Annex: Integrals of trigonometric inverse functions
keyboard_arrow_down
Contenido The following is a list of integrals of trigonometric inverse functions.
- ∫ ∫ arcsin xcdx=xarcsin xc+c2− − x2{displaystyle int arcsin {frac {x}{x}}},dx=xarcsin {frac {x}{x}{c}}{sqrt {c}{c}-x^{2}}}}}}}}}
- ∫ ∫ xarcsin xcdx=(x22− − c24)arcsin xc+x4c2− − x2{displaystyle int xarcsin {frac {x}{c}{c}},dx=left({frac {x^{2}{2}}}{2}}}{c^{2}}{4}}{right)arcsin {frac}{x}{x{sqrt {c}{c}{x}{cx}{cx
- ∫ ∫ x2arcsin xcdx=x33arcsin xc+x2+2c29c2− − x2{displaystyle int x^{2}arcsin {frac}{x}{c}{c}{x}{x}}{xxx={frac}{x}{x}}}{x}}{x}{x {x^c}{2} +2c^{2}{2}}{9}}}{sqrt {c {c{x}{x}{2-x}{2}{x}{x}{x}{x}{x}{x}{x}{x}{x}{x{x}{x}{x}{x}{2}{x {x{x}{x}{2}{x {x {x {x {x}{x}{x}{x}{x}{2}{2}{x}{x}{2}{x}{x{x {x {x {x {x {x}}}{x}{x}{x {x {x {x}{x}{x}{x}}}{x}{
- ∫ ∫ arccos xcdx=xarccos xc− − c2− − x2{displaystyle int arccos {frac {x}{c}},dx=xarccos {frac {x}{c}{c}}-{sqrt {c}-x^{2}}}}}}}}}}
- ∫ ∫ xarccos xcdx=(x22− − c24)arccos xc− − x4c2− − x2{displaystyle int xarccos {frac {x}{c}}},dx=left({frac {x^{2}{2}}{2}}}-{frac {c^{2}{2}}{4}}}{right)arccos {frac}{x{x}{sqrt {c}{c}{cx}{x}{cx}{x
- ∫ ∫ x2arccos xcdx=x33arccos xc− − x2+2c29c2− − x2{displaystyle int x^{2}arccos {frac {x}{c}{c}{,dx={frac {x^{3}{3}}{3}}}}{frac {x}{c}}-{frac}{x {x^{2} +2c^{2}}{9}}}{sqrt {c {c {c}{x}{x}{x}{2}{2}{x}{2}{x}{x}{x}{x}{x}{x}{2}{x}{x}{x}{x{2}{x}{x}{2}{x{x {x {x}{x}{x{x {x}{2}{2}{2}{2}{x {x {x}{x}{x}{x}{2}{2}{x {x {x {x {x}{x}{2}{x}{x}{x}{x}{x}{
- ∫ ∫ arctan xcdx=xarctan xc− − c2ln (c2+x2){displaystyle int arctan {frac {x}{c}},dx=xarctan {frac {x}{c}{c}}{frac {c}{2}}}}ln(c^{2}+x^{2}}}}}}
- ∫ ∫ xarctan xcdx=c2+x22arctan xc− − cx2{displaystyle int xarctan {frac {x}{x}}},dx={frac {c} {c^{2}+x^{2}}{2}}}{frac {x}{x}{c}}{frac {c}}{cx}}}}}}
- ∫ ∫ x2arctan xcdx=x33arctan xc− − cx26+c36ln c2+x2{displaystyle int x^{2}arctan {frac {x}{c}{c}{,dx={frac {x{3}{3}}{3}}{frac {x}{c}{c}{cx}{cx}{2x}{6}}}{6}}{x {c}{2}{x}{2}{x {cx}{2}{2} {cx}{2}{2}{2}{x}{x} {cx {c}{2}{2}}{x {cx}}{x}{2}{2}{2}{2}{x}}{x {c}{x {c}}{2}{2}{2}}}}{x1⁄2}{x}{x {c}{x1⁄2}{x}}}}{x {c}{x {c}{2}}}{x {c}{x}}{x {c}}{x}}{x {
- ∫ ∫ xnarctan xcdx=xn+1n+1arctan xc− − cn+1∫ ∫ xn+1dxc2+x2(Stops)nI was. I was. − − 1){displaystyle int x^{n}arctan {frac}{x}{c}{,dx={frac {x^{n+1}}{n+1}}{arctan {frac}{x}{c}{c}{c}{c}{nx}{c}{c}{nx1}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c {c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c}{c {
- ∫ ∫ arccortxcdx=xarccortxc+c2ln (c2+x2){displaystyle int mathrm {arccot} ,{frac {x}{c}{c}{x},dx=x,mathrm {arccot} ,{frac {x}{x}{c}}}}+{frac {c}{2}}}{c{2}}{2}}
- ∫ ∫ xarccortxcdx=c2+x22arccortxc+cx2{displaystyle int x,mathrm {arccot} ,{frac {x{c}}}},dx={frac {c^{2}+x^{2}}}{2}}}{2}}}{,{mathrm {arccot}{,{frac {x}{c}{cx}}}}{x}}}}{
- ∫ ∫ x2arccortxcdx=x33arccortxc+cx26− − c36ln (c2+x2){displaystyle int x^{2},mathrm {arccot} ,{frac {x}{c}{c}{,dx={frac {x^{3}}{3}}{3}{c}{2}{x }{x }{x }{x }{x }{2}{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x }{x
- ∫ ∫ xnarccortxcdx=xn+1n+1arccortxc+cn+1∫ ∫ xn+1dxc2+x2(Stops)nI was. I was. − − 1){displaystyle int x^{n}mathrm {arccot} ,{frac {x}{c}{c}{,dx={frac}{x^{n+1}}{nbox}{n+1}{,{mathrm {arccot}{x}{x}{x1⁄2}{x1⁄2}}{x1⁄2x1⁄2}}}{x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2}}}}{x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2}}}}}{x1⁄2x1⁄2x1⁄2x1⁄2}}}}}}{x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2x1⁄2}}}}}}}}}}}}{x1⁄2
Contenido relacionado
Simpson's paradox
Addendum:1 E7 s
Preorder Sets Category
Más resultados...