Análise de Fourier
Em matemática, Análise de Fourier () é o estudo da forma como funções gerais podem ser representadas ou aproximadas por somas de funções trigonométricas mais simples. A análise de Fourier cresceu a partir do estudo da série de Fourier e recebeu o nome de Joseph Fourier, que mostrou que representar uma função como uma soma de funções trigonométricas simplifica muito o estudo da transferência de calor.
O assunto da análise de Fourier abrange um vasto espectro de matemática. Nas ciências e na engenharia, o processo de decomposição de uma função em componentes oscilatórios costuma ser chamado de análise de Fourier, enquanto a operação de reconstrução da função a partir dessas partes é conhecida como Síntese de Fourier. Por exemplo, determinar quais frequências componentes estão presentes em uma nota musical envolveria calcular a transformada de Fourier de uma nota musical amostrada. Pode-se então ressintetizar o mesmo som incluindo os componentes de frequência conforme revelados na análise de Fourier. Em matemática, o termo análise de Fourier geralmente se refere ao estudo de ambas as operações.
O próprio processo de decomposição é chamado de transformação de Fourier. Sua saída, a transformada de Fourier, geralmente recebe um nome mais específico, que depende do domínio e de outras propriedades da função que está sendo transformada. Além disso, o conceito original da análise de Fourier foi estendido ao longo do tempo para se aplicar a situações cada vez mais abstratas e gerais, e o campo geral é frequentemente conhecido como análise harmônica. Cada transformada usada para análise (consulte a lista de transformadas relacionadas a Fourier) tem uma transformada inversa correspondente que pode ser usada para síntese.
Para usar a análise de Fourier, os dados devem estar igualmente espaçados. Diferentes abordagens foram desenvolvidas para analisar dados espaçados desigualmente, notadamente os métodos de análise espectral de mínimos quadrados (LSSA) que usam um ajuste de mínimos quadrados de senoides para amostras de dados, semelhante à análise de Fourier. A análise de Fourier, o método espectral mais usado na ciência, geralmente aumenta o ruído periódico longo em registros com intervalos longos; LSSA atenua tais problemas.
Aplicativos
A análise de Fourier tem muitas aplicações científicas – em física, equações diferenciais parciais, teoria dos números, combinatória, processamento de sinais, processamento de imagens digitais, teoria da probabilidade, estatística, forense, precificação de opções, criptografia, análise numérica, acústica, oceanografia, sonar, óptica, difração, geometria, análise de estrutura de proteínas e outras áreas.
Essa ampla aplicabilidade decorre de muitas propriedades úteis das transformações:
- As transformaçÃμes são operadores lineares e, com normalização adequada, também são unitárias (uma propriedade conhecida como teorema de Parseval ou, mais geralmente, como teorema de Plancherel e, mais geralmente, via dualidade Pontryagin).
- As transformações são geralmente invertíveis.
- As funções exponenciais são eigenfunctions da diferenciação, o que significa que esta representação transforma equações diferenciais lineares com coeficientes constantes em algébricas comuns. Portanto, o comportamento de um sistema linear de tempo-invariante pode ser analisado de forma independente em cada frequência.
- Pelo teorema da convolução, Fourier transforma a operação complicada de convolução em multiplicação simples, o que significa que eles fornecem uma maneira eficiente de computar operações baseadas em convoluções, como filtragem de sinais, multiplicação polinomial e multiplicando grandes números.
- A versão discreta da transformada de Fourier (veja abaixo) pode ser avaliada rapidamente em computadores usando algoritmos de transformação rápida de Fourier (FFT).
Na área forense, os espectrofotômetros infravermelhos de laboratório usam a análise da transformada de Fourier para medir os comprimentos de onda da luz em que um material será absorvido no espectro infravermelho. O método FT é usado para decodificar os sinais medidos e registrar os dados de comprimento de onda. E usando um computador, esses cálculos de Fourier são realizados rapidamente, de modo que, em questão de segundos, um instrumento FT-IR operado por computador pode produzir um padrão de absorção de infravermelho comparável ao de um instrumento de prisma.
A transformação de Fourier também é útil como uma representação compacta de um sinal. Por exemplo, a compactação JPEG usa uma variante da transformação de Fourier (transformada de cosseno discreta) de pequenos pedaços quadrados de uma imagem digital. Os componentes de Fourier de cada quadrado são arredondados para diminuir a precisão aritmética e os componentes fracos são totalmente eliminados, para que os componentes restantes possam ser armazenados de forma muito compacta. Na reconstrução da imagem, cada quadrado da imagem é remontado a partir dos componentes aproximados transformados de Fourier preservados, que são então transformados inversamente para produzir uma aproximação da imagem original.
No processamento de sinal, a transformada de Fourier geralmente pega uma série temporal ou uma função de tempo contínuo e a mapeia em um espectro de frequência. Ou seja, leva uma função do domínio do tempo para o domínio da frequência; é uma decomposição de uma função em senoides de diferentes frequências; no caso de uma série de Fourier ou transformada discreta de Fourier, as sinusóides são harmônicas da frequência fundamental da função que está sendo analisada.
Quando uma função S())(T)} é uma função do tempo e representa um sinal físico, a transformação tem uma interpretação padrão como o espectro de frequência do sinal. A magnitude da função resultante de valor complexo S(f)(f)} na frequência fNão. representa a amplitude de um componente de frequência cuja fase inicial é dada pelo ângulo de S(f)(f)} (coordenadas polares).
As transformadas de Fourier não estão limitadas a funções de tempo e frequências temporais. Eles podem igualmente ser aplicados para analisar frequências espaciais e, de fato, para praticamente qualquer domínio de função. Isso justifica seu uso em ramos tão diversos como processamento de imagem, condução de calor e controle automático.
Ao processar sinais, como áudio, ondas de rádio, ondas de luz, ondas sísmicas e até imagens, a análise de Fourier pode isolar componentes de banda estreita de uma forma de onda composta, concentrando-os para facilitar a detecção ou remoção. Uma grande família de técnicas de processamento de sinais consiste na transformação de Fourier de um sinal, manipulação dos dados transformados de Fourier de maneira simples e reversão da transformação.
Alguns exemplos incluem:
- Igualização de gravações de áudio com uma série de filtros bandpass;
- Recepção de rádio digital sem um circuito superheterodyne, como em um telefone celular moderno ou scanner de rádio;
- Processamento de imagens para remover artefatos periódicos ou anisotrópicos, como jaggies de vídeo entrelaçado, artefatos de tiras de fotografia aérea, ou padrões de onda de interferência de radiofrequência em uma câmera digital;
- Correlação transversal de imagens semelhantes para co-alinhamento;
- Cristalografia de raios-X para reconstruir uma estrutura de cristal do seu padrão de difração;
- Espetrometria de massa de ressonância de cyclotron de íon Fourier-transform para determinar a massa de íons da frequência de movimento de cyclotron em um campo magnético;
- Muitas outras formas de espectroscopia, incluindo espectroscopia de ressonância magnética infravermelha e nuclear;
- Geração de espectrogramas de som usados para analisar sons;
- Sonar passivo usado para classificar alvos com base no ruído de máquinas.
Variantes da análise de Fourier
(Contínua) Transformada de Fourier
Na maioria das vezes, o termo não qualificado transformada de Fourier refere-se à transformada de funções de um argumento real contínuo e produz uma função contínua de frequência, conhecida como distribuição de frequência. Uma função é transformada em outra, e a operação é reversível. Quando o domínio da função de entrada (inicial) é o tempo (t) e o domínio da função de saída (final) é frequência comum, a transformação da função s(t) na frequência f é dado pelo número complexo:
- S(f)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =∫ ∫ - Sim. - Sim. ∞ ∞ ∞ ∞ S()))) e- Sim. - Sim. Eu...2D D f)D).{displaystyle S(f)=int _{-infty }^{infty }s(t)cdot e^{-i2pi ft},dt.}
Avaliar esta quantidade para todos os valores de f produz a função frequency-domain. Então s(t) pode ser representado como uma recombinação de exponenciais complexas de todas as frequências possíveis:
- S())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =∫ ∫ - Sim. - Sim. ∞ ∞ ∞ ∞ S(f))) eEu...2D D f)Df,{displaystyle s(t)=int _{-infty }^{infty }S(f)cdot e^{i2pi ft},df,}
que é a fórmula da transformada inversa. O número complexo, S(f), transmite a amplitude e a fase da frequência f.
Consulte a transformada de Fourier para obter muito mais informações, incluindo:
- convenções para normalização de amplitude e escala de frequência / unidades
- propriedades de transformação
- transformadores tabulados de funções específicas
- uma extensão / generalização para funções de múltiplas dimensões, como imagens.
Série de Fourier
A transformada de Fourier de uma função periódica, sP(t), com período P, torna-se uma função Dirac comb, modulada por uma sequência de coeficientes complexos:
- SNão.k]= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1P∫ ∫ PSP()))) e- Sim. - Sim. Eu...2D D kP)D),k∈ ∈ Z.,Não. S[k] - Não. _{P}s_{P}(t)cdot e^{-i2pi Não. {k}{P}}t},dt,quad kin mathbb (Z) (onde) ∫P é a integral em qualquer intervalo de comprimento P).
A transformada inversa, conhecida como Série de Fourier, é uma representação de sP (t) em termos de uma soma de um número potencialmente infinito de sinusóides ou funções exponenciais complexas harmonicamente relacionadas, cada uma com uma amplitude e fase especificadas por um dos coeficientes:
- SP())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =F- Sim. - Sim. 1(Gerenciamento Gerenciamento k= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ +∞ ∞ SNão.k]δ δ (f- Sim. - Sim. kP)?= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Gerenciamento Gerenciamento k= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ SNão.k])) eEu...2D D kP).{displaystyle s_{P}(t) = {mathcal {F}}^{-1}left{sum _{k=-infty }^{+infty }S[k],delta left(f-{frac {k}{P}}right)right} = \sum _{k=-infty }^{infty }S[k]cdot e^{i2pi Não. Não.
Qualquer sP(t) pode ser expresso como uma soma periódica de outra função, s(t):
- SP())≜ ≜ Gerenciamento Gerenciamento m= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ S()- Sim. - Sim. mP),{displaystyle s_{P}(t),triangleq ,sum _{m=-infty }^{infty }s(t-mP),}
e os coeficientes são proporcionais a amostras de S(f) em intervalos discretos de 1/P:
- SNão.k]= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1P)) S(kP).Não. S[k]={frac {1}{P}}cdot Sleft({frac (k}{P}}right).}
Observe que qualquer s(t) cuja transformação tenha os mesmos valores de amostra discretos pode ser usado no periódico soma. Uma condição suficiente para recuperar s(t) (e, portanto, S (f)) apenas dessas amostras (ou seja, da série de Fourier) é que a parte diferente de zero de s (t) ser confinado a um intervalo conhecido de duração P, que é o dual no domínio da frequência do teorema de amostragem de Nyquist–Shannon.
Veja a série de Fourier para mais informações, incluindo o desenvolvimento histórico.
Transformada de Fourier em tempo discreto (DTFT)
O DTFT é o dual matemático da série de Fourier no domínio do tempo. Assim, uma soma periódica convergente no domínio da frequência pode ser representada por uma série de Fourier, cujos coeficientes são amostras de uma função de tempo contínua relacionada:
- S1T(f)≜ ≜ Gerenciamento Gerenciamento k= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ S(f- Sim. - Sim. kT))) Gerenciamento Gerenciamento n= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ SNão.n])) e- Sim. - Sim. Eu...2D D fnT⏞ ⏞ Série Fourier (DTFT)? ? Fórmula de soma de Poisson= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =F(Gerenciamento Gerenciamento n= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ SNão.n]δ δ ()- Sim. - Sim. nT)?,{displaystyle S_{frac {1}{T}}(f) triangleq \underbrace {sum _{k=-infty }^{infty }Sleft(f-{frac {k}{T}}right)equiv overbrace {sum _{n=-infty }^{infty }s[n]cdot e^{-i2pi fnT}} ^{text Série Fourier (DTFT)}}} _{text{Poisson summation formula}}={mathcal {F}}left{sum _{n=-infty }^{infty }s[n] delta (t-nT)right},,}
que é conhecido como DTFT. Assim, o DTFT da sequência s[n] também é o Fourier transform da função modulada Dirac comb.
Os coeficientes da série de Fourier (e a transformada inversa) são definidos por:
- SNão.n]≜ ≜ T∫ ∫ 1TS1T(f))) eEu...2D D fnTDf= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =T∫ ∫ - Sim. - Sim. ∞ ∞ ∞ ∞ S(f))) eEu...2D D fnTDf? ? ≜ ≜ S(nT).{displaystyle s[n] triangleq Tint _{frac Não. {1}{T}}(f)cdot e^{i2pi fnT},df=Tunderbrace {int _{-infty }^{infty }S(f)cdot e^{i2pi fnT},df} _{triangleq ,s(nT)}. ?
O parâmetro T corresponde ao intervalo de amostragem, e esta série de Fourier agora pode ser reconhecida como uma forma da fórmula de soma de Poisson. Assim, temos o importante resultado de que, quando uma sequência discreta de dados, s[n], é proporcional a amostras de um função contínua subjacente, s(t), pode-se observar uma soma periódica da transformada de Fourier contínua, S(f). Observe que qualquer s(t) com os mesmos valores de amostra discretos produz o mesmo DTFT Mas, sob certas condições idealizadas, pode-se recuperar teoricamente S(f) e s(t) exatamente. Uma condição suficiente para a recuperação perfeita é que a parte diferente de zero de S(f) seja confinada a uma frequência conhecida intervalo de largura 1/T. Quando esse intervalo é [−1/2T, 1/2T] , a fórmula de reconstrução aplicável é a fórmula de interpolação de Whittaker–Shannon. Esta é uma pedra angular na fundação do processamento de sinal digital.
Outro motivo para se interessar por S1/T(f) é que geralmente fornece informações sobre a quantidade de aliasing causada pelo processo de amostragem.
As aplicações do DTFT não estão limitadas a funções amostradas. Consulte Transformada de Fourier em tempo discreto para obter mais informações sobre este e outros tópicos, incluindo:
- unidades de frequência normalizadas
- janela (sequências de comprimento definido)
- propriedades de transformação
- transformadores tabulados de funções específicas
Transformada discreta de Fourier (DFT)
Semelhante a uma série Fourier, o DTFT de uma sequência periódica, SNNão.n]Não. S_{N}[n]}, com período NNão., torna-se uma função de pente Dirac, modulada por uma sequência de coeficientes complexos (ver DTFT § Dados periódicos):
- SNão.k]= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Gerenciamento Gerenciamento nSNNão.n])) e- Sim. - Sim. Eu...2D D kNn,k∈ ∈ Z.,Não. S[k] _{n}s_{N}[n]cdot e^{-i2pi frac {k}{N}}n},quad kin mathbb (Z) (onde) Σn é a soma sobre qualquer sequência de comprimento N).
A sequência S[k] é comumente conhecida como DFT de um ciclo de sN. Também é N-periódico, então nunca é necessário calcular mais do que N coeficientes. A transformada inversa, também conhecida como série discreta de Fourier, é dada por:
- SNNão.n]= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1NGerenciamento Gerenciamento kSNão.k])) eEu...2D D nNk,Não. S_{N}[n]={frac {1}{N}}sum _{k}S[k]cdot e^{i2pi Não. Não. Onde? Σk é a soma sobre qualquer sequência de comprimento N.
Quando sN[n] é expressa como uma soma periódica de outra função:
- SNNão.n]≜ ≜ Gerenciamento Gerenciamento m= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ SNão.n- Sim. - Sim. mN],{displaystyle s_{N}[n],triangleq ,sum _{m=-infty }^{infty }s[n-mN],} e SNão.n]≜ ≜ S(nT),{displaystyle s[n],triangleq ,s(nT),}
os coeficientes são proporcionais a amostras de S1/T (f) em intervalos discretos de 1/P = 1/NT:
- SNão.k]= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1T)) S1T(kP).Não. S[k] {1}{T}}cdot S_{frac {1}{T}}left({frac {k}{P}}right).}
Por outro lado, quando se deseja calcular um número arbitrário (N) de amostras discretas de um ciclo de uma DTFT contínua, S1/T(f) , isso pode ser feito calculando a DFT relativamente simples de sN [n], conforme definido acima. Na maioria dos casos, N é escolhido igual ao comprimento da parte diferente de zero de s[n]. Aumentar N, conhecido como preenchimento zero ou interpolação, resulta em amostras mais espaçadas de um ciclo de S1/T(f). Diminuir N, causa sobreposição (adição) no domínio do tempo (análogo ao aliasing), que corresponde à decimação no domínio da frequência. (consulte Transformada de Fourier em tempo discreto § L=N×I) Na maioria dos casos de interesse prático, o s[n] sequence representa uma sequência mais longa que foi truncada pela aplicação de uma função de janela de comprimento finito ou matriz de filtros FIR.
A DFT pode ser calculada usando um algoritmo de transformada rápida de Fourier (FFT), o que a torna uma transformação prática e importante em computadores.
Consulte a transformada discreta de Fourier para obter muito mais informações, incluindo:
- propriedades de transformação
- aplicações
- transformadores tabulados de funções específicas
Resumo
Para funções periódicas, tanto a transformada de Fourier quanto a DTFT compreendem apenas um conjunto discreto de componentes de frequência (série de Fourier), e as transformadas divergem nessas frequências. Uma prática comum (não discutida acima) é lidar com essa divergência por meio das funções Dirac delta e Dirac comb. Mas a mesma informação espectral pode ser percebida a partir de apenas um ciclo da função periódica, uma vez que todos os outros ciclos são idênticos. Da mesma forma, as funções de duração finita podem ser representadas como uma série de Fourier, sem nenhuma perda real de informação, exceto que a periodicidade da transformada inversa é um mero artefato.
É comum na prática que a duração de s(•) seja limitada ao período, P ou N. Mas essas fórmulas não exigem essa condição.
Frequência contínua | Frequências discretas | |
---|---|---|
Transformação | S(f)≜ ≜ ∫ ∫ - Sim. - Sim. ∞ ∞ ∞ ∞ S()))) e- Sim. - Sim. Eu...2D D f)D){displaystyle S(f),triangleq ,int _{-infty }^{infty }s(t)cdot e^{-i2pi ft},dt} | 1P)) S(kP)⏞ ⏞ SNão.k]≜ ≜ 1P∫ ∫ - Sim. - Sim. ∞ ∞ ∞ ∞ S()))) e- Sim. - Sim. Eu...2D D kP)D))) 1P∫ ∫ PSP()))) e- Sim. - Sim. Eu...2D D kP)D){displaystyle overbrace {{frac {1}{P}}cdot Sleft({frac {k}{P}}right)} ^{S[k]},triangleq ,{frac {1}{P}}int _{-infty }^{infty }s(t)cdot e^{-i2pi Não. {k}{P}}t},dtequiv {frac {1}{P}}int _{P}s_{P}(t)cdot e^{-i2pi Não. {k}{P}}t},dt} |
Invertido | S())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =∫ ∫ - Sim. - Sim. ∞ ∞ ∞ ∞ S(f))) eEu...2D D f)Df{displaystyle s(t)=int _{-infty }^{infty }S(f)cdot e^{i2pi ft},df} | SP())= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Gerenciamento Gerenciamento k= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ SNão.k])) eEu...2D D kP)? ? Fórmula de soma de Poisson (Série de filtro){displaystyle underbrace {s_{P}(t)=sum _{k=-infty }^{infty }S[k]cdot e^{i2pi Não. {k}{P}}t} _{text{Poisson fórmula de soma (Série de filtro)}},} |
Frequência contínua | Frequências discretas | |
---|---|---|
Transformação | 1TS1T(f)≜ ≜ Gerenciamento Gerenciamento n= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ S(nT))) e- Sim. - Sim. Eu...2D D fnT? ? Fórmula de soma de veneno (DTFT){displaystyle underbrace {{frac Não. {1}{T}}(f),triangleq ,sum _{n=-infty }^{infty }s(nT)cdot e^{-i2pi fnT}} _{text{Poisson summation formula (DTFT)}}} | 1TS1T(kNT)⏞ ⏞ SNão.k]≜ ≜ Gerenciamento Gerenciamento n= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ S(nT))) e- Sim. - Sim. Eu...2D D knN)) Gerenciamento Gerenciamento nSP(nT))) e- Sim. - Sim. Eu...2D D knN? ? DFT{displaystyle {begin{aligned}overbrace {{frac {1}{T}}S_{frac {1}{T}}left({frac {k}{NT}}right)} ^{S[k]},&triangleq ,sum _{n=-infty }^{infty }s(nT)cdot e^{-i2pi Não. {kn}{N}}}\&equiv underbrace {sum _{n}s_{P}(nT)cdot e^{-i2pi Não. {kn}{N}}}} _{text{DFT}},end{aligned}}} |
Invertido | S(nT)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =T∫ ∫ 1T1TS1T(f))) eEu...2D D fnTDf(nT)=Tint _{frac {1}{T}} Não. {1}{T}}(f)cdot e^{i2pi fnT},df} Gerenciamento Gerenciamento n= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- Sim. - Sim. ∞ ∞ ∞ ∞ S(nT))) δ δ ()- Sim. - Sim. nT)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =∫ ∫ - Sim. - Sim. ∞ ∞ ∞ ∞ 1TS1T(f))) eEu...2D D f)Df? ? Transformação inversa de Fourier{displaystyle sum _{n=-infty }^{infty }s(nT)cdot delta (t-nT)=underbrace {int _{-infty }^{infty }{frac {1}{T} S_{frac {1}{T}}(f)cdot e^{i2pi ft},df} _{text{inverse Transformação de Fourier}},} | SP(nT)= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1NGerenciamento Gerenciamento kSNão.k])) eEu...2D D knN⏞ ⏞ DFT inverso= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1PGerenciamento Gerenciamento kS1T(kP))) eEu...2D D knN{displaystyle {begin{aligned}s_{P}(nT)&=overbrace {{frac {1}{N}}sum _{k}S[k]cdot e^{i2pi Não. Não. ↑ DFT}}&={tfrac {1}{P}}sum _{k}S_{frac {1}{T}}left({frac {k}{P}}right)cdot e^{i2pi Não. {kn}{N}}}end{aligned}}} |
Propriedades de simetria
Quando as partes reais e imaginárias de uma função complexa são decompostas em suas partes pares e ímpares, existem quatro componentes, indicados abaixo pelos subscritos RE, RO, IE e IO. E há um mapeamento um-para-um entre os quatro componentes de uma função de tempo complexa e os quatro componentes de sua transformada de frequência complexa:
- Domínio de tempoS= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =SREFERÊNCIA+SRO+Eu...SI+Eu...SIO? ? ⇕F⇕F⇕F⇕F⇕FDomínio de frequênciaS= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =SREFERÊNCIA+Eu...SIO⏞ ⏞ +Eu...SI+SROO que é isso? domain}}&=&=&s_{_{text{RE}}}&+&s_{_{text{RO}}}&+&is_{_{text{IE}}}&+&underbrace (i s_{_{text{IO}}) \&{Bigg Updownarrow }{mathcal {F}}&&{Bigg Uparrow }{mathcal {F}}& {Bigg Updownarrow }{mathcal {F}}&&\mathcal {F}}over
A partir disso, vários relacionamentos são aparentes, por exemplo:
- A transformação de uma função de valor real (SREFERÊNCIA + SRO) é a função mesmo simétrica SREFERÊNCIA + Eu... SIO. Por outro lado, uma transformação uniforme-simétrica implica um domínio de tempo real.
- A transformação de uma função de valor imaginário (Eu... SI + Eu... SIO) é a função simétrica ímpar SRO + Eu... SI, e o converso é verdadeiro.
- A transformação de uma função uniforme-simétrica (SREFERÊNCIA + Eu... SIO) é a função real-valorizada SREFERÊNCIA + SRO, e o converso é verdadeiro.
- A transformação de uma função odd-symmetric (SRO + Eu... SI) é a função de valor imaginário Eu... SI + Eu... SIO, e o converso é verdadeiro.
História
Uma forma inicial de série harmônica remonta à antiga matemática babilônica, onde eles eram usados para calcular efemérides (tabelas de posições astronômicas).
Os conceitos gregos clássicos de deferente e epiciclo no sistema ptolomaico de astronomia estavam relacionados à série de Fourier (consulte Deferente e epiciclo § Formalismo matemático).
Nos tempos modernos, variantes da transformada discreta de Fourier foram usadas por Alexis Clairaut em 1754 para calcular uma órbita, que tem sido descrito como a primeira fórmula para o DFT, e em 1759 por Joseph Louis Lagrange, ao calcular os coeficientes de uma série trigonométrica para uma corda vibrante. Tecnicamente, o trabalho de Clairaut era uma série apenas de cosseno (uma forma de transformada discreta de cosseno), enquanto o trabalho de Lagrange era uma série apenas de seno (uma forma de transformada discreta de seno); um verdadeiro cosseno + seno DFT foi usado por Gauss em 1805 para interpolação trigonométrica de órbitas de asteroides. Euler e Lagrange discretizaram o problema da corda vibrante, usando o que hoje seria chamado de amostras.
Um desenvolvimento moderno em direção à análise de Fourier foi o artigo de 1770 Réflexions sur la résolution algébrique des équations de Lagrange, que no método dos resolventes de Lagrange usou uma decomposição de Fourier complexa para estudar a solução de uma cúbica: Lagrange transformou as raízes x1, x2, x 3 nos resolventes:
- R1= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =x1+x2+x3R2= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =x1+ζ ζ x2+ζ ζ 2x3R3= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =x1+ζ ζ 2x2+ζ ζ x3{displaystyle {begin{aligned}r_{1}&=x_{1}+x_{2}+x_{3}\r_{2}&=x_{1}+zeta x_{2}+zeta ^{2}x_{3}\r_{3}&=x_{1}+zeta ^{2}x_{2}+zeta x_{3}end{aligned}}}
onde ζ é uma raiz cúbica da unidade, que é a DFT de ordem 3.
Vários autores, notavelmente Jean le Rond d'Alembert, e Carl Friedrich Gauss usaram séries trigonométricas para estudar a equação do calor, mas o desenvolvimento revolucionário foi o artigo de 1807 Mémoire sur la propagation de la chaleur dans les corps solides de Joseph Fourier, cujo insight crucial foi modelar todas as funções por séries trigonométricas, introduzindo a série de Fourier.
Os historiadores estão divididos quanto a quanto creditar a Lagrange e outros pelo desenvolvimento da teoria de Fourier: Daniel Bernoulli e Leonhard Euler introduziram representações trigonométricas de funções, e Lagrange deu a solução da série de Fourier para a equação de onda, então Fourier&# A contribuição de 39; foi principalmente a afirmação ousada de que uma função arbitrária poderia ser representada por uma série de Fourier.
O desenvolvimento subsequente do campo é conhecido como análise harmônica e também é uma instância inicial da teoria da representação.
O primeiro algoritmo de transformada rápida de Fourier (FFT) para o DFT foi descoberto por volta de 1805 por Carl Friedrich Gauss ao interpolar medições da órbita dos asteróides Juno e Pallas, embora esse algoritmo FFT específico seja mais frequentemente atribuído a seus redescobridores modernos Cooley e Tukey.
Transformações tempo-frequência
Em termos de processamento de sinal, uma função (de tempo) é uma representação de um sinal com resolução de tempo perfeita, mas sem informação de frequência, enquanto a transformada de Fourier tem resolução de frequência perfeita i>, mas nenhuma informação de tempo.
Como alternativas para a transformada de Fourier, na análise de tempo-frequência, usa-se transformadas de tempo-frequência para representar sinais em uma forma que possui alguma informação de tempo e alguma informação de frequência - pelo princípio da incerteza, há um trade-off entre esses. Estas podem ser generalizações da transformada de Fourier, como a transformada de Fourier de tempo curto, a transformada de Gabor ou a transformada fracionária de Fourier (FRFT), ou podem usar diferentes funções para representar sinais, como nas transformadas wavelet e chirplet, com o analógico wavelet da transformada de Fourier (contínua) sendo a transformada wavelet contínua.
Transformadas de Fourier em grupos topológicos abelianos localmente compactos arbitrários
As variantes de Fourier também podem ser generalizadas para transformadas de Fourier em grupos topológicos Abelianos localmente compactos arbitrários, que são estudados em análise harmônica; lá, a transformada de Fourier leva funções em um grupo para funções no grupo dual. Este tratamento também permite uma formulação geral do teorema da convolução, que relaciona transformadas de Fourier e convoluções. Veja também a dualidade de Pontryagin para os fundamentos generalizados da transformada de Fourier.
Mais específica, a análise de Fourier pode ser feita em coconjuntos, até mesmo em coconjuntos discretos.
Contenido relacionado
Antiprisma
Charles Babbage
Dodecaedro
Espaço euclidiano
Absoluto Infinito