^{{3}^{-n}}={sqrt[{3}]{1{sqrt[{3}]{2{sqrt[{3}]{3cdots }}}}}}=1^{1/3};2^{1/9};3^{1/27}cdots } prod[n=1 to ∞]
{n ^(1/3)^n}
A123852 [1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...] 1.15636268433226971685337032288736935
1,66168 79496 33594 12129 ​ Recurrencia cuadrática de Somos ​ σ {displaystyle {sigma }} n = 1 ∞ n 1 / 2 n = 1 2 3 4 ⋯ = 1 1 / 2 2 1 / 4 3 1 / 8 ⋯ {displaystyle prod _{n=1}^{infty }n^{{1/2}^{n}}={sqrt {1{sqrt {2{sqrt {3{sqrt {4cdots }}}}}}}}=1^{1/2};2^{1/4};3^{1/8}cdots } prod[n=1 to ∞]
{n ^(1/2)^n}
T ? A065481 [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] 1.66168794963359412129581892274995074
0,95531 66181 24509 27816 Ángulo mágico​ Magic angle.svg θ m {displaystyle {theta _{m}}} arctan ⁡ ( 2 ) = arccos ⁡ ( 1 3 ) ≈ 54 , 7356 ∘ {displaystyle arctan left({sqrt {2}}right)=arccos left({sqrt {tfrac {1}{3}}}right)approx textstyle {54,7356}^{circ }} arctan(sqrt(2)) T A195696 [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...] 0.95531661812450927816385710251575775
0,59634 73623 23194 07434 ​ Constante de Euler-Gompertz ​ G {displaystyle {G}} e E i ( − 1 ) = ∫ 0 ∞ e − n 1 + n d n = 1 1 + 1 1 + 1 1 + 2 1 + 2 1 + 3 1 + 3 1 + 4 / . . . {displaystyle -emathrm {Ei} (-1)=int limits _{0}^{infty }{frac {e^{-n}}{1{+}n}},dn=textstyle {frac {1}{1+{frac {1}{1+{frac {1}{1+{frac {2}{1+{frac {2}{1+{frac {3}{1+{frac {3}{1+4{/...}}}}}}}}}}}}}}}} N[int[0 to ∞]
{(e^-n)/(1+n)}]
I A073003 [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...] 0.59634736232319407434107849936927937
0,69777 46579 64007 98200 ​ Constante de fracción continua, función de Bessel ​ C C F {displaystyle {C}_{CF}} I 1 ( 2 ) I 0 ( 2 ) = ∑ n = 0 ∞ n n ! n ! ∑ n = 0 ∞ 1 n ! n ! = 1 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 / . . . {displaystyle {frac {I_{1}(2)}{I_{0}(2)}}={frac {sum limits _{n=0}^{infty }{frac {n}{n!n!}}}{sum limits _{n=0}^{infty }{frac {1}{n!n!}}}}=textstyle {frac {1}{1+{frac {1}{2+{frac {1}{3+{frac {1}{4+{frac {1}{5+{frac {1}{6+1{/...}}}}}}}}}}}}}} (Sum {n=0 to ∞}
n/(n!n!)) /
(Sum {n=0 to ∞}
1/(n!n!))
I A052119 [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;p+1], p∈ℕ
0.69777465796400798200679059255175260
0,36651 29205 81664 32701 Mediana distribución de Gumbel ​ GumbelDichteF.svg l l 2 {displaystyle {ll_{2}}} ln ⁡ ( ln ⁡ ( 2 ) ) {displaystyle -ln(ln(2))} -ln(ln(2)) A074785 [0;2,1,2,1,2,6,1,6,6,2,2,2,1,12,1,8,1,1,3,1,...] 0.36816512920566432701243915823266947
0,64624 54398 94813 30426 ​ Constante de Masser-Gramain ​ C {displaystyle {C}} γ β ( 1 ) + β ′ ( 1 ) = π ( − ln ⁡ Γ ( 1 4 ) + 3 4 π + 1 2 ln ⁡ 2 + 1 2 γ ) {displaystyle gamma {beta }(1){+}{beta }'(1)=pi !left(-!ln Gamma ({tfrac {1}{4}})+{tfrac {3}{4}}pi +{tfrac {1}{2}}ln 2+{tfrac {1}{2}}gamma right)} = π ( − ln ⁡ ( 1 4 ! ) + 3 4 ln ⁡ π 3 2 ln ⁡ 2 + 1 2 γ ) {displaystyle =pi !left(-!ln({tfrac {1}{4}}!)+{tfrac {3}{4}}ln pi -{tfrac {3}{2}}ln 2+{tfrac {1}{2}},gamma right)} γ = Constante de Euler–Mascheroni = 0,5772156649... {displaystyle scriptstyle gamma ,{text{= Constante de Euler–Mascheroni = 0,5772156649...}}} β() = Función beta, Γ() = Función Gamma Pi/4*(2*Gamma
+ 2*Log[2]
+ 3*Log[Pi]
- 4 Log[Gamma[1/4]])
A086057 [0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...] 0.64624543989481330426647339684579279
0.69034 71261 14964 31946 Límite superior exponencial iterado ​ TetrationConvergence2D.png H 2 n + 1 {displaystyle {H}_{2n+1}} lim n → H 2 n + 1 = ( 1 2 ) ( 1 3 ) ( 1 4 ) ⋅ ( 1 2 n + 1 ) = 2 − 3 − 4 ⋅ 2 n − 1 {displaystyle lim _{nto infty }{H}_{2n+1}=textstyle left({frac {1}{2}}right)^{left({frac {1}{3}}right)^{left({frac {1}{4}}right)^{cdot ^{cdot ^{left({frac {1}{2n+1}}right)}}}}}={2}^{-3^{-4^{cdot ^{cdot ^{-2n-1}}}}}} 2^-3^-4^-5^-6^
-7^-8^-9^-10^
-11^-12^-13 …
A242760 [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...] 0.69034712611496431946732843846418942
0,65836 55992 Límite inferior exponencial iterado ​ H 2 n {displaystyle {H}_{2n}} lim n → H 2 n = ( 1 2 ) ( 1 3 ) ( 1 4 ) ⋅ ( 1 2 n ) = 2 − 3 − 4 ⋅ 2 n {displaystyle lim _{nto infty }{H}_{2n}=textstyle left({frac {1}{2}}right)^{left({frac {1}{3}}right)^{left({frac {1}{4}}right)^{cdot ^{cdot ^{left({frac {1}{2n}}right)}}}}}={2}^{-3^{-4^{cdot ^{cdot ^{-2n}}}}}} 2^-3^-4^-5^-6^
-7^-8^-9^-10^
-11^-12 …
[0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...] 0.6583655992...
2,71828 18284 59045 23536 ​ Número e, constante de Euler ​ Exp derivative at 0.svg e {displaystyle {e}} n = 0 ∞ 1 n ! = 1 0 ! + 1 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + ⋯ {displaystyle sum _{n=0}^{infty }{frac {1}{n!}}={frac {1}{0!}}+{frac {1}{1}}+{frac {1}{2!}}+{frac {1}{3!}}+{frac {1}{4!}}+{frac {1}{5!}}+cdots } 2 ∏ n = 1 ∞ i = 1 2 n − 1 ( 2 n + 2 i ) ∏ i = 1 2 n − 1 ( 2 n + 2 i − 1 ) 2 n = 2 4 3 6 ⋅ 8 5 ⋅ 7 4 10 ⋅ 12 ⋅ 14 ⋅ 16 9 ⋅ 11 ⋅ 13 ⋅ 15 8 ⋯ {displaystyle 2!prod _{n=1}^{infty }!!textstyle {sqrt[{2^{n}}]{frac {prod _{i=1}^{2^{n-1}}(2^{n}+2i)}{prod _{i=1}^{2^{n-1}}!(2^{n}+2i-1)}}}=2{sqrt {frac {4}{3}}}{sqrt[{4}]{frac {6cdot 8}{5cdot 7}}}{sqrt[{8}]{frac {10cdot 12cdot 14cdot 16}{9cdot 11cdot 13cdot 15}}}cdots } Sum[n=0 to ∞]
{1/n!}
T A001113 [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [2;1,2p,1], p∈ℕ
1618 2.71828182845904523536028747135266250
2,74723 82749 32304 33305 Raíces anidadas de Ramanujan R5 R 5 {displaystyle R_{5}} 5 + 5 + 5 − 5 + 5 + 5 + 5 − = 2 + 5 + 15 − 6 5 2 {displaystyle scriptstyle {sqrt {5+{sqrt {5+{sqrt {5-{sqrt {5+{sqrt {5+{sqrt {5+{sqrt {5-cdots }}}}}}}}}}}}}};=textstyle {frac {2+{sqrt {5}}+{sqrt {15-6{sqrt {5}}}}}{2}}} (2+sqrt(5)
+sqrt(15
-6 sqrt(5)))/2
A [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] 2.74723827493230433305746518613420282
2,23606 79774 99789 69640​ Raíz cuadrada de cinco
Suma de Gauss ​
Pinwheel 1.svg 5 {displaystyle {sqrt {5}}} ( n = 5 ) ∑ k = 0 n − 1 e 2 k 2 π i n = 1 + e 2 π i 5 + e 8 π i 5 + e 18 π i 5 + e 32 π i 5 {displaystyle scriptstyle (n=5)displaystyle sum _{k=0}^{n-1}e^{frac {2k^{2}pi i}{n}}=1+e^{frac {2pi i}{5}}+e^{frac {8pi i}{5}}+e^{frac {18pi i}{5}}+e^{frac {32pi i}{5}}} Sum[k=0 to 4]
{e^(2k^2 pi i/5)}
A A002163 [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;4,...]
2.23606797749978969640917366873127624
1,09864 19643 94156 48573 ​ Constante París C P a {displaystyle C_{Pa}} n = 2 ∞ 2 φ φ + φ n , φ = F i {displaystyle prod _{n=2}^{infty }{frac {2varphi }{varphi +varphi _{n}}};,;varphi {=}{Fi}} con φ n = 1 + φ n − 1 {displaystyle varphi _{n}{=}{sqrt {1{+}varphi _{n{-}1}}}} y φ 1 = 1 {displaystyle varphi _{1}{=}1}


A105415 [1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] 1.09864196439415648573466891734359621
0,11494 20448 53296 20070 ​ Constante de Kepler–Bouwkamp ​ Regular polygons qtl4.svg ρ {displaystyle {rho }} n = 3 ∞ cos ⁡ ( π n ) = cos ⁡ ( π 3 ) cos ⁡ ( π 4 ) cos ⁡ ( π 5 ) . . . {displaystyle prod _{n=3}^{infty }cos left({frac {pi }{n}}right)=cos left({frac {pi }{3}}right)cos left({frac {pi }{4}}right)cos left({frac {pi }{5}}right)...} prod[n=3 to ∞]
{cos(pi/n)}



A085365 [0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] 0.11494204485329620070104015746959874
1,28242 71291 00622 63687 ​ Constante de Glaisher–Kinkelin ​


A {displaystyle {A}} e 1 12 − ζ ( − 1 ) = e 1 8 − 1 2 ∑ n = 0 ∞ 1 n + 1 ∑ k = 0 n ( − 1 ) k ( n k ) ( k + 1 ) 2 ln ⁡ ( k + 1 ) {displaystyle e^{{frac {1}{12}}-zeta ^{prime }(-1)}=e^{{frac {1}{8}}-{frac {1}{2}}sum limits _{n=0}^{infty }{frac {1}{n+1}}sum limits _{k=0}^{n}left(-1right)^{k}{binom {n}{k}}left(k+1right)^{2}ln(k+1)}} e^(1/2-zeta´{-1}) T ? A074962 [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] 1878 1.28242712910062263687534256886979172
3,62560 99082 21908 31193 ​ Gamma(1/4) ​ Gamma abs 3D.png Γ ( 1 4 ) {displaystyle Gamma ({tfrac {1}{4}})} 4 ( 1 4 ) ! = ( 2 π ) 3 4 ∏ k = 1 ∞ tanh ⁡ ( π k 2 ) {displaystyle 4left({frac {1}{4}}right)!=(2pi)^{frac {3}{4}}prod _{k=1}^{infty }tanh left({frac {pi k}{2}}right)} 4(1/4)! T A068466 [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] 1729 3.62560990822190831193068515586767200
1,78107 24179 90197 98523 ​ Exp.gamma por función G-Barnes ​ e γ {displaystyle e^{gamma }} n = 1 ∞ e 1 n 1 + 1 n = ∏ n = 0 ∞ ( ∏ k = 0 n ( k + 1 ) ( − 1 ) k + 1 ( n k ) ) 1 n + 1 = {displaystyle prod _{n=1}^{infty }{frac {e^{frac {1}{n}}}{1+{tfrac {1}{n}}}}=prod _{n=0}^{infty }left(prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n choose k}}right)^{frac {1}{n+1}}=}

( 2 1 ) 1 / 2 ( 2 2 1 ⋅ 3 ) 1 / 3 ( 2 3 ⋅ 4 1 ⋅ 3 3 ) 1 / 4 ( 2 4 ⋅ 4 4 1 ⋅ 3 6 ⋅ 5 ) 1 / 5 . . . {displaystyle textstyle left({frac {2}{1}}right)^{1/2}left({frac {2^{2}}{1cdot 3}}right)^{1/3}left({frac {2^{3}cdot 4}{1cdot 3^{3}}}right)^{1/4}left({frac {2^{4}cdot 4^{4}}{1cdot 3^{6}cdot 5}}right)^{1/5}...}

Prod[n=1 to ∞]
{e^(1/n)}/{1 + 1/n}
A073004 [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] 1900 1.78107241799019798523650410310717954
0,18785 96424 62067 12024 ​ MRB Constant, Marvin Ray Burns ​​​ MRB-Gif.gif C M R B {displaystyle C_{{}_{MRB}}} n = 1 ∞ ( − 1 ) n ( n 1 / n − 1 ) = − 1 1 + 2 2 − 3 3 + 4 4 . . . {displaystyle sum _{n=1}^{infty }({-}1)^{n}(n^{1/n}{-}1)=-{sqrt[{1}]{1}}+{sqrt[{2}]{2}}-{sqrt[{3}]{3}}+{sqrt[{4}]{4}},...} Sum[n=1 to ∞]
{(-1)^n (n^(1/n)-1)}
A037077 [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] 1999 0.18785964246206712024851793405427323
1,01494 16064 09653 62502 ​ Constante de Gieseking ​ π ln ⁡ β {displaystyle {pi ln beta }} 3 3 4 ( 1 − n = 0 ∞ 1 ( 3 n + 2 ) 2 + ∑ n = 1 ∞ 1 ( 3 n + 1 ) 2 ) = {displaystyle {frac {3{sqrt {3}}}{4}}left(1-sum _{n=0}^{infty }{frac {1}{(3n+2)^{2}}}+sum _{n=1}^{infty }{frac {1}{(3n+1)^{2}}}right)=}

3 3 4 ( 1 − 1 2 2 + 1 4 2 − 1 5 2 + 1 7 2 ± . . . ) = ∫ 0 2 π 3 ln ( 2 cos ⁡ t 2 ) d t {displaystyle textstyle {frac {3{sqrt {3}}}{4}}left(1{-}{frac {1}{2^{2}}}{+}{frac {1}{4^{2}}}{-}{frac {1}{5^{2}}}{+}{frac {1}{7^{2}}}{pm }...right)=displaystyle !int _{0}^{frac {2pi }{3}}!ln !left(2cos {tfrac {t}{2}}right){mathrm {d} }t}

sqrt(3)*3/4 *(1
-Sum[n=0 to ∞]
{1/((3n+2)^2)}
+Sum[n=1 to ∞]
{1/((3n+1)^2)})
A143298 [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] 1912 1.01494160640965362502120255427452028
2,62205 75542 92119 81046 ​ Constante Lemniscata ​ Lemniscate of Gerono.svg ϖ {displaystyle {varpi }} π G = 4 2 π Γ ( 5 4 ) 2 = 1 4 2 π Γ ( 1 4 ) 2 = 4 2 π ( 1 4 ! ) 2 {displaystyle pi ,{G}=4{sqrt {tfrac {2}{pi }}},Gamma {left({tfrac {5}{4}}right)^{2}}={tfrac {1}{4}}{sqrt {tfrac {2}{pi }}},Gamma {left({tfrac {1}{4}}right)^{2}}=4{sqrt {tfrac {2}{pi }}}left({tfrac {1}{4}}!right)^{2}} 4 sqrt(2/pi)
((1/4)!)^2
T A062539 [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] 1798 2.62205755429211981046483958989111941
0,83462 68416 74073 18628 ​ Constante de Gauss ​



G {displaystyle {G}} 1 a g m ( 1 , 2 ) = 4 2 ( 1 4 ! ) 2 π 3 / 2 a g m : M e d i a a r i t m e ´ t i c a − g e o m e ´ t r i c a {displaystyle {underset {agm:;Media;aritm{acute {e}}tica-geom{acute {e}}trica}{{frac {1}{mathrm {agm} (1,{sqrt {2}})}}={frac {4{sqrt {2}},({tfrac {1}{4}}!)^{2}}{pi ^{3/2}}}}}} (4 sqrt(2)
((1/4)!)^2)
/pi^(3/2)
T A014549 [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] 1799 0.83462684167407318628142973279904680
0,00787 49969 97812 3844 ​ Constante de Chaitin ​ ProgramTree.svg Ω {displaystyle {Omega }} p ∈ P 2 − | p | | p | : T a m a n ~ o d e l p r o g r a m a P : C o n j u n t o d e t o d o s l o s p r o g r a m a s q u e s e p a r a n . p : P r o g r a m a q u e s e p a r a {displaystyle sum _{pin P}2^{-|p|}{overset {p:;{Programa;que;se;para}}{underset {P:;Conjunto;de;todos;los;programas;que;se;paran.}{scriptstyle {|p|}:;Tama{tilde {n}}o;del;programa}}}}
Ver también: Problema de la parada
T A100264 [0; 126, 1, 62, 5, 5, 3, 3, 21, 1, 4, 1] 1975 0.0078749969978123844
2,80777 02420 28519 36522 ​ Constante Fransén–Robinson ​


F {displaystyle {F}} 0 ∞ 1 Γ ( x ) d x . = e + ∫ 0 ∞ e − x π 2 + ln 2 ⁡ x d x {displaystyle int _{0}^{infty }{frac {1}{Gamma (x)}},dx.=e+int _{0}^{infty }{frac {e^{-x}}{pi ^{2}+ln ^{2}x}},dx} N[int[0 to ∞]
{1/Gamma(x)}]
A058655 [2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] 1978 2.80777024202851936522150118655777293
1,01734 30619 84449 13971 ​ Zeta(6) ​ Zeta.png ζ ( 6 ) {displaystyle zeta (6)} π 6 945 = ∏ n = 1 ∞ 1 1 − p n − 6 p n : p r i m o = 1 1 − 2 − 6 ⋅ 1 1 − 3 − 6 ⋅ 1 1 − 5 − 6 . . . {displaystyle {frac {pi ^{6}}{945}}=prod _{n=1}^{infty }{underset {p_{n}:,{primo}}{frac {1}{{1-p_{n}}^{-6}}}}={frac {1}{1{-}2^{-6}}}{cdot }{frac {1}{1{-}3^{-6}}}{cdot }{frac {1}{1{-}5^{-6}}}...}

= ∑ n = 1 ∞ 1 n 6 = 1 1 6 + 1 2 6 + 1 3 6 + 1 4 6 + 1 5 6 + . . . {displaystyle textstyle =sum _{n=1}^{infty }{frac {1}{n^{6}}}={frac {1}{1^{6}}}+{frac {1}{2^{6}}}+{frac {1}{3^{6}}}+{frac {1}{4^{6}}}+{frac {1}{5^{6}}}+...}

Prod[n=1 to ∞]
{1/(1
-prime(n)^-6)}
T A013664 [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] 1.01734306198444913971451792979092052
1,64872 12707 00128 14684 ​ Raíz cuadrada del número e ​


e {displaystyle {sqrt {e}}} n = 0 ∞ 1 2 n n ! = ∑ n = 0 ∞ 1 ( 2 n ) ! ! = 1 1 + 1 2 + 1 8 + 1 48 + ⋯ {displaystyle sum _{n=0}^{infty }{frac {1}{2^{n}n!}}=sum _{n=0}^{infty }{frac {1}{(2n)!!}}={frac {1}{1}}+{frac {1}{2}}+{frac {1}{8}}+{frac {1}{48}}+cdots } sum[n=0 to ∞]
{1/(2^n n!)}
T A019774 [1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...]
= [1;1,1,1,4p+1], p∈ℕ
1.64872127070012814684865078781416357
i... ​ Número imaginario​ Complex numbers imaginary unit.svg i {displaystyle {i}} 1 = ln ⁡ ( − 1 ) π e i π = − 1 {displaystyle {sqrt {-1}}={frac {ln(-1)}{pi }}qquad qquad mathrm {e} ^{i,pi }=-1} sqrt(-1) CI 1501
à
1576
i
4,81047 73809 65351 65547 Constante de John ​

γ {displaystyle gamma } i i = i − i = i 1 i = ( i i ) − 1 = e π 2 {displaystyle {sqrt[{i}]{i}}=i^{-i}=i^{frac {1}{i}}=(i^{i})^{-1}=e^{frac {pi }{2}}} e^(π/2) T A042972 [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...] 4.81047738096535165547303566670383313
0.49801 56681 18356 04271

0.15494 98283 01810 68512 i

Factorial de i i ! {displaystyle {i},!} Γ ( 1 + i ) = i Γ ( i ) = ∫ 0 ∞ t i e t d t {displaystyle Gamma (1+i)=i,Gamma (i)=int limits _{0}^{infty }{frac {t^{i}}{e^{t}}}mathrm {d} t} Gamma(1+i) C A212877
A212878
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i
0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i
0,43828 29367 27032 11162

0,36059 24718 71385 485 i ​

Tetración infinita de i


i {displaystyle {}^{infty }{i}} lim n → n i = lim n → i i ⋅ i ⏟ n {displaystyle lim _{nto infty }{}^{n}i=lim _{nto infty }underbrace {i^{i^{cdot ^{cdot ^{i}}}}} _{n}} i^i^i^... C A077589
A077590
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1,...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i
0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i
0,56755 51633 06957 82538 Módulo de la
Tetración infinita de i
| ∞ i | {displaystyle |{}^{infty }{i}|} lim n → | n i | = | lim n → i i ⋅ i ⏟ n | {displaystyle lim _{nto infty }left|{}^{n}iright|=left|lim _{nto infty }underbrace {i^{i^{cdot ^{cdot ^{i}}}}} _{n}right|} Mod(i^i^i^...) A212479 [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] 0.56755516330695782538461314419245334
0,26149 72128 47642 78375 ​ Constante de Meissel-Mertens ​ Meissel–Mertens constant definition.svg M {displaystyle {M}} lim n → ( ∑ p ≤ n 1 p − ln ⁡ ( ln ⁡ ( n ) ) ) = γ + ∑ p ( ln ( 1 − 1 p ) + 1 p ) γ : Constante de Euler , p : primo {displaystyle lim _{nrightarrow infty }!!left(sum _{pleq n}{frac {1}{p}}!-ln(ln(n))!right)!!={underset {!!!!gamma:,{text{Constante de Euler}},,,p:,{text{primo}}}{!gamma !+!!sum _{p}!left(!ln !left(!1!-!{frac {1}{p}}!right)!!+!{frac {1}{p}}!right)}}} gamma+
Sum[n=1 to ∞]
{ln(1-1/prime(n))
+1/prime(n)}
A077761 [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...] 1866
y
1873
0.26149721284764278375542683860869585
1,92878 00... ​ Constante de Wright ​ ω {displaystyle {omega }} ⌊ 2 2 2 ⋅ 2 ω ⌋ {displaystyle leftlfloor 2^{2^{2^{cdot ^{cdot ^{2^{omega }}}}}}rightrfloor } = primos: {displaystyle quad } ⌊ 2 ω ⌋ {displaystyle leftlfloor 2^{omega }rightrfloor } =3, ⌊ 2 2 ω ⌋ {displaystyle leftlfloor 2^{2^{omega }}rightrfloor } =13, ⌊ 2 2 2 ω ⌋ {displaystyle leftlfloor 2^{2^{2^{omega }}}rightrfloor } =16381, {displaystyle dots } A086238 [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] 1.9287800..
0,37395 58136 19202 28805 ​ Constante de Artin ​ C A r t i n {displaystyle {C}_{Artin}} n = 1 ∞ ( 1 − 1 p n ( p n − 1 ) ) p n = primos {displaystyle prod _{n=1}^{infty }left(1-{frac {1}{p_{n}(p_{n}-1)}}right)quad p_{n}scriptstyle {text{ = primos}}} Prod[n=1 to ∞]
{1-1/(prime(n)
(prime(n)-1))}
A005596 [0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] 1999 0.37395581361920228805472805434641641
4,66920 16091 02990 67185 ​ Constante δ de Feigenbaum δ ​ LogisticMap BifurcationDiagram.png δ {displaystyle {delta }} lim n → x n + 1 − x n x n + 2 − x n + 1 x ∈ ( 3 , 8284 ; 3 , 8495 ) {displaystyle lim _{nto infty }{frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}qquad scriptstyle xin (3,8284;,3,8495)}

x n + 1 = a x n ( 1 − x n ) o x n + 1 = a sin ⁡ ( x n ) {displaystyle scriptstyle x_{n+1}=,ax_{n}(1-x_{n})quad {o}quad x_{n+1}=,asin(x_{n})}

A006890 [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] 1975 4.66920160910299067185320382046620161
2,50290 78750 95892 82228 ​ Constante α de Feigenbaum ​ Mandelbrot zoom.gif α {displaystyle alpha } lim n → d n d n + 1 {displaystyle lim _{nto infty }{frac {d_{n}}{d_{n+1}}}} A006891 [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] 1979 2.50290787509589282228390287321821578
5,97798 68121 78349 12266 ​ Constante hexagonal Madelung 2


H 2 ( 2 ) {displaystyle {H}_{2}(2)} π ln ⁡ ( 3 ) 3 {displaystyle pi ln(3){sqrt {3}}} Pi Log[3]Sqrt[3] A086055 [5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] 5.97798681217834912266905331933922774
0,96894 61462 59369 38048 Constante Beta(3) ​ β ( 3 ) {displaystyle {beta }(3)} π 3 32 = ∑ n = 1 ∞ 1 n + 1 ( − 1 + 2 n ) 3 = 1 1 3 − 1 3 3 + 1 5 3 − 1 7 3 + . . . {displaystyle {frac {pi ^{3}}{32}}=sum _{n=1}^{infty }{frac {-1^{n+1}}{(-1+2n)^{3}}}={frac {1}{1^{3}}}{-}{frac {1}{3^{3}}}{+}{frac {1}{5^{3}}}{-}{frac {1}{7^{3}}}{+}...} Sum[n=1 to ∞]
{(-1)^(n+1)
/(-1+2n)^3}
T A153071 [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] 0.96894614625936938048363484584691860
1,90216 05831 04 ​ Constante de Brun 2
= Σ inverso
primos gemelos ​
Bruns-constant.svg B 2 {displaystyle {B}_{,2}} ( 1 p + 1 p + 2 ) p , p + 2 : p r i m o s = ( 1 3 + 1 5 ) + ( 1 5 + 1 7 ) + ( 1 11 + 1 13 ) + . . . {displaystyle textstyle {underset {p,,p+2:,{primos}}{sum ({frac {1}{p}}+{frac {1}{p+2}})}}=({frac {1}{3}}{+}{frac {1}{5}})+({tfrac {1}{5}}{+}{tfrac {1}{7}})+({tfrac {1}{11}}{+}{tfrac {1}{13}})+...} N[prod[n=2 to 0,870∞]
[1-1/(prime(n)
-1)^2]]
A065421 [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] 1919 1.902160583104
0,87058 83799 75 ​ Constante de Brun 4
= Σ inverso
primos gemelos ​




B 4 {displaystyle {B}_{,4}} ( 1 5 + 1 7 + 1 11 + 1 13 ) p , p + 2 , p + 6 , p + 8 : p r i m o s + ( 1 11 + 1 13 + 1 17 + 1 19 ) + … {displaystyle {underset {p,,p+2,,p+6,,p+8:,{primos}}{left({tfrac {1}{5}}+{tfrac {1}{7}}+{tfrac {1}{11}}+{tfrac {1}{13}}right)}}+left({tfrac {1}{11}}+{tfrac {1}{13}}+{tfrac {1}{17}}+{tfrac {1}{19}}right)+dots } A213007 [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] 1919 0.87058837997
22,45915 77183 61045 47342 pi^e ​

π e {displaystyle pi ^{e}} π e {displaystyle pi ^{e}} pi^e A059850 [22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] 22.4591577183610454734271522045437350
3,14159 26535 89793 23846 ​ Número π, constante de Arquímedes ​ · Sine cosine one period.svg π {displaystyle {pi }} lim n → 2 n 2 − 2 + 2 + ... + 2 ⏟ n {displaystyle lim _{nto infty },2^{n}underbrace {sqrt {2-{sqrt {2+{sqrt {2+{text{...}}+{sqrt {2}}}}}}}} _{n}} Sum[n=0 to ∞]
{(-1)^n 4/(2n+1)}
T A000796 [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] -250 ~ 3.14159265358979323846264338327950288
0,28878 80950 86602 42127 ​ Flajolet and Richmond ​


Q {displaystyle {Q}} n = 1 ∞ ( 1 − 1 2 n ) = ( 1 − 1 2 1 ) ( 1 − 1 2 2 ) ( 1 − 1 2 3 ) . . . {displaystyle prod _{n=1}^{infty }left(1-{frac {1}{2^{n}}}right)=left(1{-}{frac {1}{2^{1}}}right)left(1{-}{frac {1}{2^{2}}}right)left(1{-}{frac {1}{2^{3}}}right)...} prod[n=1 to ∞]
{1-1/2^n}
A048651 [0;3,2,6,4,1,2,1,9,2,1,2,3,2,3,5,1,2,1,1,6,1,...] 1992 0.28878809508660242127889972192923078
0,06598 80358 45312 53707 ​ Límite inferior de Tetración ​ Infinite power tower.svg e − e {displaystyle {e}^{-e}} ( 1 e ) e {displaystyle left({frac {1}{e}}right)^{e}} 1/(e^e) A073230 [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] 0.06598803584531253707679018759684642
0,31830 98861 83790 67153 ​ Inverso de Pi, Ramanujan​


1 π {displaystyle {frac {1}{pi }}} 2 2 9801 ∑ n = 0 ∞ ( 4 n ) ! ( 1103 + 26390 n ) ( n ! ) 4 396 4 n {displaystyle {frac {2{sqrt {2}}}{9801}}sum _{n=0}^{infty }{frac {(4n)!,(1103+26390;n)}{(n!)^{4},396^{4n}}}} 2 sqrt(2)/9801
*Sum[n=0 to ∞]
{((4n)!/n!^4)*(1103+
26390n)/396^(4n)}
T A049541 [0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] 0.31830988618379067153776752674502872
0,63661 97723 67581 34307 ​

Constante de Buffon ​ Buffon2.png Aguja interseca línea 2 π {displaystyle {frac {2}{pi }}} 2 2 ⋅ 2 + 2 2 ⋅ 2 + 2 + 2 2 ⋯ {displaystyle {frac {sqrt {2}}{2}}cdot {frac {sqrt {2+{sqrt {2}}}}{2}}cdot {frac {sqrt {2+{sqrt {2+{sqrt {2}}}}}}{2}}cdots }

Producto de François Viète

2/Pi T A060294 [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] 1540
a
1603
0.63661977236758134307553505349005745
0,47494 93799 87920 65033 ​ Constante de Weierstrass ​


σ ( 1 2 ) {displaystyle sigma ({tfrac {1}{2}})} e π 8 π 4 ∗ 2 3 / 4 ( 1 4 ! ) 2 {displaystyle {frac {e^{frac {pi }{8}}{sqrt {pi }}}{4*2^{3/4}{({frac {1}{4}}!)^{2}}}}} (E^(Pi/8) Sqrt[Pi])
/(4 2^(3/4) (1/4)!^2)
A094692 [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...] 1872 ? 0.47494937998792065033250463632798297
0,57721 56649 01532 86060 ​ Constante de Euler-Mascheroni​ Euler-Mas.jpg γ {displaystyle {gamma }} n = 1 ∞ k = 0 ∞ ( − 1 ) k 2 n + k = ∑ n = 1 ∞ 1 n − ln ⁡ ( n ) = ∫ 0 1 − ln ⁡ ( ln ⁡ 1 x ) d x {displaystyle sum _{n=1}^{infty }sum _{k=0}^{infty }{frac {(-1)^{k}}{2^{n}+k}}!=!sum _{n=1}^{infty }{frac {1}{n}}-ln(n)!=!!int _{0}^{1}!!-ln(ln {frac {1}{x}}),dx} sum[n=1 to ∞]
|sum[k=0 to ∞]
{((-1)^k)/(2^n+k)}
A001620 [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,...] 1735 0.57721566490153286060651209008240243
1,70521 11401 05367 76428 ​ Constante de Niven ​ C {displaystyle {C}} 1 + ∑ n = 2 ∞ ( 1 − 1 ζ ( n ) ) {displaystyle 1+sum _{n=2}^{infty }left(1-{frac {1}{zeta (n)}}right)} 1+ Sum[n=2 to ∞]
{1-(1/Zeta(n))}
A033150 [1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...] 1969 1.70521114010536776428855145343450816
0,60459 97880 78072 61686 ​ Relación entre el área de un triángulo equilátero y su círculo inscrito. Fano plane.svg π 3 3 {displaystyle {frac {pi }{3{sqrt {3}}}}} n = 1 ∞ 1 n ( 2 n n ) = 1 − 1 2 + 1 4 − 1 5 + 1 7 − 1 8 + ⋯ {displaystyle sum _{n=1}^{infty }{frac {1}{n{2n choose n}}}=1-{frac {1}{2}}+{frac {1}{4}}-{frac {1}{5}}+{frac {1}{7}}-{frac {1}{8}}+cdots } Serie de Dirichlet Sum[1/(n
Binomial[2 n, n])
, {n, 1, ∞}]
T A073010 [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...] 0.60459978807807261686469275254738524
3,24697 96037 17467 06105 ​ Constante Silver de Tutte–Beraha ​ ς {displaystyle varsigma } 2 + 2 cos ⁡ 2 π 7 = 2 + 2 + 7 + 7 7 + 7 7 + ⋯ 3 3 3 1 + 7 + 7 7 + 7 7 + ⋯ 3 3 3 {displaystyle 2+2cos {frac {2pi }{7}}=textstyle 2+{frac {2+{sqrt[{3}]{7+7{sqrt[{3}]{7+7{sqrt[{3}]{,7+cdots }}}}}}}{1+{sqrt[{3}]{7+7{sqrt[{3}]{7+7{sqrt[{3}]{,7+cdots }}}}}}}}} 2+2 cos(2Pi/7) A A116425 [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] 3.24697960371746706105000976800847962
0,69314 71805 59945 30941 ​ Logaritmo natural de 2 Alternating Harmonic Series.PNG L n ( 2 ) {displaystyle Ln(2)} n = 1 ∞ 1 n 2 n = ∑ n = 1 ∞ ( − 1 ) n + 1 n = 1 1 − 1 2 + 1 3 − 1 4 + ⋯ {displaystyle sum _{n=1}^{infty }{frac {1}{n2^{n}}}=sum _{n=1}^{infty }{frac {({-}1)^{n+1}}{n}}={frac {1}{1}}-{frac {1}{2}}+{frac {1}{3}}-{frac {1}{4}}+{cdots }} Sum[n=1 to ∞]
{(-1)^(n+1)/n}
T A002162 [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...] 1550
a
1617
0.69314718055994530941723212145817657
0,66016 18158 46869 57392 ​ Constante de los primos gemelos ​


C 2 {displaystyle {C}_{2}} p = 3 ∞ p ( p − 2 ) ( p − 1 ) 2 {displaystyle prod _{p=3}^{infty }{frac {p(p-2)}{(p-1)^{2}}}} prod[p=3 to ∞]
{p(p-2)/(p-1)^2
A005597 [0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] 1922 0.66016181584686957392781211001455577
0,66274 34193 49181 58097 ​ Constante límite de Laplace​ Laplace limit.png λ {displaystyle {lambda }} x e x 2 + 1 x 2 + 1 + 1 = 1 {displaystyle {frac {x;e^{sqrt {x^{2}+1}}}{{sqrt {x^{2}+1}}+1}}=1} (x e^sqrt(x^2+1))
/(sqrt(x^2+1)+1)
= 1
A033259 [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...] 1782 ~ 0.66274341934918158097474209710925290
0,28016 94990 23869 13303 ​ Constante de Bernstein​


β {displaystyle {beta }} 1 2 π {displaystyle {frac {1}{2{sqrt {pi }}}}} 1/(2 sqrt(pi)) T A073001 [0;3,1,1,3,9,6,3,1,3,14,34,2,1,1,60,2,2,1,1,...] 1913 0.28016949902386913303643649123067200
0,78343 05107 12134 40705 ​ Sophomore's Dream 1
Johann Bernoulli ​
Reve etudiant.svg I 1 {displaystyle {I}_{1}} 0 1 x − x d x = ∑ n = 1 ∞ ( − 1 ) n + 1 n n = 1 1 1 − 1 2 2 + 1 3 3 − {displaystyle int _{0}^{1}!x^{-x},dx=sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n^{n}}}={frac {1}{1^{1}}}-{frac {1}{2^{2}}}+{frac {1}{3^{3}}}-{cdots }} Sum[n=1 to ∞]
{-(-1)^n /n^n}
A083648 [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...] 1697 0.78343051071213440705926438652697546
1,29128 59970 62663 54040 ​ Sophomore's Dream 2 Johann Bernoulli​ Socd 001.png I 2 {displaystyle {I}_{2}} 0 1 1 x x d x = ∑ n = 1 ∞ 1 n n = 1 1 1 + 1 2 2 + 1 3 3 + 1 4 4 + ⋯ {displaystyle int _{0}^{1}!{frac {1}{x^{x}}},dx=sum _{n=1}^{infty }{frac {1}{n^{n}}}={frac {1}{1^{1}}}+{frac {1}{2^{2}}}+{frac {1}{3^{3}}}+{frac {1}{4^{4}}}+cdots } Sum[n=1 to ∞]
{1/(n^n)}
A073009 [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...] 1697 1.29128599706266354040728259059560054
0,82246 70334 24113 21823 ​ Constante Nielsen-Ramanujan​


ζ ( 2 ) 2 {displaystyle {frac {{zeta }(2)}{2}}} π 2 12 = ∑ n = 1 ∞ ( − 1 ) n + 1 n 2 = 1 1 2 − 1 2 2 + 1 3 2 − 1 4 2 + 1 5 2 − . . . {displaystyle {frac {pi ^{2}}{12}}=sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n^{2}}}={frac {1}{1^{2}}}{-}{frac {1}{2^{2}}}{+}{frac {1}{3^{2}}}{-}{frac {1}{4^{2}}}{+}{frac {1}{5^{2}}}{-}...} Sum[n=1 to ∞]
{((-1)^(n+1))/n^2}
T A072691 [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...] 1909 0.82246703342411321823620758332301259
0,78539 81633 97448 30961 ​ Beta(1) ​ Loglogisticcdf.svg β ( 1 ) {displaystyle {beta }(1)} π 4 = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 = 1 1 − 1 3 + 1 5 − 1 7 + 1 9 − {displaystyle {frac {pi }{4}}=sum _{n=0}^{infty }{frac {(-1)^{n}}{2n+1}}={frac {1}{1}}-{frac {1}{3}}+{frac {1}{5}}-{frac {1}{7}}+{frac {1}{9}}-cdots } Sum[n=0 to ∞]
{(-1)^n/(2n+1)}
T A003881 [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...] 1805
a
1859
0.78539816339744830961566084581987572
0,91596 55941 77219 01505 ​ Constante de Catalan ​ ​ ​


C {displaystyle {C}} 0 1 ∫ 0 1 1 1 + x 2 y 2 d x d y = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) 2 = 1 1 2 − 1 3 2 + ⋯ {displaystyle int _{0}^{1}!!int _{0}^{1}!!{frac {1}{1{+}x^{2}y^{2}}},dx,dy=!sum _{n=0}^{infty }!{frac {(-1)^{n}}{(2n{+}1)^{2}}}!=!{frac {1}{1^{2}}}{-}{frac {1}{3^{2}}}{+}{cdots }} Sum[n=0 to ∞]
{(-1)^n/(2n+1)^2}
T ? A006752 [0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...] 1864 0.91596559417721901505460351493238411
1,05946 30943 59295 26456 ​ Intervalo entre semitonos de la escala musical ​ ​ Rast scale.svg

YB0214 Clavier tempere.png

2 12 {displaystyle {sqrt[{12}]{2}}} 440 H z . 2 1 12 2 2 12 2 3 12 2 4 12 2 5 12 2 6 12 2 7 12 2 8 12 2 9 12 2 10 12 2 11 12 2 {displaystyle scriptstyle 440,Hz.textstyle 2^{frac {1}{12}},2^{frac {2}{12}},2^{frac {3}{12}},2^{frac {4}{12}},2^{frac {5}{12}},2^{frac {6}{12}},2^{frac {7}{12}},2^{frac {8}{12}},2^{frac {9}{12}},2^{frac {10}{12}},2^{frac {11}{12}},2}

. . . D o 1 D o # R e R e # M i F a F a # S o l S o l # L a L a # S i D o 2 {displaystyle scriptstyle {color {white}...color {black}Do_{1};;Do#;,Re;,Re#;,Mi;;Fa;;Fa#;Sol;,Sol#,La;;La#;;Si;,Do_{2}}} . . . . C 1 C # D D # E F F # G G # A A # B C 2 {displaystyle scriptstyle {color {white}....color {black}C_{1};;;;C#;;;,D;;;D#;;,E;;;;,F;;;,F#;;;G;;;;G#;;;A;;;,A#;;;,B;;;C_{2}}}

2^(1/12) A A010774 [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] 1.05946309435929526456182529494634170
1,13198 82487 943 ​ Constante de Viswanath ​ C V i {displaystyle {C}_{Vi}} lim n → | a n | 1 n {displaystyle lim _{nto infty }|a_{n}|^{frac {1}{n}}} donde an = Sucesión de Fibonacci lim_(n->∞)
|a_n|^(1/n)
T ? A078416 [1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] 1997 1.1319882487943...
1,20205 69031 59594 28539 ​ Constante de Apéry​ Apéry's constant.svg ζ ( 3 ) {displaystyle zeta (3)} n = 1 ∞ 1 n 3 = 1 1 3 + 1 2 3 + 1 3 3 + 1 4 3 + 1 5 3 + ⋯ = {displaystyle sum _{n=1}^{infty }{frac {1}{n^{3}}}={frac {1}{1^{3}}}+{frac {1}{2^{3}}}+{frac {1}{3^{3}}}+{frac {1}{4^{3}}}+{frac {1}{5^{3}}}+cdots =}

1 2 ∑ n = 1 ∞ H n n 2 = 1 2 ∑ i = 1 ∞ j = 1 ∞ 1 i j ( i + j ) = ∫ 0 1 ∫ 0 1 ∫ 0 1 d x d y d z 1 − x y z {displaystyle {frac {1}{2}}sum _{n=1}^{infty }{frac {H_{n}}{n^{2}}}={frac {1}{2}}sum _{i=1}^{infty }sum _{j=1}^{infty }{frac {1}{ij(i{+}j)}}=!!int limits _{0}^{1}!!int limits _{0}^{1}!!int limits _{0}^{1}{frac {mathrm {d} xmathrm {d} ymathrm {d} z}{1-xyz}}}

Sum[n=1 to ∞]
{1/n^3}
I A010774 [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...] 1979 1.20205690315959428539973816151144999
1,22541 67024 65177 64512 ​ Gamma(3/4) ​


Γ ( 3 4 ) {displaystyle Gamma ({tfrac {3}{4}})} ( − 1 + 3 4 ) ! = ( − 1 4 ) ! {displaystyle left(-1+{frac {3}{4}}right)!=left(-{frac {1}{4}}right)!} (-1+3/4)! A068465 [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,8,...] 1.22541670246517764512909830336289053
1,25992 10498 94873 16476 ​ Raíz cúbica de dos, constante Delian Riemann surface cube root.jpg 2 3 {displaystyle {sqrt[{3}]{2}}} 2 3 {displaystyle {sqrt[{3}]{2}}} 2^(1/3) A A002580 [1;3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,...] 1.25992104989487316476721060727822835
9,86960 44010 89358 61883 Pi al Cuadrado


π 2 {displaystyle {pi }^{2}} 6 ζ ( 2 ) = 6 ∑ n = 1 ∞ 1 n 2 = 6 1 2 + 6 2 2 + 6 3 2 + 6 4 2 + ⋯ {displaystyle 6zeta (2)=6sum _{n=1}^{infty }{frac {1}{n^{2}}}={frac {6}{1^{2}}}+{frac {6}{2^{2}}}+{frac {6}{3^{2}}}+{frac {6}{4^{2}}}+cdots } 6 Sum[n=1 to ∞]
{1/n^2}
T A002388 [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...] 9.86960440108935861883449099987615114
1,41421 35623 73095 04880 ​ Raíz cuadrada de 2, constante de Pitágoras ​ Square root of 2 triangle.svg 2 {displaystyle {sqrt {2}}} n = 1 ∞ 1 + ( − 1 ) n + 1 2 n − 1 = ( 1 + 1 1 ) ( 1 − 1 3 ) ( 1 + 1 5 ) ⋯ {displaystyle prod _{n=1}^{infty }1+{frac {(-1)^{n+1}}{2n-1}}=left(1{+}{frac {1}{1}}right)left(1{-}{frac {1}{3}}right)left(1{+}{frac {1}{5}}right)cdots } prod[n=1 to ∞]
{1+(-1)^(n+1)
/(2n-1)}
A A002193 [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;2...]
< -800 1.41421356237309504880168872420969808
262 53741 26407 68743
99999 99999 99250 073 ​
Constante de Hermite-Ramanujan ​ R {displaystyle {R}} e π 163 {displaystyle e^{pi {sqrt {163}}}} e^(π sqrt(163)) T A060295 [262537412640768743;1,1333462407511,1,8,1,1,5,...] 1859 262537412640768743.999999999999250073
0,76159 41559 55764 88811 ​ Tangente hiperbólica de 1 ​ Hyperbolic Tangent.svg t h 1 {displaystyle {th},1} i tan ⁡ ( i ) = e − 1 e e + 1 e = e 2 − 1 e 2 + 1 {displaystyle -itan(i)={frac {e-{frac {1}{e}}}{e+{frac {1}{e}}}}={frac {e^{2}-1}{e^{2}+1}}} (e-1/e)/(e+1/e) T A073744 [0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...]
= [0;2p+1], p∈ℕ
0.76159415595576488811945828260479359
0,36787 94411 71442 32159 ​ Inverso del Número e ​


1 e {displaystyle {frac {1}{e}}} n = 0 ∞ ( − 1 ) n n ! = 1 0 ! − 1 1 ! + 1 2 ! − 1 3 ! + 1 4 ! − 1 5 ! + ⋯ {displaystyle sum _{n=0}^{infty }{frac {(-1)^{n}}{n!}}={frac {1}{0!}}-{frac {1}{1!}}+{frac {1}{2!}}-{frac {1}{3!}}+{frac {1}{4!}}-{frac {1}{5!}}+cdots } sum[n=2 to ∞]
{(-1)^n/n!}
T A068985 [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...]
= [0;2,1,1,2p,1], p∈ℕ
1618 0.36787944117144232159552377016146086
1,53960 07178 39002 03869 ​ Constante Square Ice de Lieb ​ Sixvertex2.png W 2 D {displaystyle {W}_{2D}} lim n → ( f ( n ) ) n − 2 = ( 4 3 ) 3 2 = 8 3 9 {displaystyle lim _{nto infty }(f(n))^{n^{-2}}=left({frac {4}{3}}right)^{frac {3}{2}}={frac {8{sqrt {3}}}{9}}} (4/3)^(3/2) A A118273 [1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] 1967 1.53960071783900203869106341467188655
1,23370 05501 36169 82735 ​ Constante de Favard​ 3 4 ζ ( 2 ) {displaystyle {tfrac {3}{4}}zeta (2)} π 2 8 = ∑ n = 0 ∞ 1 ( 2 n − 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ⋯ {displaystyle {frac {pi ^{2}}{8}}=sum _{n=0}^{infty }{frac {1}{(2n-1)^{2}}}={frac {1}{1^{2}}}+{frac {1}{3^{2}}}+{frac {1}{5^{2}}}+{frac {1}{7^{2}}}+cdots } sum[n=1 to ∞]
{1/((2n-1)^2)}
T A111003 [1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] 1902
a
1965
1.23370055013616982735431137498451889
7,38905 60989 30650 22723 Constante cónica de Schwarzschild ​ Conic constant.svg e 2 {displaystyle e^{2}} n = 0 ∞ 2 n n ! = 1 + 2 + 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + 2 5 5 ! + . . . {displaystyle sum _{n=0}^{infty }{frac {2^{n}}{n!}}=1+2+{frac {2^{2}}{2!}}+{frac {2^{3}}{3!}}+{frac {2^{4}}{4!}}+{frac {2^{5}}{5!}}+...} Sum[n=0 to ∞]
{2^n/n!}
T A072334 [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2,1,1,n,4*n+6,n+2], n = 3, 6, 9, etc.
7.38905609893065022723042746057500781
0,20787 95763 50761 90854 ​ i^i ​

i i {displaystyle {i}^{i}} e − π 2 {displaystyle e^{frac {-pi }{2}}} e^(-pi/2) T A049006 [0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] 1746 0.20787957635076190854695561983497877
1,44466 78610 09766 13365 ​ Número de Steiner ​ Infinite power tower.svg e e {displaystyle {sqrt[{e}]{e}}} e 1 / e {displaystyle e^{1/e}} Límite superior de Tetración e^(1/e) A073229 [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 1796
a
1863
1.44466786100976613365833910859643022
4,53236 01418 27193 80962 Constante de van der Pauw α {displaystyle {alpha }} π l n ( 2 ) = ∑ n = 0 ∞ 4 ( − 1 ) n 2 n + 1 ∑ n = 1 ∞ ( − 1 ) n + 1 n = 4 1 − 4 3 + 4 5 − 4 7 + 4 9 − . . . 1 1 − 1 2 + 1 3 − 1 4 + 1 5 − . . . {displaystyle {frac {pi }{ln(2)}}={frac {sum _{n=0}^{infty }{frac {4(-1)^{n}}{2n+1}}}{sum _{n=1}^{infty }{frac {(-1)^{n+1}}{n}}}}={frac {{frac {4}{1}}{-}{frac {4}{3}}{+}{frac {4}{5}}{-}{frac {4}{7}}{+}{frac {4}{9}}-...}{{frac {1}{1}}{-}{frac {1}{2}}{+}{frac {1}{3}}{-}{frac {1}{4}}{+}{frac {1}{5}}-...}}} π/ln(2) A163973 [4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] 4.53236014182719380962768294571666681
1,57079 63267 94896 61923 ​ Constante de Favard K1
Producto de Wallis ​
Wallis product-chart.png π 2 {displaystyle {frac {pi }{2}}} n = 1 ∞ ( 4 n 2 4 n 2 − 1 ) = 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ 8 7 ⋅ 8 9 ⋯ {displaystyle prod _{n=1}^{infty }left({frac {4n^{2}}{4n^{2}-1}}right)={frac {2}{1}}cdot {frac {2}{3}}cdot {frac {4}{3}}cdot {frac {4}{5}}cdot {frac {6}{5}}cdot {frac {6}{7}}cdot {frac {8}{7}}cdot {frac {8}{9}}cdots } Prod[n=1 to ∞]
{(4n^2)/(4n^2-1)}
A019669 [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...] 1655 1.57079632679489661923132169163975144
3,27582 29187 21811 15978 ​ Constante de Khinchin-Lévy ​ · γ {displaystyle gamma } e π 2 / ( 12 ln ⁡ 2 ) {displaystyle e^{pi ^{2}/(12ln 2)}} e^(pi^2/(12 ln(2)) A086702 [3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] 1936 3.27582291872181115978768188245384386
1,61803 39887 49894 84820 ​ Fi, Número áureo ​ · Animation GoldenerSchnitt.gif φ {displaystyle {varphi }} 1 + 5 2 = 1 + 1 + 1 + 1 + ⋯ {displaystyle {frac {1+{sqrt {5}}}{2}}={sqrt {1+{sqrt {1+{sqrt {1+{sqrt {1+cdots }}}}}}}}} (1+5^(1/2))/2 A A001622 [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]
= [0;1,...]
-300 ~ 1.61803398874989484820458683436563811
1,64493 40668 48226 43647 ​ Función Zeta (2) de Riemann ζ ( 2 ) {displaystyle {zeta }(,2)} π 2 6 = ∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ⋯ {displaystyle {frac {pi ^{2}}{6}}=sum _{n=1}^{infty }{frac {1}{n^{2}}}={frac {1}{1^{2}}}+{frac {1}{2^{2}}}+{frac {1}{3^{2}}}+{frac {1}{4^{2}}}+cdots } Sum[n=1 to ∞]
{1/n^2}
T A013661 [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] 1826
a
1866
1.64493406684822643647241516664602519
1,73205 08075 68877 29352 ​ Constante de Theodorus​ Square root of 3 in cube.svg 3 {displaystyle {sqrt {3}}} 3 3 3 3 3 ⋯ 3 3 3 3 3 {displaystyle {sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,{sqrt[{3}]{3,cdots }}}}}}}}}}} (3(3(3(3(3(3(3)
^1/3)^1/3)^1/3)
^1/3)^1/3)^1/3)
^1/3...
A A002194 [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;1,2,...]
-465
a
-398
1.73205080756887729352744634150587237
1,75793 27566 18004 53270 ​ Número de Kasner ​ R {displaystyle {R}} 1 + 2 + 3 + 4 + ⋯ {displaystyle {sqrt {1+{sqrt {2+{sqrt {3+{sqrt {4+cdots }}}}}}}}} A072449 [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] 1878
a
1955
1.75793275661800453270881963821813852
2,29558 71493 92638 07403 ​ Constante universal parabólica ​ Parabola animada.gif P 2 {displaystyle {P}_{,2}} ln ⁡ ( 1 + 2 ) + 2 = arcsinh ⁡ ( 1 ) + 2 {displaystyle ln(1+{sqrt {2}})+{sqrt {2}};=;operatorname {arcsinh} (1)+{sqrt {2}}} ln(1+sqrt 2)+sqrt 2 T A103710 [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,7,2,1,...] 2.29558714939263807403429804918949038
3,30277 56377 31994 64655 ​ Número de bronce ​


σ R r {displaystyle {sigma }_{,Rr}} 3 + 13 2 = 1 + 3 + 3 + 3 + 3 + ⋯ {displaystyle {frac {3+{sqrt {13}}}{2}}=1+{sqrt {3+{sqrt {3+{sqrt {3+{sqrt {3+cdots }}}}}}}}} (3+sqrt 13)/2 A A098316 [3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...]
= [3;3,...]
3.30277563773199464655961063373524797
2,37313 82208 31250 90564 Constante de Lévy 2


2 l n γ {displaystyle 2,ln,gamma } π 2 6 l n ( 2 ) {displaystyle {frac {pi ^{2}}{6ln(2)}}} Pi^(2)/(6*ln(2)) T A174606 [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] 1936 2.37313822083125090564344595189447424
2,50662 82746 31000 50241 Raíz cuadrada de 2 pi Stirling's Approximation Small.png 2 π {displaystyle {sqrt {2pi }}} 2 π = lim n → n ! e n n n n . . . . {displaystyle {sqrt {2pi }}=lim _{nto infty }{frac {n!;e^{n}}{n^{n}{sqrt {n}}}}{color {white}....color {black}}} Fórmula de Stirling sqrt (2*pi) T A019727 [2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] 1692
a
1770
2.50662827463100050241576528481104525
2,66514 41426 90225 18865 ​ Constante de Gelfond-Schneider ​ G G S {displaystyle G_{,GS}} 2 2 {displaystyle 2^{sqrt {2}}} 2^sqrt{2} T A007507 [2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] 1934 2.66514414269022518865029724987313985
2,68545 20010 65306 44530 ​ Constante de Khinchin ​ KhinchinBeispiele.svg K 0 {displaystyle K_{,0}} n = 1 ∞ [ 1 + 1 n ( n + 2 ) ] ln ⁡ n ln ⁡ 2 = lim n → ( ∏ k = 1 n a k ) 1 n {displaystyle prod _{n=1}^{infty }left[{1{+}{1 over n(n{+}2)}}right]^{frac {ln n}{ln 2}}=lim _{nto infty }left(prod _{k=1}^{n}a_{k}right)^{frac {1}{n}}}
... donde ak son elementos de la fracción continua [a0; a1, a2, a3,...]
prod[n=1 to ∞]
{(1+1/(n(n+2)))
^((ln(n)/ln(2))}
T A002210 [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] 1934 2.68545200106530644530971483548179569
3,35988 56662 43177 55317 ​ Constante de Prévost, sum. inversos de Fibonacci ​ Ψ {displaystyle Psi } n = 1 ∞ 1 F n = 1 1 + 1 1 + 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + ⋯ {displaystyle sum _{n=1}^{infty }{frac {1}{F_{n}}}={frac {1}{1}}+{frac {1}{1}}+{frac {1}{2}}+{frac {1}{3}}+{frac {1}{5}}+{frac {1}{8}}+{frac {1}{13}}+cdots } I A079586 [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] 1977 3.35988566624317755317201130291892717
1,32471 79572 44746 02596 ​ Número plástico ​ Nombre plastique.svg ρ {displaystyle {rho }} 1 + 1 + 1 + ⋯ 3 3 3 = 1 2 + 1 6 23 3 3 + 1 2 − 1 6 23 3 3 {displaystyle textstyle {sqrt[{3}]{1{+}{sqrt[{3}]{1{+}{sqrt[{3}]{1{+}cdots }}}}}}={sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}}} A A060006 [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...] 1929 1.32471795724474602596090885447809734
4,13273 13541 22492 93846 Raíz de 2 e pi

2 e π {displaystyle {sqrt {2epi }}} 2 e π {displaystyle {sqrt {2epi }}} sqrt(2e pi) A019633 [4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] 4.13273135412249293846939188429985264
2,66514 41426 90225 18865 Constante de Gelfond ​ e π {displaystyle {e}^{pi }} ( − 1 ) − i = i − 2 i = ∑ n = 0 ∞ π n n ! = π 1 1 + π 2 2 ! + π 3 3 ! + ⋯ {displaystyle (-1)^{-i}=i^{-2i}=sum _{n=0}^{infty }{frac {pi ^{n}}{n!}}={frac {pi ^{1}}{1}}+{frac {pi ^{2}}{2!}}+{frac {pi ^{3}}{3!}}+cdots } Sum[n=0 to ∞]
{(pi^n)/n!}
T A039661 [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] 1906
a
1968
23.1406926327792690057290863679485474

Table of mathematical constants

Abbreviations used:

  • R - Rational number
  • I - Algebraic irrational number
  • T - transcendental irrational number
  • - Unknown
0 0 zeroR- -
1 1 OneR- -
2 2 Two.R- -
π π {displaystyle pi ,}3,14159 26535 89793 23846 26433 83279 50288 41971 Pi, constant of Archimedes or number of Ludolph T10.000.000.050 22/10/2011
e=limn→ → ∞ ∞ (1+1n)n{displaystyle e=lim _{nto infty }left(1+{frac {1}{n}{n}right)^{n}}}2,71828 18284 59045 23536 02874 71352 66249 77572 Constant of Napier, natural logarithm base T1,000,000.000. 2010
2{displaystyle {sqrt {2}}}1,41421 35623 73095 04880 16887 24209 69807 85696 Square root of twoPythagoras constant. I1,000,000.000. 2010
3{displaystyle {sqrt {3}}}1,73205 08075 68877 29352 74463 41505 87236 69428 Square threeI10,000.000
5{displaystyle {sqrt {5}}}2,23606 79774 99789 69640 91736 68731 27623 54406 Square root of fiveI10,000.000 20/12/1999
φ φ ,Δ Δ =1+52{displaystyle phitau ={frac {1+{sqrt {5}}}{2}}}}}1.61803 39887 49894 84820 45868 34365 63811 77203 Authentic number, symbolized both φ and τ. I1,000,000.000. 2010
γ γ =limn→ → ∞ ∞ [chuckles]␡ ␡ k=1n1k− − ln (n)]{displaystyle gamma =lim _{nrightarrow infty }left[sum _{k=1^{n}{frac {1}{k}}}-ln(right)}}}}}}}0.557721 56649 01532 86060 65120 90082 40243 10421 Constant of Euler-Mascheroni? 29.844.489.545 2009
α α {displaystyle alpha ,}-2,50290 78750 95892 82228 39028 73218 21578 63812 Constant α de Feigenbaum1018 1999
δ δ {displaystyle delta ,}4,66920 16091 02990 67185 32038 20466 20161 72581 Constant δ de Feigenbaum1018 1999
Cartin= pprimor(1− − 1p(p− − 1)){displaystyle C_{artin}=prod _{p,primo}left(1-{frac {1}{p(p-1)}}right)}0.3395 58136 19202 28805 47280 54346 41641 51116 Constant of Artin1000 1999
C2= p≥ ≥ 3p(p− − 2)(p− − 1)2{displaystyle C_{2}=prod _{pgeq 3}{frac {p(p-2)}{(p-1)^{2}}}}}}0.66016 18158 46869 57392 78121 10014 55577 84326 Constant twin cousins5.020 2001
B2{displaystyle B_{2},}1,90216 0582 Constant of Brun for twin cousins 9 1999 / 2002

Books

  • Finch, Steven (2003). Mathematical constants. Cambridge University Press. ISBN 978-0-521-81805-6.
  • Daniel Zwillinger (2012). Standard Mathematical Tables and Formulae. Imperial College Press. ISBN 978-1-4398-3548-7.
  • Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics. Chapman & Hall/CRC. ISBN 1-58488-347-2.
  • Lloyd Kilford (2008). Modular Forms, a Classical and Computational Introduction. Imperial College Press. ISBN 978-1-84816-213-6.

Contenido relacionado

Gamma function

In mathematics, the gamma function it is an application that extends the concept of factorial to real and complex numbers. The notation was proposed by...

Koch Snowflake

In current language, we would say that it is a fractal curve. Its simplest construction is carried out through an iterative process that begins by dividing a...

Optimization (mathematics)

In mathematics, statistics, empirical sciences, computer science or economics, optimization is the selection of the best item from a set of available items....
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save