Hipérbole
Em matemática, uma hipérbole (pl. hipérboles ou hipérboles; adj. hiperbólica) é um tipo de curva suave situada em um plano, definida por suas propriedades geométricas ou por equações para as quais é o conjunto solução. Uma hipérbole tem duas partes, chamadas de componentes conectados ou ramificações, que são imagens espelhadas uma da outra e se assemelham a dois arcos infinitos. A hipérbole é um dos três tipos de seção cônica, formada pela interseção de um plano e um cone duplo. (As outras seções cônicas são a parábola e a elipse. Um círculo é um caso especial de elipse.) Se o plano intercepta ambas as metades do cone duplo, mas não passa pelo vértice dos cones, então a cônica é uma hipérbole.
As hipérboles surgem de várias maneiras:
- como a curva que representa a função recíproca Sim.(x)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1/x{displaystyle y(x)=1/x} no avião cartesiano,
- como o caminho seguido pela sombra da ponta de um sundial,
- como a forma de uma órbita aberta (como distinta de uma órbita elíptica fechada), como a órbita de uma nave espacial durante um balanço assistido por gravidade de um planeta ou, mais geralmente, qualquer nave espacial (ou objeto celestial) que exceda a velocidade de fuga do planeta mais próximo ou de outro corpo gravitacional,
- como a trajetória de dispersão de uma partícula subatômica (acionada por forças repulsivas em vez de forças atrativas, mas o princípio é o mesmo),
- na navegação por rádio, quando a diferença entre distâncias a dois pontos, mas não as distâncias em si, pode ser determinada,
e assim por diante.
Cada ramo da hiperbola tem dois braços que se tornam mais retos (baixa curvatura) mais para fora do centro da hiperbola. Os braços diagonais opostos, um de cada ramo, tendem no limite a uma linha comum, chamado de assintoto desses dois braços. Então há dois assintotos, cuja interseção está no centro da simetria da hiperbola, que pode ser pensado como o ponto de espelho sobre o qual cada ramo reflete para formar o outro ramo. No caso da curva Sim.(x)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1/x{displaystyle y(x)=1/x} os assintotos são os dois eixos de coordenadas.
As hipérboles compartilham muitas das elipses' propriedades analíticas como excentricidade, foco e diretriz. Normalmente, a correspondência pode ser feita com nada mais do que uma mudança de sinal em algum termo. Muitos outros objetos matemáticos têm sua origem na hipérbole, como parabolóides hiperbólicos (superfícies de sela), hiperbolóides ("cestas de lixo"), geometria hiperbólica (a célebre geometria não-euclidiana de Lobachevsky), funções hiperbólicas (sinh, cosh, tanh, etc.) e espaços girovetoriais (uma geometria proposta para uso tanto na relatividade quanto na mecânica quântica que não é euclidiana).
Etimologia e história
A palavra "hipérbole" deriva do grego ὑπερβολή, que significa "derrubado" ou "excessivo", do qual também deriva o termo inglês hipérbole. As hipérboles foram descobertas por Menaechmus em suas investigações sobre o problema de dobrar o cubo, mas foram então chamadas de seções de cones obtusos. Acredita-se que o termo hipérbole tenha sido cunhado por Apolônio de Perga (c. 262–c. 190 aC) em seu trabalho definitivo sobre as seções cônicas, as Cônicas. Os nomes das outras duas seções cônicas gerais, a elipse e a parábola, derivam das palavras gregas correspondentes para "deficiente" e "aplicado"; todos os três nomes são emprestados da terminologia pitagórica anterior, que se referia a uma comparação do lado de retângulos de área fixa com um determinado segmento de linha. O retângulo pode ser "aplicado" ao segmento (ou seja, ter um comprimento igual), ser mais curto que o segmento ou exceder o segmento.
Definições
Como lugar geométrico dos pontos
Uma hipérbole pode ser definida geometricamente como um conjunto de pontos (local dos pontos) no plano euclidiano:
- A hiperbola é um conjunto de pontos, tal que para qualquer ponto PNão. P. do conjunto, a diferença absoluta das distâncias |PF1|,|PF2|Não. |PF_{1}|,,|PF_{2}|} a dois pontos fixos F1,F2Não. F_{1},F_{2}} (Foci) é constante, geralmente denotado por 0}" xmlns="http://www.w3.org/1998/Math/MathML">2um,um>0{displaystyle 2a,,a>0}
0}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953d05ee106d48e80e648175ba027c4a4431d9c9" style="vertical-align: -0.671ex; width:9.304ex; height:2.509ex;"/>:
- H. H. H.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(P:||PF2|- Sim. - Sim. |PF1||= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2um?.Não. H={P:left|left|PF_{2}right|-left|PF_{1}right|right|=2a}.}
O ponto médio MNão. do segmento de linha que une os foci é chamado de centro da hiperbola. A linha através dos foci é chamada de eixo principal. Ele contém o vértices V1,V2Não. V_{1},V_{2}}, que têm distância umNão. ao centro. A distância cNão. do foci ao centro chama-se o distância focal ou excentricidade linear. O quociente cumNão. é o excentricidade eNão..
A equação ||PF2|- Sim. - Sim. |PF1||= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2umNão. |PF_{2}|-|PF_{1}|=2a} pode ser visto de uma forma diferente (ver diagrama):
Se c2{displaystyle c_{2}} é o círculo com ponto médio F2{displaystyle F_{2}} e raio 2um- Sim., então a distância de um ponto PNão. P. do ramo direito ao círculo c2{displaystyle c_{2}} igual a distância ao foco F1Não. F_{1}}:
Hiperbola com equação y = A/x

vermelho: A = 1; magenta: A = 4; azul: A = 9
Se o Xy!- sistema de coordenadas é girado sobre a origem pelo ângulo +45∘ ∘ {displaystyle +45^{circ }} e novas coordenadas ? ? ,? ? - Sim. são atribuídos, então x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =? ? +? ? 2,Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ? ? +? ? 2{displaystyle x={tfrac {xi +eta} }{sqrt {2}}},;y={tfrac {-xi +eta }{sqrt {2}}.
A hiperbola retangular x2- Sim. - Sim. Sim.2um2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1Não. {x^{2}-y^{2}}{a^{2}}}=1} (cujos semieixos são iguais) tem a nova equação 2? ? ? ? um2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1{displaystyle tfrac {2xi eta} - Sim..
Vendendo para ? ? - Sim. produção ? ? = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um2/2? ? .{displaystyle eta ={tfrac (a^{2}/2) - Sim.
Assim, em um Xy!-coordenar o sistema o gráfico de uma função 0;,}" xmlns="http://www.w3.org/1998/Math/MathML">f:x↦ ↦ Ax,A>0,{displaystyle f:xmapsto Não. {A}{x}},;A>0;,}0;,}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/979904574a9809ad9220e2dbec9924553c0ecee3" style="vertical-align: -1.005ex; width:19.203ex; height:3.509ex;"/> com equação
- 0;,}" xmlns="http://www.w3.org/1998/Math/MathML">Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Ax,A>0,- Sim. {A}{x}};,A>0;,}
0;,}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e923b3902eb9deb0e8c3af450805e93bb9adc48" style="vertical-align: -1.838ex; width:15.808ex; height:5.343ex;"/> é um hiperbola retangular inteiramente nos primeiros e terceiro quadrantes com
- os eixos de coordenadas como Assintomas,
- a linha Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =x- Sim. como eixo principal
- o centro (0,0)(0) e o semi-eixo um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2A,{displaystyle a=b={sqrt {2A}};,}
- o vértices (A,A),(- Sim. - Sim. A,- Sim. - Sim. A),{displaystyle left({sqrt {A}},{sqrt {A}}right),left(-{sqrt {A}},-{sqrt {A}}right;,}
- o semi-latus rectum e raio de curvatura nos vértices p= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2A,{displaystyle p=a={sqrt {2A}};,}
- o excentricidade linear c= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2A{displaystyle c=2{sqrt {A}}} e a excentricidade e= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2,Não. {2}};,}
- o tangente Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. Ax02x+2Ax0- Sim. {A}{x_{0}^{2}}}x+2{tfrac (A}{x_{0}} ponto (x0,A/x0).(x_{0},A/x_{0});.}
Uma rotação da hiperbola original por - Sim. - Sim. 45∘ ∘ {displaystyle -45^{circ }} resulta em uma hiperbola retangular inteiramente no segundo e quarto quadrantes, com os mesmos assintotos, centro, semi-latus rectum, raio de curvatura nos vértices, excentricidade linear e excentricidade quanto ao caso de +45∘ ∘ {displaystyle +45^{circ }} rotação, com equação
- 0;,}" xmlns="http://www.w3.org/1998/Math/MathML">Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. Ax,A>0,- Sim. {-A}{x}};,A>0;,}
0;,}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9bf0b3045f7489e47d1d236fe9e5be26b6d9cd0" style="vertical-align: -1.838ex; width:17.616ex; height:5.343ex;"/>
- o semi-eixos um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2A,{displaystyle a=b={sqrt {2A}};,}
- a linha Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. x- Sim. como eixo principal,
- o vértices (- Sim. - Sim. A,A),(A,- Sim. - Sim. A).{displaystyle left(-{sqrt {A}},{sqrt {A}}right),left({sqrt {A}},-{sqrt {A}}right);.}
Mudando a hiperbola com equação Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Ax,A≠ ≠ 0,{displaystyle y={frac {A}{x}}, Aneq 0} para que o novo centro seja (c0,D0)(c_{0},d_{0})}, produz a nova equação
- Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Ax- Sim. - Sim. c0+D0,- Sim. {A}{x-c_{0}}}+d_{0};,}
e os novos assintotos são x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =c0Não. x=c_{0}} e Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =D0Não. - Sim..
Os parâmetros de forma um,b),p,c,e- Não. permanecem inalterados.
Pela propriedade da diretriz
As duas linhas à distância D= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um2c- Sim. (a^{2}}{c}}} do centro e paralelo ao eixo menor são chamados directrices do hiperbola (ver diagrama).
Para um ponto arbitrário PNão. P. do hiperbola o quociente da distância a um foco e ao directrix correspondente (ver diagrama) é igual à excentricidade:
- |PF1||PEu...1|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =|PF2||PEu...2|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =e= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =cum.Não. {|PF_{1}|}{|Pl_{1}|}}={frac {|PF_{2}|}{|Pl_{2}|}}=e={frac {c}{a}}.}
A prova para o par F1,Eu...1Não. F_{1},l_{1}} a partir do fato de que |PF1|2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x- Sim. - Sim. c)2+Sim.2,|PEu...1|2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x- Sim. - Sim. um2c)2Não. |PF_{1}|^{2}=(x-c)^{2}+y^{2}, |Pl_{1}|^{2}=left(x-{tfrac {a^{2}}{c}}right)^{2}} e Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)2um2x2- Sim. - Sim. b)2Não. Sim. {b^{2}}{a^{2}}}x^{2}-b^{2}} satisfazer a equação
- |PF1|2- Sim. - Sim. c2um2|PEu...1|2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0.Não. |PF_{1}|^{2}-{frac {c^{2}}{a^{2}}}|Pl_{1}|^{2}=0.}
O segundo caso é provado de forma análoga.
A declaração inversa também é verdadeira e pode ser usada para definir uma hipérbole (de maneira semelhante à definição de uma parábola):
Para qualquer ponto FNão. (foco), qualquer linha Eu...Não. (directrix) não através FNão. e qualquer número real eNão. com 1}" xmlns="http://www.w3.org/1998/Math/MathML">e>1- Sim.1" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9605ca17e3915b659685c0326fbbcbfb522f11b3" style="vertical-align: -0.338ex; width:5.344ex; height:2.176ex;"/> o conjunto de pontos (locus de pontos), para o qual o quociente das distâncias ao ponto e à linha é eNão.
- H. H. H.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(P||PF||PEu...|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =e?Não. H=left{P,{Biggr |},{frac {|PF|}{|Pl|}}=eright}}
- é uma hiperbola.
(A escolha e= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1- Sim. produz um parabola e se <math alttext="{displaystyle ee<1- Sim.<img alt="{displaystyle e uma elipse.)
- Prova
Vamos. 0}" xmlns="http://www.w3.org/1998/Math/MathML">F= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(f,0),e>0(f,0), e>0}0}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f988ef1675c91f286332c94191bfd6b53674ba5" style="vertical-align: -0.838ex; width:17.083ex; height:2.843ex;"/> e assumir (0,0)(0) é um ponto na curva.
O directrix Eu...Não. tem equação x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. fe{displaystyle x=-{tfrac {f}{e}}}}}. Com P= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x,Sim.)(x,y)}, a relação |PF|2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =e2|PEu...|2Não. |PF|^{2}=e^{2}|Pl|^{2}} produz as equações
- (x- Sim. - Sim. f)2+Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =e2(x+fe)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(ex+f)2(x-f)^{2}+y^{2}=e^{2}left(x+{tfrac {f}{e}}right)^{2}=(ex+f)^{2}} e x2(e2- Sim. - Sim. 1)+2xf(1+e)- Sim. - Sim. Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0.{displaystyle x^{2}(e^{2}-1)+2xf(1+e)-y^{2}=0.}
A substituição p= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f(1+e)- Sim. produção
- x2(e2- Sim. - Sim. 1)+2px- Sim. - Sim. Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0.(e^{2}-1)+2px-y^{2}=0.}
Esta é a equação de um Elipse (<math alttext="{displaystyle ee<1- Sim.<img alt="e) ou um Parabola (e= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1- Sim.) ou um hiperbola (1}" xmlns="http://www.w3.org/1998/Math/MathML">e>1- Sim.1" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9605ca17e3915b659685c0326fbbcbfb522f11b3" style="vertical-align: -0.338ex; width:5.344ex; height:2.176ex;"/>). Todos estes conics não degenerados têm, em comum, a origem como um vértice (ver diagrama).
Se 1}" xmlns="http://www.w3.org/1998/Math/MathML">e>1- Sim.1" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9605ca17e3915b659685c0326fbbcbfb522f11b3" style="vertical-align: -0.338ex; width:5.344ex; height:2.176ex;"/>, introduzir novos parâmetros um,b)Não. assim
e2- Sim. - Sim. 1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)2um2,ep= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)2umNão. e^{2}-1 = {b^{2}}{a^{2}}},{text{ e }} p={tfrac (b^{2}}{a}}}, e então a equação acima se torna
- (x+um)2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1,{displaystyle {tfrac {(x+a)^{2}}{a^{2}}}-{tfrac {y^{2}}{b^{2}}}=1}
que é a equação de um hiperbola com centro (- Sim. - Sim. um,0)(-a,0)}, o x- eixo como eixo principal e o eixo principal/minor semi um,b)Não..
- Construção de um directrix
Por causa de c)) um2c= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um2{displaystyle ccdot } {displaystyle ccdot {tfrac {displaystyle } {a^{2}}{c}}=a^{2}} ponto L1{displaystyle L_{1}} de redix Eu...1Não. I_{1}} (ver diagrama) e foco F1Não. F_{1}} são inversos com respeito à inversão do círculo no círculo x2+Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um2Não. x^{2}+y^{2}=a^{2}} (em diagrama verde). Daí o ponto E1Não. E_{1}} pode ser construído usando o teorema de Thales (não mostrado no diagrama). O directrix Eu...1Não. I_{1}} é o perpendicular à linha F1F2? ? Não. (F_{1}F_{2}} através do ponto E1Não. E_{1}}.
Construção alternativa de E1Não. E_{1}}: Cálculo mostra, esse ponto E1Não. E_{1}} é a interseção do assintoto com seu perpendicular através F1Não. F_{1}} (ver diagrama).
Como seção plana de um cone
A interseção de um cone duplo vertical por um avião não através do vértice com inclinação maior do que a inclinação das linhas no cone é um hiperbola (ver diagrama: curva vermelha). Para provar a propriedade de definição de uma hiperbola (ver acima) utiliza-se duas esferas de Dandelin D1,D2Não. d_{1},d_{2}}, que são esferas que tocam o cone ao longo dos círculos c1Não. c_{1}} c2{displaystyle c_{2}} e o plano de intersecção (hiperbola) em pontos F1Não. F_{1}} e F2{displaystyle F_{2}}. Acontece: F1,F2Não. F_{1},F_{2}} são os Foci da hiperbola.
- Vamos. PNão. P. ser um ponto arbitrário da curva de interseção.
- A generatriz do cone contendo PNão. P. círculo de intersetos c1Não. c_{1}} ponto ANão. A. e círculo c2{displaystyle c_{2}} em um ponto BNão..
- Os segmentos de linha PF1? ? Não. (PF_{1}} e PA? ? {displaystyle {overline {PA}}} são tangenciais para a esfera D1Não. D_{1}} e, portanto, são de igual comprimento.
- Os segmentos de linha PF2? ? Não. (PF_{2}} e PB? ? {displaystyle {overline {PB}}} são tangenciais para a esfera D2Não. D_{2}} e, portanto, são de igual comprimento.
- O resultado é: |PF1|- Sim. - Sim. |PF2|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =|PA|- Sim. - Sim. |PB|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =|AB|Não. |PF_{1}|-|PF_{2}|=|PA|-|PB|=|AB|} é independente do ponto de hiperbola PNão. P., porque não importa o ponto PNão. P. é, A,BA.B. tem que estar em círculos c1Não. c_{1}} c2{displaystyle c_{2}}, e segmento de linha ABNão. AB tem de atravessar o ápice. Portanto, como ponto PNão. P. movimentos ao longo da curva vermelha (hiperbola), segmento de linha AB? ? {displaystyle {overline {AB}}} simplesmente gira sobre o ápice sem alterar seu comprimento.
Construção de pinos e cordas
A definição de uma hipérbole por seus focos e suas diretrizes circulares (veja acima) pode ser usada para desenhar um arco dela com a ajuda de alfinetes, um barbante e uma régua:
- Escolha o Foci F1,F2Não. F_{1},F_{2}}, os vértices V1,V2Não. V_{1},V_{2}} e um dos diretrizes circulares por exemplo c2{displaystyle c_{2}} (círculo com raio 2um- Sim.)
- A governante é fixado em ponto F2{displaystyle F_{2}} livre para girar em torno de F2{displaystyle F_{2}}. Ponto BNão. é marcado à distância 2um- Sim..
- A string com comprimento |AB||AB|} está preparado.
- Uma extremidade da corda é fixada no ponto ANão. A. na régua, a outra extremidade é presa ao ponto F1Não. F_{1}}.
- Toma. caneta e segurar a corda apertada para a borda da régua.
- Rotação o governante ao redor F2{displaystyle F_{2}} solicita a caneta para desenhar um arco do ramo direito do hiperbola, por causa de |PF1|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =|PB|Não. |PF_{1}|=|PB|} (veja a definição de hiperbola por diretrizes circulares).
Geração Steiner de uma hipérbole
O seguinte método para construir pontos únicos de uma hipérbole depende da geração de Steiner de uma seção cônica não degenerada:
- Dado dois lápis B(U),B(V){displaystyle B(U),B(V)} de linhas em dois pontos U,V- Sim. (todas as linhas contendo UNão. e VNão., respectivamente) e um mapeamento projetivo mas não de perspectiva D D - Sim. de B(U)(U)} sobre B(V)(V)}, então os pontos de interseção das linhas correspondentes formam uma seção conic projectiva não degenerada.
Para a geração de pontos do hiperbola x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1{displaystyle {tfrac {x^{2}}{a^{2}}}}}}-{tfrac {y^{2}}{b^{2}}}=1} um usa os lápis nos vértices V1,V2Não. V_{1},V_{2}}. Vamos. P= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x0,Sim.0)(x_{0},y_{0})} ser um ponto do hiperbola e A= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(um,Sim.0),B= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x0,0)(a,y_{0}),B=(x_{0},0)}. O segmento de linha BP? ? {displaystyle {overline {BP}}} é dividido em n segmentos igualmente espaçados e esta divisão é projetada paralelamente com a diagonal ABNão. AB como direção para o segmento de linha AP? ? {displaystyle {overline {AP}}} (ver diagrama). A projeção paralela faz parte do mapeamento projetivo entre os lápis em V1Não. V_{1}} e V2{displaystyle V_{2}} necessário. Os pontos de interseção de duas linhas relacionadas S1AEu...Não. S_{1}A_{i}} e S2BEu...Não. S_{2}B_{i}} são pontos do hiperbola exclusivamente definido.
Observação: A subdivisão poderia ser estendida além dos pontos ANão. A. e BNão. para obter mais pontos, mas a determinação dos pontos de interseção se tornaria mais imprecisa. Uma ideia melhor é estender os pontos já construídos pela simetria (ver animação).
Observação:
- A geração Steiner existe para elipses e parabolas, também.
- A geração Steiner é às vezes chamada de método de paralelo porque se pode usar outros pontos em vez dos vértices, que começa com um paralelogramo em vez de um retângulo.
Ângulos inscritos para hipérboles y = a/(x − b) + c e a forma de 3 pontos
Uma hiperbola com equação Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =umx- Sim. - Sim. b)+c,um≠ ≠ 0- Sim. {a}{x-b}}+c, aneq 0 é determinada exclusivamente por três pontos (x1,Sim.1),(x2,Sim.2),(x3,Sim.3)(x_{1},y_{1}),;(x_{2},y_{2}),;(x_{3},y_{3})} com diferente x- e Sim.- coordenadas. Uma maneira simples de determinar os parâmetros de forma um,b),c- Não. usa o teorema de ângulo inscrito para hiperbolas:
- A fim de medir um ângulo entre duas linhas com equações Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =m1x+D1,Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =m2x+D2,m1,m2≠ ≠ 0Não. y=m_{1}x+d_{1}, y=m_{2}x+d_{2}m_{1},m_{2}neq 0 neste contexto utiliza-se o quociente
- m1m2.Não. {m_{1}}{m_{2}}}.}
Análogo ao teorema do ângulo inscrito para círculos, obtém-se o
Teorema do ângulo inscrito para hipérboles:
- Para quatro pontos PEu...= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(xEu...,Sim.Eu...),Eu...= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1,2,3,4,xEu...≠ ≠ xk,Sim.Eu...≠ ≠ Sim.k,Eu...≠ ≠ kNão. P_{i}=(x_{i},y_{i}), i=1,2,3,4, x_{i}neq x_{k},y_{i}neq y_{k},ineq k} (ver diagrama) a seguinte declaração é verdadeira:
- Os quatro pontos estão em um hiperbola com equação Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =umx- Sim. - Sim. b)+c- Sim. Não. se e somente se os ângulos em P3Não. P_{3}} e P4Não. P_{4}} são iguais no sentido da medição acima. Isso significa que...
- (Sim.4- Sim. - Sim. Sim.1)(x4- Sim. - Sim. x1)(x4- Sim. - Sim. x2)(Sim.4- Sim. - Sim. Sim.2)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(Sim.3- Sim. - Sim. Sim.1)(x3- Sim. - Sim. x1)(x3- Sim. - Sim. x2)(Sim.3- Sim. - Sim. Sim.2){displaystyle {frac {(y_{4}-y_{1})}{(x_{4}-x_{1})}}{frac {(x_{4}-x_{2})}{(y_{4}-y_{2})}}={frac {(y_{3}-y_{1})}{(x_{3}-x_{1})}}{frac {(x_{3}-x
(Proof: cálculo simples. Se os pontos estão em um hiperbola, pode-se assumir a equação do hiperbola é Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um/x- Sim..)
Uma consequência do teorema do ângulo inscrito para hipérboles é a
Forma de 3 pontos da equação de uma hipérbole:
- A equação da hiperbola determinada por 3 pontos PEu...= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(xEu...,Sim.Eu...),Eu...= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1,2,3,xEu...≠ ≠ xk,Sim.Eu...≠ ≠ Sim.k,Eu...≠ ≠ kNão. P_{i}=(x_{i},y_{i}), i=1,2,3, x_{i}neq x_{k},y_{i}neq y_{k},ineq k} é a solução da equação
- (Sim.- Sim. - Sim. Sim.1)(x- Sim. - Sim. x1)(x- Sim. - Sim. x2)(Sim.- Sim. - Sim. Sim.2)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(Sim.3- Sim. - Sim. Sim.1)(x3- Sim. - Sim. x1)(x3- Sim. - Sim. x2)(Sim.3- Sim. - Sim. Sim.2){displaystyle {frac {({color {red}y}-y_{1}}}{({color) {green}x}-x_{1})}}{frac {({color {green}x}-x_{2})}{({color {red}y}-y_{2})}}={frac {(y_{3}-y_{1})}{(x_{3}-x_{1})}}{frac {(x_{3}-x_{2})} {(y_{2})})}
- para Sim.(vermelho).
Como uma imagem afim da hipérbole unitária x² − y² = 1
Outra definição de uma hipérbole usa transformações afins:
- Qualquer hiperbola é a imagem afine da unidade hiperbola com equação x2- Sim. - Sim. Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1Não. x^{2}-y^{2}=1}.
- representação paramétrica
Uma transformação afinada do plano euclidiano tem a forma x→ → → → f→ → 0+Ax→ → {displaystyle {vec {x}}to Não. {f}}_{0}+A{vec (x), onde ANão. A. é uma matriz regular (sua determinante não é 0) e f→ → 0{displaystyle {vec {f}}_{0}} é um vetor arbitrário. Se f→ → 1,f→ → 2{displaystyle {vec {f}}_{1},{vec {f}}_{2}} são os vetores de coluna da matriz ANão. A., a unidade hiperbola (± ± Cosh! ()),Pecar! ())),)∈ ∈ R,(pm cosh(t),sinh(t)),tin mathbb {R}} é mapeado para o hiperbola
- x→ → = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =p→ → ())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 0± ± f→ → 1Cosh! )+f→ → 2Pecar! ).{displaystyle {vec {x}}={vec} {p}}(t)={vec {f}}_{0}pm (f)_{1}cosh t+{vec {f}}_{2}sinh t.}
f→ → 0{displaystyle {vec {f}}_{0}} é o centro, f→ → 0+f→ → 1Não. {f}}_{0}+{vec {f}}_{1}} um ponto da hiperbola e f→ → 2{displaystyle {vec {f}}_{2}} um vetor tangente neste momento.
- vértices
Em geral os vetores f→ → 1,f→ → 2{displaystyle {vec {f}}_{1},{vec {f}}_{2}} não são perpendiculares. Isso significa, em geral, f→ → 0± ± f→ → 1Não. {f}}_{0}pm (f)_{1}} são não os vértices do hiperbola. Mas... f→ → 1± ± f→ → 2Não. {f}}_{1}pm (f)_{2}} apontar para as direções dos assintotos. O vetor tangente em ponto p→ → ()){displaystyle {vec {p}}(t)} o
- p→ → ?())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 1Pecar! )+f→ → 2Cosh! ).{displaystyle {vec {p}}'(t)={vec {f}}_{1}sinh t+{vec {f}}_{2}cosh t.}
Porque em um vértice o tangente é perpendicular ao eixo principal do hiperbola recebe o parâmetro )0Não. t_{0}} de um vértice da equação
- p→ → ?()))) (p→ → ())- Sim. - Sim. f→ → 0)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(f→ → 1Pecar! )+f→ → 2Cosh! )))) (f→ → 1Cosh! )+f→ → 2Pecar! ))= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0{displaystyle {vec {p}}'(t)cdot left({vec {p}}(t)-{vec {f}}_{0}right)=left({vec {f}}_{1}sinh t+{vec {f}}_{2}cosh tright)cdot left({vec {f}}_{1}cosh t+{vec {f}}_{2}sinh tright)=0}
e, portanto, de
- a (2)0)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. f→ → 12+f→ → 222f→ → 1)) f→ → 2,{displaystyle coth(2t_{0})=-{tfrac {{vec) {f}}_{1}^{,2}+{vec {f}}_{2}^{,2}}{2{vec {f}}_{1}cdot {vec} {f}}_{2}}}}
que rende
- )0= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =14I (f→ → 1- Sim. - Sim. f→ → 2)2(f→ → 1+f→ → 2)2.Não. t_{0}={tfrac {1}{4}}ln {tfrac {left({vec {f}}_{1}-{vec {f}}_{2}right)^{2}}{left({vec {f}}_{1}+{vec {f}}_{2}right)^{2}}}.}
(As fórmulas Cosh!2 x+Pecar!2 x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Cosh! 2x,2Pecar! xCosh! x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Pecar! 2x,Arco x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =12I x+1x- Sim. - Sim. 1{displaystyle cosh ^{2}x+sinh ^{2}x=cosh 2x, 2sinh xcosh x=sinh 2x,operatorname {arcoth} x={tfrac {1}{2}}ln (x+1) foram usados.)
Os dois vértices da hiperbola são f→ → 0± ± (f→ → 1Cosh! )0+f→ → 2Pecar! )0).{displaystyle {vec {f}}_{0}pm left({vec) {f}}_{1}cosh t_{0}+{vec {f}}_{2}sinh t_{0}right). ?
- representação implícita
Solucionando a representação paramétrica para Cosh! ),Pecar! ){displaystyle ;cosh t,sinh t;} pela regra de Cramer e usando Cosh!2 )- Sim. - Sim. Pecar!2 )- Sim. - Sim. 1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0{displaystyle ;cosh ^{2}t-sinh ^{2}t-1=0;}, um recebe a representação implícita
- - Não.(x→ → - Sim. - Sim. f→ → 0,f→ → 2)2- Sim. - Sim. - Não.(f→ → 1,x→ → - Sim. - Sim. f→ → 0)2- Sim. - Sim. - Não.(f→ → 1,f→ → 2)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0{displaystyle det({vec) {x}}!-!{vec {f}}!_{0},{vec {f}}!_{2})^{2}-det({vec {f}}!_{1},{vec {x}}!-!{vec {f}}!_{0})^{2}-det({vec {f}}!_{1},{vec {f}}!_{2})^{2}=0}.
- hiperbola no espaço
A definição de uma hiperbola nesta seção dá uma representação paramétrica de uma hiperbola arbitrária, mesmo no espaço, se permite f→ → 0,f→ → 1,f→ → 2{displaystyle {vec {f}}!_{0},{vec {f}}!_{1},{vec {f}}!_{2}} ser vetores no espaço.
Como uma imagem afim da hipérbole y = 1/x
Porque a unidade hiperbola x2- Sim. - Sim. Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1Não. x^{2}-y^{2}=1} é afinamente equivalente ao hiperbola Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1/x- Sim., um hiperbola arbitrário pode ser considerado como a imagem affine (veja seção anterior) do hiperbola Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1/x:{displaystyle y=1/x:}
- x→ → = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =p→ → ())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 0+f→ → 1)+f→ → 21),)≠ ≠ 0.{displaystyle {vec {x}}={vec} {p}}(t)={vec {f}}_{0}+{vec {f}}_{1}t+{vec {f}}_{2}{tfrac {1}{t}},quad tneq 0.}
M:f→ → 0(em inglês) {f}}_{0}} é o centro da hiperbola, os vetores f→ → 1,f→ → 2{displaystyle {vec {f}}_{1},{vec {f}}_{2}} têm as direções dos assintotos e f→ → 1+f→ → 2Não. {f}}_{1}+{vec {f}}_{2}} é um ponto da hiperbola. O vetor tangente é
- p→ → ?())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 1- Sim. - Sim. f→ → 21)2.{displaystyle {vec {p}}'(t)={vec {f}}_{1}-{vec {f}}_{2}{tfrac {1}{t^{2}}}
Em um vértice, a tangente é perpendicular ao eixo maior. Por isso
- p→ → ?()))) (p→ → ())- Sim. - Sim. f→ → 0)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(f→ → 1- Sim. - Sim. f→ → 21)2))) (f→ → 1)+f→ → 21))= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 12)- Sim. - Sim. f→ → 221)3= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0{displaystyle {vec {p}}'(t)cdot left({vec {p}}(t)-{vec {f}}_{0}right)=left({vec {f}}_{1}-{vec {f}}_{2}{tfrac {1}{t^{2}}}right)cdot left({vec {f}}_{1}t+{vec {f}}_{2}{tfrac {1}{t}}right)={vec {f}}_{1}^{2}t-{vec {f}}_{2}^{2}{tfrac {1}{t^{3}}}=0}
e o parâmetro de um vértice é
- )0= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± f→ → 22f→ → 124.Não. t_{0}=pm {sqrt[{4}]{tfrac {{vec {f}}_{2}^{2}}{{vec {f}}_{1}^{2}}}}}
|f→ → 1|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =|f→ → 2|{displaystyle |{vec {f}}_{1}|=|{vec {f}}_{2}|} é equivalente a )0= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± 1Não. T_{0}=pm 1 e f→ → 0± ± (f→ → 1+f→ → 2)Não. {f}}_{0}pm ({vec {f}}_{1}+{vec {f}}_{2})} são os vértices do hiperbola.
As seguintes propriedades de uma hipérbole são facilmente comprovadas usando a representação de uma hipérbole apresentada nesta seção.
Construção de tangente
O vetor tangente pode ser reescrito por fatoração:
- p→ → ?())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1)(f→ → 1)- Sim. - Sim. f→ → 21)).{displaystyle {vec {p}}'(t)={tfrac {1}{t}}left({vec) {f}}_{1}t-{vec {f}}_{2}{tfrac {1}{t}}right).}
Isso significa que
- a diagonal ABNão. AB do paralelograma M:f→ → 0,A= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 0+f→ → 1),B:f→ → 0+f→ → 21),P:f→ → 0+f→ → 1)+f→ → 21){displaystyle M: {vec {f}}_{0}, A={vec {f}}_{0}+{vec {f}}_{1}t, B: {f}}_{0}+{vec {f}}_{2}{tfrac {1}{t}}, P: {vec {f}}_{0}+{vec {f}}_{1}t+{vec {f}}_{2}{tfrac Não. é paralelo ao tangente no ponto de hiperbola PNão. P. (ver diagrama).
Esta propriedade fornece uma maneira de construir a tangente em um ponto da hipérbole.
Esta propriedade de uma hipérbole é uma versão afim da degeneração de 3 pontos do teorema de Pascal.
- Área do paralelograma cinzento
A área do paralelograma cinza MAPBNão. MAPB no diagrama acima é
- Área= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =|- Não.()f→ → 1,1)f→ → 2)|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =|- Não.(f→ → 1,f→ → 2)|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =⋯ ⋯ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um2+b)24- Sim. Big |}det left(t{vec {f}}_{1},{tfrac {1}{t}}{vec {f}}_{2}right){ Big |}={Big |}det left({vec {f}}_{1},{vec {f}}_{2}right){ Big |}=cdots ={frac (a^{2}+b^{2}}{4}}}
e, portanto, independente do ponto PNão. P.. A última equação segue de um cálculo para o caso, onde PNão. P. é um vértice e o hiperbola em sua forma canônica x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1.{displaystyle {tfrac {x^{2}}{a^{2}}}}}}-{tfrac {y^{2}}{b^{2}}}=1.}
Construção de pontos
Para uma hiperbola com representação paramétrica x→ → = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =p→ → ())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 1)+f→ → 21){displaystyle {vec {x}}={vec} {p}}(t)={vec {f}}_{1}t+{vec {f}}_{2}{tfrac Não. (para a simplicidade o centro é a origem) o seguinte é verdadeiro:
- Para qualquer dois pontos P1:f→ → 1)1+f→ → 21)1,P2:f→ → 1)2+f→ → 21)2Não. P_{1}: {f}}_{1}t_{1}+{vec {f}}_{2}{tfrac {1}{t_{1}}}, P_{2}: {f}}_{1}t_{2}+{vec {f}}_{2}{tfrac {1}{t_{2}} os pontos
- A:um→ → = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 1)1+f→ → 21)2,B:b)→ → = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 1)2+f→ → 21)1{displaystyle A: {vec {a}}={vec {f}}_{1}t_{1}+{vec {f}}_{2}{tfrac {1}{t_{2}}}, B: {vec (b) = {f}}_{1}t_{2}+{vec {f}}_{2}{tfrac {1}{t_{1}}}
- são collineares com o centro da hiperbola (ver diagrama).
A prova simples é uma consequência da equação 1)1um→ → = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1)2b)→ → Não. {1}{t_{1}}} - Não. {1}{t_{2}}}{vec (b).
Esta propriedade fornece a possibilidade de construir pontos de uma hipérbole se as assíntotas e um ponto forem dados.
Esta propriedade de uma hipérbole é uma versão afim da degeneração de 4 pontos do teorema de Pascal.
Triângulo tangente-assíntota
Para a simplicidade o centro da hiperbola pode ser a origem e os vetores f→ → 1,f→ → 2{displaystyle {vec {f}}_{1},{vec {f}}_{2}} tem comprimento igual. Se a última suposição não for cumprida, pode-se primeiro aplicar uma transformação do parâmetro (ver acima) para tornar a suposição verdadeira. Daí ± ± (f→ → 1+f→ → 2){displaystyle pm ({vec {f}}_{1}+{vec {f}}_{2}} são os vértices, ± ± (f→ → 1- Sim. - Sim. f→ → 2){displaystyle pm ({vec {f}}_{1}-{vec {f}}_{2})} abranger o eixo menor e um fica |f→ → 1+f→ → 2|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um{displaystyle |{vec {f}}_{1}+{vec {f}}_{2}|=a} e |f→ → 1- Sim. - Sim. f→ → 2|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b){displaystyle |{vec {f}}_{1}-{vec {f}}_{2}|=b}.
Para os pontos de interseção do tangente no ponto p→ → ()0)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =f→ → 1)0+f→ → 21)0{displaystyle {vec {p}}(t_{0})={vec {f}}_{1}t_{0}+{vec {f}}_{2}{tfrac {1}{t_{0}} com os assintotos um recebe os pontos
- C= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2)0f→ → 1,D= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2)0f→ → 2.Não. C=2t_{0}{vec {f}}_{1}, D={tfrac {2}{t_{0}}} {f}}_{2}.}
O área do triângulo M,C,D- Sim. pode ser calculado por um 2 × 2 determinante:
- A= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =12|- Não.(2)0f→ → 1,2)0f→ → 2)|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2|- Não.(f→ → 1,f→ → 2)|- Sim. Não. Big |}det left(2t_{0}{vec {f}}_{1},{tfrac {2}{t_{0}}}{vec {f}}_{2}right){ Grande. |}=2{Big |}det left({vec {f}}_{1},{vec {f}}_{2}right){ Grande |}}
(ver regras para determinantes). |- Não.(f→ → 1,f→ → 2)|{displaystyle |det({vec {f}}_{1},{vec {f}}_{2}|} é a área do rhombus gerado por f→ → 1,f→ → 2{displaystyle {vec {f}}_{1},{vec {f}}_{2}}. A área de um rhombus é igual a metade do produto de suas diagonais. As diagonais são os semi-eixos um,b)Não. da hiperbola. Assim:
- O área do triângulo MCD- Sim. é independente do ponto do hiperbola: A= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =umb).Não. A=ab.
Reciprocidade de um círculo
A reciprocidade de um círculo B em um círculo C sempre produz uma seção cônica como uma hipérbole. O processo de "reciprocidade em um círculo C" consiste em substituir todas as retas e pontos de uma figura geométrica por seus pólos e polares correspondentes, respectivamente. O polo de uma linha é a inversão de seu ponto mais próximo ao círculo C, enquanto o polar de um ponto é o inverso, ou seja, uma linha cujo ponto mais próximo de C é a inversão do ponto.
A excentricidade da seção cônica obtida por reciprocidade é a razão entre as distâncias entre os dois círculos' centra-se no raio r do círculo alternativo C. Se B e C representam os pontos nos centros dos círculos correspondentes, então
- e= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =BC? ? R.- Sim. A superlinha {BC}}{r}}.}
Como a excentricidade de uma hipérbole é sempre maior que um, o centro B deve estar fora do círculo alternativo C.
Esta definição implica que a hipérbole é tanto o lugar dos pólos das retas tangentes ao círculo B, quanto o envelope das retas polares dos pontos em B. Inversamente, o círculo B é o envelope dos pólos dos pontos da hipérbole, e o lugar geométrico dos pólos das retas tangentes à hipérbole. Duas retas tangentes a B não têm pólos (finitos) porque passam pelo centro C do círculo recíproco C; as polares dos pontos tangentes correspondentes em B são as assíntotas da hipérbole. Os dois ramos da hipérbole correspondem às duas partes do círculo B que são separadas por esses pontos tangentes.
Equação quadrática
Uma hipérbole também pode ser definida como uma equação de segundo grau nas coordenadas cartesianas (x, y) no plano,
- Axxx2+2AxSim.xSim.+ASim.Sim.Sim.2+2Bxx+2BSim.Sim.+C= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0,Não. A_{xx}x^{2}+2A_{xy}xy+A_{y}y^{2}+2B_{x}x+2B_{y}y+C=0,}
desde que as constantes Axx, Axy , Aaa, Bx, By e C satisfazem a condição determinante
- <math alttext="{displaystyle D:={begin{vmatrix}A_{xx}&A_{xy}\A_{xy}&A_{yy}end{vmatrix}}D?|AxxAxSim.AxSim.ASim.Sim.|<0.Não. D:={begin{vmatrix}A_{x}&A_{xy}\A_{xy}&A_{yy}end{vmatrix}}<0.,}<img alt=" D:= begin{vmatrix} A_{xx} & A_{xy}\A_{xy} & A_{yy} end{vmatrix}
Este determinante é convencionalmente chamado de discriminante da seção cônica.
Um caso especial de hipérbole—a hipérbole degenerada que consiste em duas linhas que se cruzam—ocorre quando outro determinante é zero:
- ? ? ?|AxxAxSim.BxAxSim.ASim.Sim.BSim.BxBSim.C|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0.{displaystyle Delta:={begin{vmatrix}A_{x}&A_{xy}&B_{x}\A_{xy}&A_{y}&B_{y}\B_{x}&B_{y}&Cend{vmatrix}}=0.}
Este determinante Δ às vezes é chamado de discriminante da seção cônica.
Dada a parametrização geral acima da hipérbole em coordenadas cartesianas, a excentricidade pode ser encontrada usando a fórmula na seção Cônica#Excentricidade em termos de coeficientes.
O centro (xc, yc) da hipérbole pode ser determinado a partir das fórmulas
- xc= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. 1D|BxAxSim.BSim.ASim.Sim.|;Não. x_{c}=- {1}{D}}{begin{vmatrix}B_{x}&A_{xy}\B_{y}&A_{yy}end{vmatrix}};}
- Sim.c= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. 1D|AxxBxAxSim.BSim.|.Não. - Sim. {1}{D}}{begin{vmatrix}A_{x}&B_{x}\A_{xy}&B_{y}end{vmatrix}}.}
Em termos de novas coordenadas, ξ = x − xc e η = y − y c, a equação que define a hipérbole pode ser escrita
- Axx? ? 2+2AxSim.? ? ? ? +ASim.Sim.? ? 2+? ? D= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0.{displaystyle A_{x}xi ^{2}+2A_{xy}xi eta +A_{y}eta ^{2}+{frac - Sim.
Os eixos principais da hipérbole fazem um ângulo φ com o eixo x positivo que é dado por
- bronzeado 2φ φ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2AxSim.Axx- Sim. - Sim. ASim.Sim..{displaystyle tan 2varphi ={frac {2A_{xy}}{A_{x}-A_{yy}}}.}
Girar os eixos de coordenadas de modo que o eixo x esteja alinhado com o eixo transversal traz a equação para sua forma canônica
- x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1.{displaystyle {frac {x^{2}}{a^{2}}}}}}}}-{frac {y^{2}}{b^{2}}}=1.}
Os semi-eixos maior e menor a e b são definidos pelas equações
- um2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ? ? λ λ 1D= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ? ? λ λ 12λ λ 2,{displaystyle a^{2}=-{frac Não. _{1}D}}=-{frac Não. _{1}^{2}lambda _{2}}},}
- b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ? ? λ λ 2D= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ? ? λ λ 1λ λ 22,Não. b^{2}=- Não. _{2}D}}=-{frac Não. _{1}lambda _{2}^{2}}},}
onde λ1 e λ2 são as raízes da equação quadrática
- λ λ 2- Sim. - Sim. (Axx+ASim.Sim.)λ λ +D= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0.{displaystyle lambda ^{2}-left (A_{xx}+A_{yy}right)lambda +D=0.}
Para comparação, a equação correspondente para uma hipérbole degenerada (consistindo em duas linhas que se cruzam) é
- x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0.{displaystyle {frac {x^{2}}{a^{2}}}}}}}}-{frac {y^{2}}{b^{2}}}=0.}
A linha tangente a um determinado ponto (x0, y0) na hipérbole é definida pela equação
- Ex+FSim.+G= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0Não. Ex+Fy+G=0
onde E, F e G são definidos por
- E= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Axxx0+AxSim.Sim.0+Bx,Não. E=A_{xx}x_{0}+A_{xy}y_{0}+B_{x},}
- F= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =AxSim.x0+ASim.Sim.Sim.0+BSim.,Não. F=A_{xy}x_{0}+A_{y}y_{0}+B_{y},}
- G= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Bxx0+BSim.Sim.0+C.Não. G=B_{x}x_{0}+B_{y}y_{0}+C.}
A reta normal à hipérbole no mesmo ponto é dada pela equação
- F(x- Sim. - Sim. x0)- Sim. - Sim. E(Sim.- Sim. - Sim. Sim.0)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0.(x-x_{0})-E(y-y_{0})=0.}
A reta normal é perpendicular à reta tangente, e ambas passam pelo mesmo ponto (x0, y0 ).
Da equação
- <math alttext="{displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1,qquad 0x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1,0<b)≤ ≤ um,{displaystyle {frac {x^{2}}{a^{2}}}}}}}}-{frac {y^{2}}{b^{2}}}=1,qquad 0<bleq a,}<img alt="{displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1,qquad 0
o foco esquerdo é (- Sim. - Sim. ume,0)(-ae,0)} e o foco certo é (ume,0),(ae,0),} Onde? e é a excentricidade. Denote as distâncias de um ponto (x, y) à esquerda e à direita R1Não. r_{1},!} e R2.Não. r_{2}.,!} Para um ponto no ramo direito,
- R1- Sim. - Sim. R2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2um,Não. r_{1}-r_{2}=2a,,!}
e para um ponto no ramo esquerdo,
- R2- Sim. - Sim. R1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2um.Não. r_{2}-r_{1}=2a.,!}
Isto pode ser provado da seguinte forma:
Se (x,y) é um ponto na hipérbole, a distância ao ponto focal esquerdo é
- R12= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x+ume)2+Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =x2+2xume+um2e2+(x2- Sim. - Sim. um2)(e2- Sim. - Sim. 1)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(ex+um)2.Não. r_{1}^{2}=(x+ae)^{2}+y^{2}=x^{2}+2xae+a^{2}e^{2}+left(x^{2}-a^{2}right)left(e^{2}-1right)=(ex+a)^{2}.}
Para o ponto focal direito, a distância é
- R22= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x- Sim. - Sim. ume)2+Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =x2- Sim. - Sim. 2xume+um2e2+(x2- Sim. - Sim. um2)(e2- Sim. - Sim. 1)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(ex- Sim. - Sim. um)2.Não. r_{2}^{2}=(x-ae)^{2}+y^{2}=x^{2}-2xae+a^{2}e^{2}+left(x^{2}-a^{2}right)left(e^{2}-1right)=(ex-a)^{2}.}
Se (x,Sim.) é um ponto no ramo direito do hiperbola então a,!}" xmlns="http://www.w3.org/1998/Math/MathML">ex>um{displaystyle ex>a,!} a,!" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7be3714c2ac95e15f7dc27b9e20760a3179a3e4" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:7.129ex; height:1.843ex;"/> e
- R1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =ex+um,Não. r_{1}=ex+a,,!}
- R2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =ex- Sim. - Sim. um.Não. r_{2}=ex-a.,!}
Subtraindo essas equações obtém-se
- R1- Sim. - Sim. R2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2um.Não. r_{1}-r_{2}=2a.,!}
Se (- Sim.) é um ponto no ramo esquerdo do hiperbola então <math alttext="{displaystyle exex<- Sim. - Sim. um{displaystyle ex<-a,!}<img alt="e x e
- R1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ex- Sim. - Sim. um,Não. r_{1}=-ex-a,,!}
- R2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ex+um.Não. r_{2}=-ex+a.,!}
Subtraindo essas equações obtém-se
- R2- Sim. - Sim. R1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2um.Não. r_{2}-r_{1}=2a.,!}
Em coordenadas cartesianas
Equação
Se as coordenadas cartesianas forem introduzidas de modo que a origem seja o centro da hipérbole e o eixo x seja o eixo maior, então a hipérbole é chamada de abertura leste-oeste e
- o Foci são os pontos F1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(c,0),F2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(- Sim. - Sim. c,0){displaystyle F_{1}=(c,0), F_{2}=(-c,0)},
- o vértices são V1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(um,0),V2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(- Sim. - Sim. um,0){displaystyle V_{1}=(a,0), V_{2}=(-a,0)}.
Para um ponto arbitrário (x,Sim.)(x,y)} a distância para o foco (c,0)(c,0)} o (x- Sim. - Sim. c)2+Sim.2(x-c)^{2}+y^{2}} e ao segundo foco (x+c)2+Sim.2(x+c)^{2}+y^{2}}. Daí o ponto (x,Sim.)(x,y)} está no hiperbola se a seguinte condição for cumprida
- (x- Sim. - Sim. c)2+Sim.2- Sim. - Sim. (x+c)2+Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± 2um.{displaystyle {sqrt {(x-c)^{2}+y^{2}}}-{sqrt {(x+c)^{2}+y^{2}}}=pm 2a.
Remova as raízes quadradas por squarings adequados e use a relação b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =c2- Sim. - Sim. um2Não. b^{2}=c^{2}-a^{2}} para obter a equação do hiperbola:
- x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1.{displaystyle {frac {x^{2}}{a^{2}}}}}}}}-{frac {y^{2}}{b^{2}}}=1.}
Esta equação é chamada de forma canônica de uma hipérbole, porque qualquer hipérbole, independentemente de sua orientação em relação aos eixos cartesianos e independentemente da localização de seu centro, pode ser transformada nesta forma por uma mudança de variáveis, dando uma hipérbole que é congruente com o original (veja abaixo).
Os eixos da simetria ou eixos principais são os eixo transversal (contendo o segmento de comprimento 2um com pontos finais nos vértices) e os conjugar o eixo (contendo o segmento de comprimento 2b) perpendicular ao eixo transversal e com ponto médio no centro da hiperbola). Ao contrário de uma elipse, uma hiperbola tem apenas dois vértices: (um,0),(- Sim. - Sim. um,0)(a,0),;(-a,0)}. Os dois pontos (0,b)),(0,- Sim. - Sim. b))(0,-b)} sobre os eixos conjugados são não na hiperbola.
Resulta da equação que a hipérbole é simétrica em relação a ambos os eixos coordenados e, portanto, simétrica em relação à origem.
Excentricidade
Para uma hipérbole na forma canônica acima, a excentricidade é dada por
- e= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1+b)2um2.- Sim. (em inglês) {b^{2}}{a^{2}}}}}}}
Duas hipérboles são geometricamente semelhantes entre si – o que significa que elas têm a mesma forma, de modo que uma pode ser transformada na outra por movimentos rígidos para a esquerda e para a direita, rotação, obtenção de uma imagem espelhada e dimensionamento (ampliação) – se e somente se tiverem a mesma excentricidade.
Assíntotas
Resolvendo a equação (acima) do hiperbola para Sim.- Sim. produção
- Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± b)umx2- Sim. - Sim. um2.{displaystyle Y=pm} {displaystyle Y=pm} - Não. {x^{2}-a^{2}}}.}
Resulta disso que a hipérbole se aproxima das duas retas
- Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± b)umx{displaystyle Y=pm} {displaystyle Y=pm} Não.
para grandes valores de |x||x|}. Estas duas linhas se cruzam no centro (origem) e são chamadas Assintomas da hiperbola x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1.{displaystyle {tfrac {x^{2}}{a^{2}}}}}}-{tfrac {y^{2}}{b^{2}}}=1.}
Com a ajuda da segunda figura pode-se ver que
- (1){displaystyle {color {blue}{(1)}}} O distância perpendicular de um foco para assintote o b)Não. (o eixo semi-minor).
Da forma normal de Hesse b)x± ± umSim.um2+b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0- Sim. (a^{2}+b^{2}}=0} dos assintotos e a equação do hiperbola recebe:
- (2){displaystyle {color {magenta}{(2)}}} O produto das distâncias de um ponto na hiperbola para ambos os assintotes é a constante um2b)2um2+b)2,{displaystyle {tfrac {a^{2}b^{2}}{a^{2}+b^{2}}}} que também pode ser escrito em termos de excentricidade e como (b)e)2.{displaystyle left({tfrac {b}{e}}right)^{2}.}
Da equação Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± b)umx2- Sim. - Sim. um2{displaystyle Y=pm} {displaystyle Y=pm} - Não. {x^{2}-a^{2}} da hiperbola (acima) pode-se derivar:
- (3){displaystyle {color {green}{(3)}}} O produto das inclinações de linhas de um ponto P para os dois vértices é a constante b)2/um2.Não. b^{2}/a^{2}.}
Além disso, de (2) acima, pode ser mostrado que
- (4)(vermelho) O produto das distâncias de um ponto na hiperbola para os assintotos ao longo das linhas paralelas aos assintotos é a constante um2+b)24.{displaystyle {tfrac {a^{2}+b^{2}}{4}}.}
Semi-latus reto
O comprimento do acorde através de um dos foci, perpendicular ao eixo principal do hiperbola, é chamado o latus rectum. Uma metade é o semi-latus rectum pNão.. Um cálculo mostra
- p= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)2um.- Sim. {b^{2}}{a}}.}
O semi-latus rectum pNão. também pode ser visto como raio de curvatura nos vértices.
Tangente
A maneira mais simples de determinar a equação do tangente em um ponto (x0,Sim.0)(x_{0},y_{0})} é para distinguir implicitamente a equação x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1{displaystyle {tfrac {x^{2}}{a^{2}}}}}}-{tfrac {y^{2}}{b^{2}}}=1} da hiperbola. Denotando dy/dx como Sim., isto produz
- 2xum2- Sim. - Sim. 2Sim.Sim.?b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =0⇒ ⇒ Sim.?= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =xSim.b)2um2⇒ ⇒ Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =x0Sim.0b)2um2(x- Sim. - Sim. x0)+Sim.0.{displaystyle {frac {2x}{a^{2}}}}}}-{frac {2yyy'}{b^{2}}}=0 Rightarrow y'={frac {x}{y}}{frac {b^{2}}{a^{2}}} Rightarrow y={frac {x_{0}}{y_{0}}}{frac {b^{2}}{a^{2}}}(x-x_{0})+y_{0}.}
Com respeito a x02um2- Sim. - Sim. Sim.02b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1Não. {x_{0}^{2}}{a^{2}}}-{tfrac {y_{0}^{2}}{b^{2}}}=1}, a equação do tangente em ponto (x0,Sim.0)(x_{0},y_{0})} o
- x0um2x- Sim. - Sim. Sim.0b)2Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1.Não. {x_{0}}{a^{2}}}x-{frac {y_{0}}{b^{2}}}y=1.}
Uma linha tangente particular distingue a hipérbole das outras seções cônicas. Seja f a distância do vértice V (tanto na hipérbole quanto em seu eixo através dos dois focos) até o foco mais próximo. Então a distância, ao longo de uma linha perpendicular a esse eixo, desse foco até um ponto P na hipérbole é maior que 2f. A tangente à hipérbole em P intercepta esse eixo no ponto Q em um ângulo ∠PQV maior que 45°.
Hiperbola retangular
No caso um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)- Sim. o hiperbola chama-se retangular (ou equitação), porque seus assintotos se cruzam em ângulos retos. Para este caso, a excentricidade linear é c= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2um{displaystyle c={sqrt {2}}a}, a excentricidade e= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2Não. {2} e o semi-latus rectum p= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =umNão.. O gráfico da equação Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1/x- Sim. é uma hiperbola retangular.
Representação paramétrica com seno/cosseno hiperbólico
Usando as funções de seio e cossena hiperbólicas Cosh!,Pecar!{displaystyle coshsinh }, uma representação paramétrica do hiperbola x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1{displaystyle {tfrac {x^{2}}{a^{2}}}}}}-{tfrac {y^{2}}{b^{2}}}=1} pode ser obtido, que é semelhante à representação paramétrica de uma elipse:
- (± ± umCosh! ),b)Pecar! )),)∈ ∈ R,(pm acosh t,bsinh t),,tin mathbb {R} }
que satisfaz a equação cartesiana porque Cosh!2 )- Sim. - Sim. Pecar!2 )= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1.{displaystyle cosh ^{2}t-sinh ^{2}t=1.}}
Outras representações paramétricas são dadas na seção Equações paramétricas abaixo.

Híperbola conjugada
Troca x2um2{displaystyle {frac {x^{2}}{a^{2}}}}}}}}}} e Sim.2b)2{displaystyle {frac {y^{2}}{b^{2}}}}}}}}} para obter a equação da conjugar o hiperbola (ver diagrama):
- Sim.2b)2- Sim. - Sim. x2um2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1,{displaystyle {frac {y^{2}}{b^{2}}}}}}-{frac {x^{2}}{a^{2}}}=1} também escrito como
- x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. 1.{displaystyle {frac {x^{2}}{a^{2}}}}}}}}-{frac {y^{2}}{b^{2}}}=-1.}
Em coordenadas polares

Para polo = foco:
As coordenadas polares usadas mais comumente para o hiperbola são definidas em relação ao sistema de coordenadas cartesianas que tem seu origem em um foco e seu eixo x apontando para a origem do "sistema de coordenadas canônicas" como ilustrado no primeiro diagrama.
Neste caso, o ângulo φ φ - Sim. é chamado verdadeira anomalia.
Em relação a este sistema de coordenadas tem-se que
- R= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =p1∓ ∓ ee φ φ ,p= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)2um- Sim. {p}{1mp ecos varphi }},quad p={tfrac (b^{2}}{a}}}
e
- <math alttext="{displaystyle -arccos left(-{frac {1}{e}}right)<varphi - Sim. - Sim. Arcos (- Sim. - Sim. 1e)<φ φ <Arcos (- Sim. - Sim. 1e).Não. -arccos left(-{frac {1}{e}}right)<varphi <arccos left(-{frac {1}{e}}right).}<img alt="{displaystyle -arccos left(-{frac {1}{e}}right)<varphi
para poste = centro:
Com coordenadas polares relativas ao "sistema de coordenadas canônicas" (veja o segundo diagrama) um tem isso
- R= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)e2e2 φ φ - Sim. - Sim. 1.- Sim. Não. {e^{2}cos ^{2}varphi -1}}}.
Para o ramo direito do hiperbola a gama de φ φ - Sim. o
- <math alttext="{displaystyle -arccos left({frac {1}{e}}right)<varphi - Sim. - Sim. Arcos (1e)<φ φ <Arcos (1e).{displaystyle -arccos left({frac {1}{e}}right)<varphi <arccos left({frac {1}{e}}right).}<img alt="{displaystyle -arccos left({frac {1}{e}}right)<varphi
Equações paramétricas
Uma hiperbola com equação x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1{displaystyle {tfrac {x^{2}}{a^{2}}}}}}-{tfrac {y^{2}}{b^{2}}}=1} pode ser descrito por várias equações paramétricas:
- (x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± umCosh! ),Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)Pecar! ),)∈ ∈ R.{displaystyle {begin{cases}x=pm acosh t,y=bsinh t,end{cases}}qquad tin mathbb Não.
- 0}" xmlns="http://www.w3.org/1998/Math/MathML">(x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± um)2+12),Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b))2- Sim. - Sim. 12),)>0{displaystyle {begin{cases}x=pm a{tfrac {t^{2}+1}{2t}},y=b{tfrac {t^{2}-1}{2t}},end{cases}}qquad t>0}
0}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bed9d40d9f8b256b5c9fed5eb9854ad259f1e7f0" style="vertical-align: -3.505ex; width:25.038ex; height:8.176ex;"/> (racional representação).
- <math alttext="{displaystyle {begin{cases}x={frac {a}{cos t}}=asec t,\y=pm btan t,end{cases}}qquad 0leq t(x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =ume )= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um- Sim. ),Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =± ± b)bronzeado ),0≤ ≤ )<2D D ,)≠ ≠ D D 2,)≠ ≠ 32D D .{displaystyle {begin{cases}x={frac {a}{cos t}}=asec t,y=pm btan t,end{cases}}qquad 0leq t<2pi tneq {frac }{2}}, tneq {frac {3}{2}}pi.}<img alt="{displaystyle {begin{cases}x={frac {a}{cos t}}=asec t,\y=pm btan t,end{cases}}qquad 0leq t
- Inclinação tangente como parâmetro:
- Uma representação paramétrica, que usa a inclinação mNão. do tangente em um ponto da hiperbola pode ser obtido analógicamente ao caso elipse: Substituir no caso elipse b)2{displaystyle b^{2}} por - Sim. - Sim. b)2{displaystyle -b^{2}} e usar fórmulas para as funções hiperbólicas. Um.
- b/a.}" xmlns="http://www.w3.org/1998/Math/MathML">c→ → ± ± (m)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(- Sim. - Sim. mum2± ± m2um2- Sim. - Sim. b)2,- Sim. - Sim. b)2± ± m2um2- Sim. - Sim. b)2),|m|>b)/um.{displaystyle {vec {c}}_{pm }(m)=left(-{frac {ma^{2}}{pm {sqrt {m^{2}a^{2}-b^{2}}}}}}},{frac {-b^{2}}{pm {sqrt {m^{2}a^{2}-b^{2}}}right),quad |m|>b/a.}
b/a.}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0175d7bdb9570733715942f4f0c27b6dc1ca1a9d" style="vertical-align: -3.171ex; width:60.896ex; height:7.509ex;"/>
- c→ → - Sim. - Sim. Não. {c}}_{-}} é o superior, e c→ → +Não. {c}}_{+}} a metade inferior do hiperbola. Os pontos com tangentes verticais (vertices (± ± um,0)(pm a,0)}) não são abrangidos pela representação.
- A equação do tangente em ponto c→ → ± ± (m)(m)} o
- Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =mx± ± m2um2- Sim. - Sim. b)2.- Sim. {m^{2}a^{2}-b^{2}}}.}
- Esta descrição dos tangentes de um hiperbola é uma ferramenta essencial para a determinação da ortopedia de um hiperbola.
Funções hiperbólicas

Assim como as funções trigonométricas são definidas em termos do círculo unitário, também as funções hiperbólicas são definidas em termos da hipérbole unitária, conforme mostrado neste diagrama. Em um círculo unitário, o ângulo (em radianos) é igual a duas vezes a área do setor circular que esse ângulo subtende. O ângulo hiperbólico análogo é igualmente definido como duas vezes a área de um setor hiperbólico.
Vamos. umNão. ser duas vezes a área entre xNão. eixo e um raio através da origem que cruza o hiperbola da unidade, e define (x,Sim.)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(Cosh! um,Pecar! um)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x,x2- Sim. - Sim. 1)(x,y)=(cosh a,sinh a)=(x,{sqrt {x^{2}-1}}} como as coordenadas do ponto de interseção. Em seguida, a área do setor hiperbólico é a área do triângulo menos a região curvada após o vértice em (1,0)(0):
- um2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =xSim.2- Sim. - Sim. ∫ ∫ 1x)2- Sim. - Sim. 1D)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =xx2- Sim. - Sim. 12- Sim. - Sim. xx2- Sim. - Sim. 1- Sim. - Sim. I (x+x2- Sim. - Sim. 1)2,- Sim. {a}{2}}&={frac {xy}{2}}-displaystyle int _{1}^{x}{sqrt {t^{2}-1}},dt&={frac {x{sqrt {x^{2}-1}}}{2}}-{frac {x{sqrt {x^{2}-1}}-ln left(x+{sqrt {x^{2}-1}}right)}{2}},end{aligned}}}
que simplifica para a área do cosseno hiperbólico
- um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Arco-Íris x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =I (x+x2- Sim. - Sim. 1).{displaystyle a=operatorname {arcosh} x=ln left(x+{sqrt {x^{2}-1}}right).}
Vendendo para xNão. produz a forma exponencial da cosse hiperbólica:
- x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Cosh! um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =eum+e- Sim. - Sim. um2.{displaystyle x=cosh a={frac {e^{a}+e^{-a}}{2}}}
A partir de x2- Sim. - Sim. Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1Não. x^{2}-y^{2}=1} um.
- Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Pecar! um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Cosh!2 um- Sim. - Sim. 1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =eum- Sim. - Sim. e- Sim. - Sim. um2,- Sim. ^{2}a-1}} ? {e^{a}-e^{-a}}{2}}}
e seu inverso o seno hiperbólico da área:
- um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Não! Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =I (Sim.+Sim.2+1).{displaystyle a=operatorname {arsinh} y=ln left(y+{sqrt {y^{2}+1}}right).}
Outras funções hiperbólicas são definidas de acordo com o cosseno hiperbólico e o seno hiperbólico, por exemplo
- Tanh um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Pecar! umCosh! um= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =e2um- Sim. - Sim. 1e2um+1.{displaystyle operatorname {tanh} a={frac - Sim. {e^{2a}-1}{e^{2a}+1}}.}
Propriedades
A tangente divide o ângulo entre as linhas para os focos
O tangente em um ponto PNão. P. bisecta o ângulo entre as linhas PF1? ? ,PF2? ? Não. {overline {PF_{1}}},{overline {PF_{2}}}}.
- Prova
Vamos. LNão. L. ser o ponto na linha PF2? ? Não. (PF_{2}} com a distância 2um- Sim. para o foco F2{displaystyle F_{2}} (ver diagrama, umNão. é o semi maior eixo do hiperbola). Linha de linha O quê?Não. é o bissetor do ângulo entre as linhas PF1? ? ,PF2? ? Não. {overline {PF_{1}}},{overline {PF_{2}}}}. A fim de provar que O quê?Não. é a linha tangente no ponto PNão. P., um verifica que qualquer ponto QNão. em linha O quê?Não. que é diferente de PNão. P. não pode estar na hiperbola. Daí O quê?Não. tem apenas ponto PNão. P. em comum com o hiperbola e é, portanto, o tangente em ponto PNão. P..
Do diagrama e da desigualdade de triângulo reconhece-se que <math alttext="{displaystyle |QF_{2}||QF2|<|LF2|+|QL|= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =2um+|QF1|Não. |QF_{2}|<|LF_{2}|+|QL|=2a+|QF_{1}|}<img alt="{displaystyle |QF_{2}| que significa: <math alttext="{displaystyle |QF_{2}|-|QF_{1}||QF2|- Sim. - Sim. |QF1|<2umNão. |QF_{2}|-|QF_{1}|<2a}<img alt="{displaystyle |QF_{2}|-|QF_{1}|. Mas se QNão. é um ponto da hiperbola, a diferença deve ser 2um- Sim..
Pontos médios de cordas paralelas
Os pontos médios das cordas paralelas de uma hipérbole estão em uma linha que passa pelo centro (veja o diagrama).
Os pontos de qualquer corda podem estar em diferentes ramos da hipérbole.
A prova da propriedade em pontos médios é melhor feita para o hiperbola Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1/x- Sim.. Porque qualquer hiperbola é uma imagem affine do hiperbola Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1/x- Sim. (ver seção abaixo) e uma transformação afine preserva o paralelismo e os pontos médios dos segmentos de linha, a propriedade é verdadeira para todos os hiperbolas:
Para dois pontos P= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x1,1x1),Q= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x2,1x2){displaystyle P=left(x_{1},{tfrac {1}{x_{1}}}right), Q=left(x_{2},{tfrac {1}{x_{2}}}right)} da hiperbola Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1/x- Sim.
- o ponto médio do acorde é M= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x1+x22,⋯ ⋯ )= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =⋯ ⋯ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =x1+x22(1,1x1x2);{displaystyle M=left({tfrac) {x_{1}+x_{2}}{2}},cdots right)=cdots ={tfrac {x_{1}+x_{2}}{2}};left(1,{tfrac {1}{x_{1}x_{2}}}right);}
- a inclinação do acorde é 1x2- Sim. - Sim. 1x1x2- Sim. - Sim. x1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =⋯ ⋯ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. 1x1x2.(em inglês) {1}{x_{2}}}-{tfrac {1}{x_{1}}{x_{2}-x_{1}}}=cdots - Não. {1}{x_{1}x_{2}}}.}
Para acordes paralelos a inclinação é constante e os pontos médios dos acordes paralelos estão na linha Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1x1x2x.- Sim. {1}{x_{1}x_{2}}};x.}
Consequência: para qualquer par de pontos P,Q- Sim. de um acorde existe um reflexo de cebolinha com um eixo (conjunto de pontos fixos) passando pelo centro da hiperbola, que troca os pontos P,Q- Sim. e deixa o hiperbola (como um todo) fixo. Uma reflexão de cebolinha é uma generalização de uma reflexão ordinária através de uma linha mNão., onde todos os pares de imagem de ponto estão em uma linha perpendicular a mNão..
Uma vez que uma reflexão de cebolinha deixa a hiperbola fixa, o par de assintotos também é fixo. Daí o ponto médio MNão. de um acorde PQNão. divide o segmento de linha relacionado P? ? Q? ? Não. {overline {P}},{overline Não. entre os assintotos em metades, também. Isso significa que |PP? ? |= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =|QQ? ? |Não. |P{overline {P}}|=Q{overline {Q}}}. Esta propriedade pode ser utilizada para a construção de outros pontos QNão. da hiperbola se um ponto PNão. P. e os assintotos são dados.
Se a corda degenera em uma tangente, então o ponto de contato divide o segmento de linha entre as assíntotas em duas metades.
Tangentes ortogonais – ortópticas
Para um hiperbola b}" xmlns="http://www.w3.org/1998/Math/MathML">x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1,um>b){displaystyle {frac {x^{2}}{a^{2}}}}}}}}-{frac {y^{2}}{b^{2}}}=1,,a>b}b}" aria-hidden="true" class="mwe-math-fallback-image-inline" src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79dae9b470b8f2e6d6eeadb9414e3a8dae15b9c8" style="vertical-align: -2.171ex; width:20.119ex; height:6.009ex;"/> os pontos de interseção ortogonal tangentes mente sobre o círculo x2+Sim.2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um2- Sim. - Sim. b)2Não. x^{2}+y^{2}=a^{2}-b^{2}}.
Este círculo é chamado de Ortopedia da hiperbola dada.
As tangentes podem pertencer a pontos em diferentes ramos da hipérbole.
Em caso de um≤ ≤ b)- Sim. não há pares de tangentes ortogonais.
Relação pólo-polar para uma hipérbole
Qualquer hiperbola pode ser descrita em um sistema de coordenadas adequado por uma equação x2um2- Sim. - Sim. Sim.2b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1{displaystyle {tfrac {x^{2}}{a^{2}}}}}}-{tfrac {y^{2}}{b^{2}}}=1}. A equação do tangente em um ponto P0= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x0,Sim.0)Não. P_{0}=(x_{0},y_{0})} da hiperbola é x0xum2- Sim. - Sim. Sim.0Sim.b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1.Não. {x_{0}x}{a^{2}}}-{tfrac {y_{0}y}{b^{2}}}=1.} Se um permite ponto P0= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x0,Sim.0)Não. P_{0}=(x_{0},y_{0})} para ser um ponto arbitrário diferente da origem, então
- ponto P0= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =(x0,Sim.0)≠ ≠ (0,0)Não. P_{0}=(x_{0},y_{0})neq (0,0)} é mapeado para a linha x0xum2- Sim. - Sim. Sim.0Sim.b)2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1Não. {x_{0}x}{a^{2}}}-{frac {y_{0}y}{b^{2}}}=1}, não através do centro da hiperbola.
Essa relação entre pontos e retas é uma bijeção.
Os mapas de funções inversas
- linha de linha Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =mx+D,D≠ ≠ 0{displaystyle y=mx+d, dneq 0 para o ponto (- Sim. - Sim. mum2D,- Sim. - Sim. b)2D){displaystyle left(-{frac {ma^{2}}{d}},-{frac {b^{2}}{d}}right)} e
- linha de linha x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =c,c≠ ≠ 0{displaystyle x=c, cneq 0 para o ponto (um2c,0).{displaystyle left({frac) {a^{2}}{c}},0right).}
Essa relação entre pontos e linhas geradas por uma cônica é chamada de relação pólo-polar ou apenas polaridade. O pólo é o ponto, o polar a linha. Veja Pólo e polar.
Pelo cálculo, verificam-se as seguintes propriedades da relação pólo-polar da hipérbole:
- Para um ponto (polo) sobre o hiperbola o polar é o tangente neste ponto (veja diagrama: P1,p1{displaystyle P_{1}, p_{1}}).
- Para um poste PNão. P. fora o hiperbola os pontos de interseção de seu polar com o hiperbola são os pontos de tangência dos dois tangentes passando PNão. P. (ver diagrama: P2,p2,P3,p3{displaystyle P_{2}, p_{2}, P_{3}, p_{3}}).
- Para um ponto dentro de o hiperbola o polar não tem nenhum ponto com o hiperbola em comum. (ver diagrama: P4,p4{displaystyle P_{4}, p_{4}}).
Observações:
- O ponto de interseção de dois polares (por exemplo: p2,p3Não. p_{2},p_{3}}) é o pólo da linha através de seus pólos (aqui: P2,P3Não. P_{2},P_{3}}).
- O foci (c,0),(c,0),} e (- Sim. - Sim. c,0)(-c,0)} respectivamente e os directrizs x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =um2cNão. (a^{2}}{c}}} e x= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. um2c{displaystyle x=-{tfrac (a^{2}}{c}}} respectivamente pertencem a pares de pólo e polar.
Também existem relações pólo-polares para elipses e parábolas.
Outras propriedades
- Os seguintes são concomitantes: (1) um círculo que passa pelos focos do hiperbola e centrado no centro do hiperbola; (2) qualquer uma das linhas que são tangentes ao hiperbola nos vértices; e (3) qualquer um dos assintotos do hiperbola.
- Os seguintes também são simultâneos: (1) o círculo que está centrado no centro do hiperbola e que passa através dos vértices do hiperbola; (2) ou directrix; e (3) qualquer um dos assintotos.
Comprimento do arco
O comprimento do arco de uma hipérbole não tem uma expressão elementar. A metade superior de uma hipérbole pode ser parametrizada como
- Sim.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)x2um2- Sim. - Sim. 1.(em inglês) {x^{2}}{a^{2}}}-1}}.}
Então a integral dando o comprimento do arco SNão. a partir de x1Não. x_{1}} para x2{displaystyle x_{2}} pode ser computado como:
- S= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)∫ ∫ Arco-Íris x1umArco-Íris x2um1+(1+um2b)2)Pecar!2 vDv.{displaystyle s=bint _{operatorname {arcosh} frac {x_{1}}{a}}}^{operatorname Não. {x_{2}}{a}}}{sqrt {1+left(1+{frac {a^{2}}{b^{2}}}right)sinh ^{2}v}},mathrm {d} V.
Depois de usar a substituição zangão.= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Eu...v- Sim., isso também pode ser representado usando a integral elíptica incompleta do segundo tipo ENão. com parâmetro m= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =k2Não. m=k^{2}}:
- S= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Eu...b)Não.E(Eu...v|1+um2b)2)]Arco-Íris x2umArco-Íris x1um.[}Eleft(iv,{Biggr] |},1+{frac {a^{2}}{b^{2}}}right){ Biggr! {x_{2}}{a}}}^{operatorname {arcosh} {x_{1}}{a}}}.}
Usando apenas números reais, isso se torna
- S= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =b)Não.F(GD v|- Sim. - Sim. um2b)2)- Sim. - Sim. E(GD v|- Sim. - Sim. um2b)2)+1+um2b)2Tanh2 vPecar! v]Arco-Íris x1umArco-Íris x2um{displaystyle s=bleft[Fleft(operatorname {gd} v,{Biggr |}-{frac {a^{2}}{b^{2}}}right)-Eleft(operatorname {gd} v,{Biggr |}-{frac {a^{2}}{b^{2}}}right)+{sqrt {1+{frac {a^{2}}{b^{2}}}tanh ^{2}v}},sinh vright]_{operatorname {arcosh} {tfrac {x_{1}}{a}}}^{operatorname Não. {x_{2}}{a}}}}
Onde? FNão. é a integral elíptica incompleta do primeiro tipo com parâmetro m= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =k2Não. m=k^{2}} e GD v= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =arctan Pecar! v{displaystyle operatorname {gd} v=arctan sinh v}} é a função Gudermanniana.
Curvas derivadas

Várias outras curvas podem ser derivadas da hipérbole por inversão, as chamadas curvas inversas da hipérbole. Se o centro de inversão for escolhido como o próprio centro da hipérbole, a curva inversa é a lemniscata de Bernoulli; a lemniscata também é o envelope de círculos centrados em uma hipérbole retangular e passando pela origem. Se o centro de inversão for escolhido em um foco ou vértice da hipérbole, as curvas inversas resultantes são um limaçon ou um estrofoide, respectivamente.
Coordenadas elípticas
Uma família de hipérboles confocais é a base do sistema de coordenadas elípticas em duas dimensões. Essas hipérboles são descritas pela equação
- (xce θ θ )2- Sim. - Sim. (Sim.cpecado θ θ )2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1{displaystyle left({frac) (x){ccos theta }}right)^{2}-left({frac {y}{csin theta }}right)^{2}=1}
onde os focos estão localizados a uma distância c da origem no eixo x, e onde θ é o ângulo das assíntotas com o x -eixo. Cada hipérbole nesta família é ortogonal a cada elipse que compartilha os mesmos focos. Esta ortogonalidade pode ser mostrada por um mapa conforme do sistema de coordenadas cartesianas w = z + 1/z, onde z= x + iy são as coordenadas cartesianas originais, e w=u + iv são aqueles após a transformação.
Outros sistemas de coordenadas bidimensionais ortogonais envolvendo hipérboles podem ser obtidos por outros mapeamentos conformes. Por exemplo, o mapeamento w = z2 transforma o sistema de coordenadas cartesianas em duas famílias de hipérboles ortogonais.
Análise de seção cônica da aparência hiperbólica de círculos

Como imagens dos círculos se obtém um círculo (magenta), elipses, hiperbolas e linhas. O caso especial de um parabola não aparece neste exemplo.
(Se o centro O eles/elas/vocês sobre a esfera, todas as imagens dos círculos seriam círculos ou linhas; ver projeção estereográfica).
Além de fornecer uma descrição uniforme de círculos, elipses, parábolas e hipérboles, as seções cônicas também podem ser entendidas como um modelo natural da geometria da perspectiva no caso em que a cena visualizada consiste em círculos ou, mais geralmente, em uma elipse. O visualizador é tipicamente uma câmera ou o olho humano e a imagem da cena uma projeção central em um plano de imagem, ou seja, todos os raios de projeção passam por um ponto fixo O, o centro. O plano da lente é um plano paralelo ao plano da imagem na lente O.
A imagem de um círculo c é
- a) a) a) círculo círculo, se círculo c está em uma posição especial, por exemplo, paralela ao plano de imagem e outros (ver projeção estereográfica),
- b) um Elipse, se c ele tem Não. ponto com o plano de lente em comum,
- c) a Parabola, se c ele tem um ponto com o plano da lente em comum e
- d) a hiperbola, se c ele tem dois. pontos com o plano de lente em comum.
(As posições especiais onde o plano do círculo contém o ponto O são omitidas.)
Estes resultados podem ser compreendidos se reconhecermos que o processo de projeção pode ser visto em duas etapas: 1) o círculo c e o ponto O geram um cone que é 2) cortado pelo plano da imagem, em para gerar a imagem.
Vê-se uma hipérbole sempre que se avista uma parte de um círculo cortado pelo plano da lente. A incapacidade de ver muito dos braços do ramo visível, combinada com a completa ausência do segundo ramo, torna virtualmente impossível para o sistema visual humano reconhecer a conexão com as hipérboles.
Aplicativos
Relógios de sol
As hipérboles podem ser vistas em muitos relógios de sol. Em qualquer dia, o sol gira em um círculo na esfera celeste, e seus raios atingindo o ponto em um relógio de sol traçam um cone de luz. A interseção deste cone com o plano horizontal do solo forma uma seção cônica. Nas latitudes mais populosas e na maioria das épocas do ano, essa seção cônica é uma hipérbole. Em termos práticos, a sombra da ponta de um poste traça uma hipérbole no solo ao longo de um dia (esse caminho é chamado de linha de declinação). A forma dessa hipérbole varia com a latitude geográfica e com a época do ano, pois esses fatores afetam o cone dos raios solares em relação ao horizonte. A coleção de tais hipérboles durante um ano inteiro em um determinado local foi chamada de pelekinon pelos gregos, pois se assemelha a um machado de lâmina dupla.
Multilateração
Uma hipérbole é a base para resolver problemas de multilateração, a tarefa de localizar um ponto a partir das diferenças em suas distâncias a pontos dados — ou, de forma equivalente, a diferença nos tempos de chegada de sinais sincronizados entre o ponto e os pontos dados. Tais problemas são importantes na navegação, particularmente na água; um navio pode localizar sua posição a partir da diferença nos tempos de chegada dos sinais de um transmissor LORAN ou GPS. Por outro lado, um farol homing ou qualquer transmissor pode ser localizado comparando os tempos de chegada de seus sinais em duas estações receptoras separadas; tais técnicas podem ser usadas para rastrear objetos e pessoas. Em particular, o conjunto de posições possíveis de um ponto que tem uma diferença de distância de 2a de dois pontos dados é uma hipérbole de separação de vértices 2a cujos focos são os dois pontos dados.
Caminho seguido por uma partícula
O caminho seguido por qualquer partícula no problema clássico de Kepler é uma seção cônica. Em particular, se a energia total E da partícula for maior que zero (isto é, se a partícula não estiver ligada), o caminho dessa partícula é uma hipérbole. Essa propriedade é útil no estudo de forças atômicas e subatômicas pelo espalhamento de partículas de alta energia; por exemplo, o experimento de Rutherford demonstrou a existência de um núcleo atômico examinando a dispersão de partículas alfa de átomos de ouro. Se as interações nucleares de curto alcance forem ignoradas, o núcleo atômico e a partícula alfa interagem apenas por uma força repulsiva de Coulomb, que satisfaz o requisito da lei do inverso do quadrado para um problema de Kepler.
Equação de Korteweg–de Vries
A função de trigação hiperbólica Segx{displaystyle operatorname {sech} ,x} aparece como uma solução para a equação de Korteweg-de Vries que descreve o movimento de uma onda de soliton em um canal.
Trissecção de ângulos
Como mostrado primeiro por Apollonius de Perga, um hiperbola pode ser usado para trisectar qualquer ângulo, um problema bem estudado de geometria. Dado um ângulo, primeiro desenhe um círculo centrado em seu vértice O, que cruza os lados do ângulo em pontos A e B. Em seguida, desenhe o segmento de linha com endpoints A e B e seu bissetor perpendicular Eu... Eu... - Sim.. Construir uma hiperbola de excentricidade e=2 com Eu... Eu... - Sim. como directrix e B como foco. Vamos. P ser a interseção (upper) do hiperbola com o círculo. Ângulo POBIL ângulo de trisects AOB.
Para provar isso, reflitam o segmento de linha OP sobre a linha Eu... Eu... - Sim. obtenção do ponto P ' como a imagem de P. Segmento AP. tem o mesmo comprimento do segmento Pressão devido à reflexão, enquanto segmento PP tem o mesmo comprimento do segmento Pressão devido à excentricidade do hiperbola. Como OA, OP ', OP e OB são todos radii do mesmo círculo (e assim, têm o mesmo comprimento), os triângulos OPA ', OPP ' e OPB são todos congruentes. Portanto, o ângulo foi trissecado, desde 3×POBIL = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = AOB.
Fronteira de portfólio eficiente
Na teoria do portfólio, o locus dos portfólios eficientes de média-variância (chamados de fronteira eficiente) é a metade superior do ramo de abertura leste de uma hipérbole desenhada com o desvio padrão do retorno do portfólio plotado horizontalmente e seu esperado valor plotado verticalmente; de acordo com essa teoria, todos os investidores racionais escolheriam uma carteira caracterizada por algum ponto desse locus.
Bioquímica
Em bioquímica e farmacologia, a equação de Hill e a equação de Hill-Langmuir, respectivamente, descrevem as respostas biológicas e a formação de complexos proteína-ligante como funções da concentração do ligante. Ambos são hipérboles retangulares.
Hiperbolas como seções planas de quádricas
As hipérboles aparecem como seções planas das seguintes quádricas:
- Cone elíptico
- Cilindro hiperbólico
- Parabolóide hiperbólico
- Hiperbolóide de uma folha
- Hiperbolóide de duas folhas
Contenido relacionado
Antiprisma
Charles Babbage
Dodecaedro
Espaço euclidiano
Absoluto Infinito