Octaedro

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Poliedro com oito faces triangulares
Octahedron regular
Octahedron.jpg
(Clique aqui para girar modelo)
Tiposólido platônico
ElementosF = 8, E = 12
V = 6 (χ = 2)
Faces por lados8
Notação de saídaO
T
Símbolos de Schläfli{3,4}
r{3,3} ou (33?{displaystyle {begin{Bmatrix}33end{Bmatrix}}}
Não.
Configuração da faceV4.4.4
Símbolo de Wythoff4 | 2 3
Diagrama de CoxeadorCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
SimetriaOh, BC3[4,3], (*432)
Grupo de rotação[4,3]+, (432)
ReferênciasU05:00C17.,2
Propriedadesregular, convexdeltahedron, Hanner politope
Ângulo dihedral109.47122° = arcos(−1?3)
Octahedron vertfig.png
3.3.3.3
(Vertex figure)
Hexahedron.png
Cubo
(poliédron dual)
Octahedron flat.svg
Rede
Modelo 3D de octahedron regular

Em geometria, um octaedro (PL octaedros ou octaedros) é um poliedro com oito faces. O termo é mais comumente usado para se referir ao octaedro regular, um sólido platônico composto por oito triângulos equiláteros, quatro dos quais se encontram em cada vértice.

Um octaedro regular é o poliedro dual de um cubo. É um tetraedro retificado. É uma bipirâmide quadrada em qualquer uma das três orientações ortogonais. É também um antiprisma triangular em qualquer uma das quatro orientações.

Um octaedro é o caso tridimensional do conceito mais geral de um politopo cruzado.

Um octaedro regular é uma bola 3 na métrica de Manhattan (ℓ1).

Octaedro regular

Dimensões

Se o comprimento da aresta de um octaedro regular for a, o raio de uma esfera circunscrita (aquela que toca o octaedro em todos os vértices) é

Ru= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =22um? ? 007)) umNão. ? {sqrt {2}}{2}}aapprox 0.707cdot a}

e o raio de uma esfera inscrita (tangente a cada uma das faces do octaedro) é

REu...= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =66um? ? 0)) umNão. ? {sqrt {6}}{6}}aapprox 0.408cdot a}

enquanto o midradius, que toca o meio de cada aresta, é

Rm= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =12um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0,5)) umNão. ? {1}{2}} a=0.5cdot a}

Projeções ortogonais

O octaedro tem quatro projeções ortogonais especiais, centradas, em uma aresta, vértice, face e normal a uma face. O segundo e o terceiro correspondem aos planos B2 e A2 de Coxeter.

Projeções ortogonais
Centro por Borda Cara
Normal
Verbos Cara
Imagem Cube t2 e.pngCube t2 fb.png3-cube t2 B2.svg3-cube t2.svg
Projeto
simetria
[2] [2] [4] [6]

Telha esférica

O octaedro também pode ser representado como um ladrilho esférico e projetado no plano por meio de uma projeção estereográfica. Essa projeção é conforme, preservando ângulos, mas não áreas ou comprimentos. Linhas retas na esfera são projetadas como arcos circulares no plano.

Uniform tiling 432-t2.pngOctahedron stereographic projection.svg
Projeção ortográfico Projeção estereográfica

Coordenadas cartesianas

Um octaedro com comprimento de aresta 2 pode ser colocado com seu centro na origem e seus vértices nos eixos coordenados; as coordenadas cartesianas dos vértices são então

(±1, 0, 0);
(0, ±1, 0);
(0, 0, ±1).

Em um sistema de coordenadas cartesianas xyz, o octaedro com coordenadas centrais (a, b, c) e raio r é o conjunto de todos os pontos (x, y, z) tal que

|x- Sim. - Sim. um|+|Sim.- Sim. - Sim. b)|+|zangão.- Sim. - Sim. c|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =R.{displaystyle left|x-aright|+left|y-bright|+left|z-cright|=r.}

Área e volume

A área da superfície A e o volume V de um octaedro regular de aresta a são:

A= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =23um2? ? 3.464um2{displaystyle A=2{sqrt {3}}a^{2}approx 3.464a^{2}}
V= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =132um3? ? 0um3- Sim. {1}{3}}{sqrt {2}}a^{3}approx 0.471a^{3}}

Assim, o volume é quatro vezes o de um tetraedro regular com o mesmo comprimento de aresta, enquanto a área da superfície é o dobro (porque temos 8 em vez de 4 triângulos).

Se um octaedro foi esticado para obedecer à equação

|xxm|+|Sim.Sim.m|+|zangão.zangão.m|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1,{displaystyle left|{frac {x}{x_{m}}}right|+left|{frac {y}{y_{m}}}right|+left|{frac {z}{z_{m}}}right|=1,}

as fórmulas para a área de superfície e volume se expandem para se tornar

A= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =4xmSim.mzangão.m× × 1xm2+1Sim.m2+1zangão.m2,Não. A=4,x_{m},y_{m},z_{m}times Não. {1}{x_{m}^{2}}}+{frac {1}{y_{m}^{2}}}+{frac {1}{z_{m}^{2}}}}}}
V= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =43xmSim.mzangão.m.- Sim. {4}{3}},x_{m},y_{m},z_{m}.}

Além disso, o tensor de inércia do octaedro esticado é

Eu...= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Não.110.m(Sim.m2+zangão.m2)000110.m(xm2+zangão.m2)000110.m(xm2- Sim. - Sim. Sim.m2)].Não. Eu sei. {1}{10}}m(y_{m}^{2}+z_{m}^{2})&0&0\0&{frac {1}{10}}m(x_{m}^{2}+z_{m}^{2})&0&0&0&{frac {1}{10}}m(x_{m}^{2}-y_{m}^{2})end{bmatrix}}.}

Isso se reduz às equações do octaedro regular quando

xm= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Sim.m= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =zangão.m= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um22.Não. x_{m}=y_{m}=z_{m}=a,{frac Sim. {2}}{2}}.}

Relações geométricas

Usando a nomenclatura padrão para sólidos de Johnson, um octaedro seria chamado de bipirâmide quadrada.

Duplo

O octaedro é o poliedro dual do cubo.

Dual Cube-Octahedron.svg

Se um octahedron de comprimento da borda = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =umNão. é inscrito em um cubo, então o comprimento de uma borda do cubo = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2um(2}}a}.

Estrelação

O octahedron representa a interseção central de dois tetrahedra

O interior do composto de dois tetraedros duplos é um octaedro, e este composto, chamado de stella octangula, é sua primeira e única estrela. Correspondentemente, um octaedro regular é o resultado do corte de um tetraedro regular, quatro tetraedros regulares de metade do tamanho linear (ou seja, retificando o tetraedro). Os vértices do octaedro estão nos pontos médios das arestas do tetraedro e, nesse sentido, ele se relaciona com o tetraedro da mesma forma que o cuboctaedro e o icosidodecaedro se relacionam com os outros sólidos platônicos.

Snub octaedro

Pode-se também dividir as arestas de um octaedro na proporção da média áurea para definir os vértices de um icosaedro. Isso é feito primeiro colocando vetores ao longo das arestas do octaedro de modo que cada face seja limitada por um ciclo e, em seguida, particionando de forma semelhante cada aresta na média áurea ao longo da direção de seu vetor. Existem cinco octaedros que definem qualquer icosaedro dessa maneira e, juntos, definem um composto regular. Um icosaedro produzido dessa maneira é chamado de octaedro achatado.

Tesselações

Octaedros e tetraedros podem ser alternados para formar um mosaico uniforme de vértices, arestas e faces do espaço. Este e o mosaico regular de cubos são os únicos favos de mel uniformes no espaço tridimensional.

Ortoesquema característico

Como todos os politopos convexos regulares, o octaedro pode ser dividido em um número inteiro de ortoesquemas disjuntos, todos com a mesma forma característica do politopo. O ortoesquema característico de um politopo é uma propriedade fundamental porque o politopo é gerado por reflexões nas facetas de seu ortoesquema. O ortoesquema ocorre em duas formas quirais que são imagens espelhadas uma da outra. O ortoesquema característico de um poliedro regular é um tetraedro irregular quadrirretangular.

As faces do tetraedro característico do octaedro estão nos planos de simetria do espelho do octaedro. O octaedro é único entre os sólidos platônicos por ter um número par de faces que se encontram em cada vértice. Consequentemente, é o único desse grupo a possuir, entre seus planos espelhados, alguns que não passam por nenhuma de suas faces. O grupo de simetria do octaedro é denotado B3. O octaedro e seu politopo dual, o cubo, têm o mesmo grupo de simetria, mas diferentes tetraedros característicos.

O tetraedro característico do octahedron regular pode ser encontrado por uma dissecção canônica do octahedron regular CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png que o subdivide em 48 destes ortoesquemas característicos CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png ao redor do centro do octahedron. Três ortoesquemas de esquerda e três ortoesquemas de direita encontram-se em cada um dos oito rostos do octahedron, os seis ortoesquemas formando coletivamente um tetraedro trirectangular: uma pirâmide triangular com a face do octahedron como sua base equilateral, e seu ápice cubo-cornerado no centro do octahedro.

Características do octahedron regular
borda arco Dihedral
Eu... 2Não. 290°D D 2- Não. ?109°28 "D D - Sim. - Sim. 2?- Sim.
χ 43? ? 1.155- Não. {4}{3}}}approx 1.155}54°44′′8′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′′D D 2- Sim. - Sim. κ- Não. }{2}}-{text{κ}}}90°D D 2- Não. ?
φ 1Não. 145°D D 4- Não. ?60 °CD D 3- Não. ?
? 13? ? 0,577- Não. {1}{3}}}approx 0.577}35°15′52′′′′′′′′′′′′′′′′′′′κ- Sim.45°D D 4- Não. ?
0R/Eu...Não. _{0}R/l}2? ? 1.414{displaystyle {sqrt {2}}approx 1.414}
1R/Eu...Não. _{1}R/l}1Não. 1
2R/Eu...Não. _{2}R/l}23? ? 0,816- Não. {2}{3}}}approx 0.816}
κ- Sim.35°15′52′′′′′′′′′′′′′′′′′′′arc sec32{displaystyle {tfrac {{text{arc sec }}3}{2}}}}}}

Se o octahedron tem comprimento de borda l = 2, as seis bordas de seu tetrahedron característica têm comprimentos 43- Não. (4}{3}}, 1Não. 1, 13- Não. (1}{3}} (o rosto do triângulo direito exterior, o triângulo característica χ, φ, ψ do octahedron), mais 2(2}}}, 1Não. 1, 23- Não. {2}{3}} (espesas que são as características radiais do octahedron). O caminho de 3 pontas ao longo das bordas ortogonais do ortoesquema é 1Não. 1, 13- Não. (1}{3}}, 23- Não. {2}{3}}, primeiro de um vértice octahedron a um centro de borda octahedron, em seguida, girando 90 ° a um centro de face octahedron, em seguida, voltando 90 ° para o centro octahedron. O ortoesquema tem quatro caras de triângulo direito diferente. A face exterior é um triângulo 90-60-30 que é um sexto de uma face octahedron. As três faces interior para o octahedron são: um triângulo 45-90-45 com bordas 1Não. 1, 2(2}}}, 1Não. 1, um triângulo direito com bordas 13- Não. (1}{3}}, 1Não. 1, 23- Não. {2}{3}}, e um triângulo direito com bordas 43- Não. (4}{3}}, 2(2}}}, 23- Não. {2}{3}}.

Topologia

O octaedro é 4-conectado, o que significa que é necessária a remoção de quatro vértices para desconectar os vértices restantes. É um dos quatro poliedros bem cobertos simpliciais 4 conectados, o que significa que todos os conjuntos independentes máximos de seus vértices têm o mesmo tamanho. Os outros três poliedros com esta propriedade são a dipirâmide pentagonal, o disfenóide arrebitado e um poliedro irregular com 12 vértices e 20 faces triangulares.

Redes

O octaedro regular tem onze arranjos de redes.

Faceting

O tetrahemihexaedro uniforme é uma faceta de simetria tetraédrica do octaedro regular, compartilhando arestas e arranjos de vértices. Tem quatro das faces triangulares e 3 quadrados centrais.

Uniform polyhedron-33-t1.png
Octaedron
Tetrahemihexahedron.png
Produtos químicos

Cores uniformes e simetria

Existem 3 cores uniformes do octaedro, nomeadas pelas cores das faces triangulares ao redor de cada vértice: 1212, 1112, 1111.

O grupo de simetria do octaedro é Oh, de ordem 48, o grupo hiperoctaédrico tridimensional. Os subgrupos deste grupo incluem D3d (ordem 12), o grupo de simetria de um antiprisma triangular; D4h (ordem 16), o grupo de simetria de uma bipirâmide quadrada; e Td (ordem 24), o grupo de simetria de um tetraedro retificado. Essas simetrias podem ser enfatizadas por diferentes colorações dos rostos.

Nome Octaedron Tetraedro retificado
(Tetratetraedro)
Antiprisma triangular Bipiramida quadrada Fusil Rhombic
Imagem
(Face coloring)
Uniform polyhedron-43-t2.png
(11)
Uniform polyhedron-33-t1.png
(1212)
Trigonal antiprism.png
(1112)
Square bipyramid.png
(11)
Rhombic bipyramid.png
(11)
Diagrama de Coxeador CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = CDel node 1.pngCDel split1.pngCDel nodes.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node f1.png
Símbolo de Schläfli {3,4} R3,3 S{2,6}
Sr.
ft{2,4}
Não.
ftr{2,2}
- Sim.
Símbolo de Wythoff 4 | 3 2 2 | 4 3 2 | 6 2
| 2 3 2
Simetria Oh[4,3], (*432) TD[3,3], (*332) D3D, [2+,6], (2*3)
D3[2,3]+(322)
D4h[2,4], (*422) D2h, [2,2], (*222)
Ordem 48 24. 12
6
16. 8

Octaedros irregulares

Os seguintes poliedros são combinatorialmente equivalentes ao poliedro regular. Todos eles têm seis vértices, oito faces triangulares e doze arestas que correspondem uma a uma às características de um octaedro regular.

  • Antiprismas triangulares: Dois rostos são equiláteros, estão em planos paralelos e têm um eixo comum de simetria. Os outros seis triângulos são isosceles.
  • Bipiramidas tetragonais, nas quais pelo menos um dos quadriláteros equatoriais está em um avião. O octahedron regular é um caso especial em que todos os três quadriláteros são quadrados planares.
  • Schönhardt poliedro, um poliedro não-convexo que não pode ser particionado em tetrahedra sem introduzir novos vértices.
  • Bricard octahedron, um poliedro flexível de auto-cruzamento não-convexo

Em geral, um octaedro pode ser qualquer poliedro com oito faces. O octaedro regular tem 6 vértices e 12 arestas, o mínimo para um octaedro; octaedros irregulares podem ter até 12 vértices e 18 arestas. Existem 257 octaedros convexos topologicamente distintos, excluindo imagens espelhadas. Mais especificamente, existem 2, 11, 42, 74, 76, 38, 14 para octaedros com 6 a 12 vértices, respectivamente. (Dois poliedros são "topologicamente distintos" se tiverem arranjos intrinsecamente diferentes de faces e vértices, de modo que seja impossível distorcer um no outro simplesmente alterando os comprimentos das arestas ou os ângulos entre arestas ou faces.)

Alguns octaedros irregulares mais conhecidos incluem os seguintes:

  • Prisma hexagonal: Duas faces são hexágonos regulares paralelos; seis quadrados ligam pares correspondentes de bordas hexagonais.
  • Pirâmide heptagonal: Uma face é um heptágono (geralmente regular), e as sete faces restantes são triângulos (geralmente isosceles). Não é possível que todos os rostos triangulares sejam equiláteros.
  • Tetraedro truncado: As quatro faces do tetraedro são truncadas para se tornarem hexágonos regulares, e há quatro faces de triângulo equilátero onde cada vértice tetraedro foi truncado.
  • Armadilha tetragonal: As oito caras são kites congruentes.
  • Hosohedron octogonal: degenerado no espaço euclidiano, mas pode ser realizado esféricamente.

Octahedra no mundo físico

Octaedros na natureza

Fluorite octahedron.
  • Os cristais naturais de diamante, alum ou fluorite são comumente octahedral, como a favola tetraedral-octahedral de enchimento espacial.
  • As placas de liga de kamacite em meteoritos octahedrite são dispostas em paralelo com as oito faces de um octahedron.
  • Muitos íons metálicos coordenam seis ligantes em uma configuração octahedral ou octahedral distorcida.
  • Modelos Widmanstätten em cristais de níquel-ferro

Octahedra na arte e na cultura

Duas serpentes de Rubik de forma idêntica podem aproximar um octahedron.
  • Especialmente em jogos de RPG, este sólido é conhecido como um "d8", um dos dados poliedrais mais comuns.
  • Se cada borda de um octahedron é substituído por um resistor de um ohm, a resistência entre vértices opostos é 1/2 ohm, e que entre vértices adjacentes 5/12 Ohm.
  • Seis notas musicais podem ser dispostas nos vértices de um octahedron de tal forma que cada borda representa um dyad consoante e cada face representa uma tríade consoante; ver hexany.

Trissa octeto tetraédrica

Uma estrutura espacial de tetraedros e meio-octaedros alternados derivados do favo de mel tetraédrico-octaédrico foi inventado por Buckminster Fuller na década de 1950. É comumente considerada como a estrutura de construção mais forte para resistir às tensões do cantilever.

Polyedros relacionados

Um octaedro regular pode ser aumentado em um tetraedro adicionando 4 tetraedros em faces alternadas. Adicionar tetraedros a todas as 8 faces cria o octaedro estrelado.

Triangulated tetrahedron.pngCompound of two tetrahedra.png
Tetrahedron octahedron estelacionado

O octaedro faz parte de uma família de poliedros uniformes relacionados ao cubo.

Poliedros octahedral uniforme
Simetria: [4,3], (*432) [4,3]+
(432)
[2]+[3,3]
(*332)
[3]+,4]
(3*2)
{4,3} Não. R{4,3}
RECURSOS1.1?
T3,4
)1.1?
{3,4}
(1.1?
rr,3
S2{3,4}
Não. Sr. H{4,3}
(3,3)
H2{4,3}
T3,3
- Sim.
)1.1?
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
CDel nodes 10ru.pngCDel split2.pngCDel node.png ou CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png ou CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svgUniform polyhedron-43-t01.svgUniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.pngUniform polyhedron-43-s012.pngUniform polyhedron-33-t0.pngUniform polyhedron-33-t2.pngUniform polyhedron-33-t01.pngUniform polyhedron-33-t12.pngUniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Duals para polihedra uniforme
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V3 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.jpgTriakisoctahedron.jpgRhombicdodecahedron.jpgTetrakishexahedron.jpgHexahedron.jpgDeltoidalicositetrahedron.jpgDisdyakisdodecahedron.jpgPentagonalicositetrahedronccw.jpgTetrahedron.jpgTriakistetrahedron.jpgDodecahedron.jpg

É também um dos exemplos mais simples de hipersimplex, um politopo formado por certas interseções de um hipercubo com um hiperplano.

O octaedro é topologicamente relacionado como parte da sequência de poliedros regulares com símbolos Schläfli {3,n}, continuando no plano hiperbólico.

*n32 mutação simetria de camadas regulares: {3,n?
Esférica Euclid. Hip compacto. Paraco. Hiperbólico não-compacto
Trigonal dihedron.svgUniform tiling 332-t2.pngUniform tiling 432-t2.pngUniform tiling 532-t2.pngUniform polyhedron-63-t2.pngOrder-7 triangular tiling.svgH2-8-3-primal.svgH2 tiling 23i-4.pngH2 tiling 23j12-4.pngH2 tiling 23j9-4.pngH2 tiling 23j6-4.pngH2 tiling 23j3-4.png
3.3 33 34 35 36 37 38 3 ∞ 312393633

Tetra Tetraedro

O octaedro regular também pode ser considerado um tetraedro retificado – e pode ser chamado de tetratetraedro. Isso pode ser mostrado por um modelo de face de 2 cores. Com esta coloração, o octaedro tem simetria tetraédrica.

Compare esta sequência de truncamento entre um tetraedro e seu dual:

Família de polihedra tetraedral uniforme
Simetria: [3,3], (*332) [3,3]+, (332)
Uniform polyhedron-33-t0.pngUniform polyhedron-33-t01.pngUniform polyhedron-33-t1.pngUniform polyhedron-33-t12.pngUniform polyhedron-33-t2.pngUniform polyhedron-33-t02.pngUniform polyhedron-33-t012.pngUniform polyhedron-33-s012.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
(3,3) T3,3 R3,3 T3,3 (3,3) rr{3,3] 3,3 Sr.
Duals para polihedra uniforme
Tetrahedron.svgTriakistetrahedron.jpgHexahedron.svgTriakistetrahedron.jpgTetrahedron.svgRhombicdodecahedron.jpgTetrakishexahedron.jpgDodecahedron.svg
V3.3.3 V3.6.6 V3.3.3.3 V3.6.6 V3.3.3 V3.4.3.4 V4.6.6 V3.3.3.3.3

As formas acima também podem ser realizadas como fatias ortogonais à longa diagonal de um tesserato. Se esta diagonal for orientada verticalmente com uma altura de 1, então as primeiras cinco fatias acima ocorrerão nas alturas r, 3/8, 1/2, 5/ 8 e s, onde r é qualquer número no intervalo 0 < r1/4 e s é qualquer número no intervalo 3/4s < 1.

O octaedro como um tetratetraedro existe em uma sequência de simetrias de poliedros quase regulares e ladrilhos com configurações de vértice (3.n)2, progredindo de ladrilhos da esfera para o plano euclidiano e para o plano hiperbólico. Com a simetria da notação orbifold de *n32, todos esses ladrilhos são construções Wythoff dentro de um domínio fundamental de simetria, com pontos geradores no canto do ângulo reto do domínio.

*n32 simetrias orbifold de camadas quasiregulares: (3.n)2
Quasiregular fundamental domain.png
Construção
Esférica Euclidiano Hyperbolic
*332 *432 * 532 *632 *732 *832... * ∞32
Quantidade
números
Uniform tiling 332-t1-1-.pngUniform tiling 432-t1.pngUniform tiling 532-t1.pngUniform tiling 63-t1.svgTriheptagonal tiling.svgH2-8-3-rectified.svgH2 tiling 23i-2.png
Verbos (3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.∞)2

Antiprisma trigonal

Como um antiprisma trigonal, o octaedro está relacionado com a família de simetria diédrica hexagonal.

Polihedra esférico hexagonal dihedral uniforme
Simetria: [6,2], (*622) [6,2]+(622) [6,2]+(2)
Hexagonal dihedron.pngDodecagonal dihedron.pngHexagonal dihedron.pngSpherical hexagonal prism.pngSpherical hexagonal hosohedron.pngSpherical truncated trigonal prism.pngSpherical dodecagonal prism2.pngSpherical hexagonal antiprism.pngSpherical trigonal antiprism.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Não. Não. R{6,2} T2,6 (2,6) rr{6,2} Não. Sr. S{2,6}
Duals a uniformes
Spherical hexagonal hosohedron.pngSpherical dodecagonal hosohedron.pngSpherical hexagonal hosohedron.pngSpherical hexagonal bipyramid.pngHexagonal dihedron.pngSpherical hexagonal bipyramid.pngSpherical dodecagonal bipyramid.pngSpherical hexagonal trapezohedron.pngSpherical trigonal trapezohedron.png
V62 V122 V62 V4.4.6 V. V4.4.6 V4.4.12 V3.3.3.6 V3.3.3.3
Família de uniforme n- antiprismas carnais
Nome do antiprisma Antiprisma Digonal (Trigonal)
Antiprisma triangular
(Tetragonal)
Antiprisma quadrado
Antiprisma Pentágono Antiprisma hexagonal Antiprisma heptagonal Antiprisma octogonal Enneagonal antiprisma Antiprisma Decagonal Antiprisma hendecagonal Antiprisma do Dodecagonal ... Antiprisma Apeirogonal
Imagem de poliedro Digonal antiprism.pngTrigonal antiprism.pngSquare antiprism.pngPentagonal antiprism.pngHexagonal antiprism.pngAntiprism 7.pngOctagonal antiprism.pngEnneagonal antiprism.pngDecagonal antiprism.pngHendecagonal antiprism.pngDodecagonal antiprism.png...
Imagem de tilagem esférica Spherical digonal antiprism with digonal face.svgSpherical trigonal antiprism.pngSpherical square antiprism.pngSpherical pentagonal antiprism.pngSpherical hexagonal antiprism.pngSpherical heptagonal antiprism.pngSpherical octagonal antiprism.pngImagem de tilingue plana Infinite antiprism.svg
Configuração do vértice. 2.3.3.3 3.3.3.3 4.3.3.3 5.3.3.3 6.3.3.3 7.3.3.3 8.3.3.3 9.3.3.3 10.3.3.3 11.3.3.3 12.3.3.3 ... ∞.3.3.3

Bipirâmide quadrada

Direito "Regular" (simétrico) n- bipirâmides gonais:
Nome de bipyramid Bipiramida média Bipiramida triangular
(Ver: J12)
Bipiramida quadrada
(Ver: O)
Bipiramida Pentagonal
(Ver: J13)
Bipiramida hexagonal Bipiramida heptagonal Bipiramida octogonal Bipiramida Enneagonal Bipiramida Decagonal ... Bipirâmide Apeirogonal
Imagem de poliedro Triangular bipyramid.pngSquare bipyramid.pngPentagonale bipiramide.pngHexagonale bipiramide.pngHeptagonal bipyramid.pngOctagonal bipyramid.pngEnneagonal bipyramid.pngDecagonal bipyramid.png...
Imagem de tilagem esférica Spherical digonal bipyramid.svgSpherical trigonal bipyramid.pngSpherical square bipyramid.svgSpherical pentagonal bipyramid.svgSpherical hexagonal bipyramid.pngSpherical heptagonal bipyramid.pngSpherical octagonal bipyramid.pngSpherical enneagonal bipyramid.pngSpherical decagonal bipyramid.pngImagem de tilingue plana Infinite bipyramid.svg
Face config. V2.4.4V3.4.4V4.4.4V5.4V6.4.4V7.4.4V8.4.4V9.4.4V10.4.4...V∞.4.4
Diagrama de Coxeador CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2x.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 7.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 9.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 10.pngCDel node.png... CDel node f1.pngCDel 2.pngCDel node f1.pngCDel infin.pngCDel node.png

Outros poliedros relacionados

O truncamento de dois vértices opostos resulta em um bifrustum quadrado.

O octaedro pode ser gerado como o caso de um superelipsóide 3D com todos os valores de expoentes definidos como 1.

Contenido relacionado

Antiprisma

Em geometria, um n-gonal antiprisma ou n-antiprism é um poliedro composto de duas cópias diretas paralelas de um lado n /span> polígono, conectado por uma...

4-politopo

Em geometria, um 4-politopo é um politopo quadridimensional. É uma figura conectada e fechada, composta por elementos politopais de menor dimensão:...

Esfera

Uma esfera é um objeto geométrico que é um análogo tridimensional de um objeto bidimensional. círculo dimensional. Formalmente, uma esfera é o conjunto...

Tesserato

Em geometria, um tesserato é o análogo quadridimensional do cubo; o tesserato está para o cubo assim como o cubo está para o quadrado. Assim como a...

Quadrângulo

Quadrângulo ou O Quadrângulo pode referir-se...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save