Titán IV
Titan IV era una familia de vehículos de lanzamiento espacial pesados desarrollados por Martin Marietta y operados por la Fuerza Aérea de los Estados Unidos entre 1989 y 2005. Los lanzamientos se llevaron a cabo desde Cape Canaveral Air Force Station, Florida y Vandenberg Air Force Base, California.
El Titan IV fue la última familia de cohetes Titan, desarrollada originalmente por la Compañía Glenn L. Martin en 1958. Fue retirado en 2005 debido a su alto costo de operación y preocupaciones por sus propellantes hipergolicos tóxicos, y sustituido por los vehículos de lanzamiento Atlas V y Delta IV bajo el programa EELV. The final launch (B-30) from Cape Canaveral occurred on 29 April 2005, and the final launch from Vandenberg AFB occurred on 19 October 2005. Lockheed Martin Space Systems construyó los Titan IVs cerca de Denver, Colorado, bajo contrato con el gobierno de Estados Unidos.
Actualmente hay dos vehículos Titan IV en exhibición en el Museo Nacional de la Fuerza Aérea de los Estados Unidos en Dayton, Ohio, y en el Museo Evergreen de Aviación y Espacio en McMinnville, Oregón.
Descripción del vehículo
El Titan IV fue desarrollado para proporcionar capacidad garantizada para lanzar cargas útiles de clase Transbordador Espacial para la Fuerza Aérea. El Titan IV podría lanzarse sin etapa superior, la etapa superior inercial (IUS) o la etapa superior Centaur.
El Titan IV estaba formado por dos grandes propulsores de cohetes de combustible sólido y un núcleo de dos etapas de combustible líquido. Las dos etapas centrales de combustible líquido almacenable utilizaron combustible Aerozine 50 y oxidante de tetróxido de nitrógeno. Estos propulsores son hipergólicos, se encienden al contacto y son líquidos a temperatura ambiente, por lo que no es necesario aislar el tanque. Esto permitió que el lanzador se almacenara listo durante períodos prolongados, pero ambos propulsores son extremadamente tóxicos.
El Titan IV podría ser lanzado desde cualquiera de las costas: SLC-40 o 41 en Cape Canaveral Air Force Station cerca de Cocoa Beach, Florida y en SLC-4E, en los sitios de lanzamiento de Vandenberg Air Force Base 55 millas al noroeste de Santa Barbara California. Se lanzaron a órbitas polares desde Vandenberg, con la mayoría de otros lanzamientos en Cabo Canaveral.
Titán IV-A
El Titan IV-A voló con motores de cohetes (SRM) sólidos UA1207 con carcasa de acero producidos por la División de Sistemas Químicos.
Titán IV-B
La Titan IV-B evolucionó a partir de la familia Titan III y era similar a la Titan 34D.
Si bien la familia de lanzadores tuvo un historial de confiabilidad extremadamente bueno en sus primeras dos décadas, esto cambió en la década de 1980 con la pérdida de un Titan 34D en 1985, seguida de la desastrosa explosión de otro en 1986 debido a una falla del SRM. Debido a esto, el vehículo Titan IV-B estaba destinado a utilizar los nuevos motores de cohetes sólidos mejorados con carcasa compuesta. Debido a problemas de desarrollo, los primeros lanzamientos de Titan IV-B volaron con los SRM UA1207 de estilo antiguo.
- Titan IV-A
- Titan-4(01)A Centaur
- Titan IV-B Centaur
- LR91-AJ-11 cámara de propulsión de cohetes e inyector
- Tema de la primera etapa del cohete Titan IV-B
Características generales
- Constructor: Astronáutica Lockheed-Martin
- Planta de energía:
- Estadio 0 consistió en dos motores de roca sólida.
- El estadio 1 utilizó un motor de cohete propulsante líquido LR87-AJ-11.
- El estadio 2 utilizó el motor de propulsión líquido LR91-AJ-11.
- Las etapas superiores opcionales incluyeron el Centaur e Inercial Upper Stage.
- Sistema de orientación: Un sistema de guía láser anillo fabricado por Honeywell.
- Thrust:
- Etapa 0: Los motores de cohetes sólidos proporcionaron 1,7 millones de libras fuerza (7,56 MN) por motor al despegue.
- Etapa 1: LR87-AJ-11 proporcionó un promedio de 548.000 libras fuerza (2.44 MN)
- Etapa 2: LR91-AJ-11 proporcionó un promedio de 105.000 libras de fuerza (467 kN).
- Opcional Centaur (RL10A-3-3A) la etapa superior proporcionó 33,100 libras fuerza (147 kN) y la etapa superior inercial proporcionó hasta 41,500 libras fuerza (185 kN).
- Duración: Hasta 204 pies (62 m)
- Capacidad de elevación:
- Podría llevar hasta 47.800 libras (21.700 kg) a órbita terrestre baja
- hasta 12.700 libras (5.800 kg) en una órbita geosincrónica cuando se lanza desde Cabo Canaveral AFS, Fla.
- y hasta 38.800 libras (17.600 kg) en una órbita polar terrestre baja cuando se lanza desde Vandenberg AFB.
- en órbita geosincrónica:
- con Centaur etapa superior 12,700 libras (5,800 kg)
- con Inertial Upper Stage 5,250 libras (2,380 kg)
- Equilibrio de carga:
- Fabricante: McDonnell Douglas Space Systems Co
- Diámetro: 16,7 pies (5,1 m)
- Duración: 56, 66, 76 o 86 pies
- Misa: 11.000, 12.000, 13.000, o 14.000 libras
- Diseño: 3 secciones, estructura isóguda, aluminio
- Peso máximo de despegue: aproximadamente 2,2 millones de libras (1,000,000 kg)
- Costo: Aproximadamente $250-350 millones, dependiendo de la configuración de lanzamiento.
- Fecha de despliegue: junio de 1989
- Sitios de lanzamiento: Cabo Canaveral AFS, Fla. y Vandenberg AFB, Calif.
Actualizaciones
Banco de pruebas de actualización de motor de cohete sólido
En 1988-89, The Ralph M. Parsons Company diseñó y construyó una torre de acero a gran escala y una instalación deflectora, que se utilizó para probar la actualización del motor de cohete sólido Titan IV (SRMU). Se modeló el lanzamiento y el efecto de la fuerza de empuje de SRMU en el vehículo Titan IV. Para evaluar la magnitud de la fuerza de empuje, la SRMU se conectó a la torre de acero mediante sistemas de medición de carga y se lanzó in situ. Fue la primera prueba a gran escala realizada para simular los efectos de la SRMU en el vehículo Titan IV.
Tanques de aluminio y litio propuestos
A principios de la década de 1980, General Dynamics desarrolló un plan para ensamblar una nave espacial de alunizaje en órbita bajo el nombre Early Lunar Access. Un transbordador espacial pondría en órbita un módulo de aterrizaje lunar y luego se lanzaría un cohete Titan IV con una etapa Centaur G-Prime modificada para encontrarse y atracar. El plan requería actualizar el transbordador espacial y el Titan IV para utilizar tanques propulsores de aleación de aluminio y litio más ligeros. El plan nunca llegó a buen término, pero en la década de 1990 el tanque externo del transbordador se convirtió en tanques de aluminio y litio para encontrarse con la órbita altamente inclinada de la estación espacial rusa Mir.
Identificación de tipo
El IV-A (40nA) utilizó propulsores con carcasas de acero, el IV-B (40nB) utilizó propulsores con carcasas compuestas (el SRMU).
El tipo 401 usó una tercera etapa Centaur, el tipo 402 usó una tercera etapa IUS. Los otros 3 tipos (sin tercera etapa) fueron 403, 404 y 405:
- El tipo 403 no presentaba ninguna etapa superior, para las cargas de baja masa a órbitas superiores de Vandenberg.
- El tipo 404 no presentaba ninguna etapa superior, para cargas de pago más pesadas a órbitas bajas, desde Vandenberg.
- Tipo 405 no presentaba ninguna etapa superior, para las cargas de baja masa a mayor órbita de Cabo Canaveral.
Historia

La familia de cohetes Titan se estableció en octubre de 1955 cuando la Fuerza Aérea otorgó a la Compañía Glenn L. Martin (más tarde Martin-Marietta, ahora parte de Lockheed Martin) un contrato para construir un misil balístico intercontinental (SM-68). El Titan I resultante fue el primer misil balístico intercontinental de dos etapas del país y complementó al misil balístico intercontinental Atlas como el segundo misil balístico intercontinental subterráneo, almacenado verticalmente y basado en silos. Ambas etapas del Titan I utilizaron oxígeno líquido y RP-1 como propulsores.
Una versión posterior de la familia Titan, la Titan II, fue una evolución de dos etapas de la Titan I, pero era mucho más poderosa y usaba diferentes propulsores. Designado como LGM-25C, el Titan II fue el misil más grande desarrollado para la USAF en ese momento. El Titan II tenía motores recientemente desarrollados que utilizaban Aerozine 50 y tetróxido de nitrógeno como combustible y oxidante en una combinación de propulsor hipergólico autoencendido, lo que permitía que el Titan II se almacenara bajo tierra listo para su lanzamiento. Titan II fue el primer vehículo Titan utilizado como lanzador espacial.
El desarrollo del lanzamiento espacial sólo Titan III comenzó en 1964, dando como resultado el Titan IIIA, eventualmente seguido por el Titan IV-A y IV-B.
CELV
A mediados de la década de 1980, al gobierno de Estados Unidos le preocupaba que el transbordador espacial, diseñado para lanzar todas las cargas útiles estadounidenses y reemplazar todos los cohetes no tripulados, no fuera lo suficientemente confiable para misiones militares y clasificadas. En 1984, el subsecretario de la Fuerza Aérea y director de la Oficina Nacional de Reconocimiento (NRO), Pete Aldridge, decidió comprar vehículos de lanzamiento fungibles complementarios (CELV) para diez cargas útiles de NRO; el nombre surgió de la expectativa del gobierno de que los cohetes "complementarían" la lanzadera. Posteriormente rebautizado como Titan IV, el cohete solo transportaría tres cargas útiles militares combinadas con etapas Centaur y volaría exclusivamente desde LC-41 en Cabo Cañaveral. Sin embargo, el accidente del Challenger en 1986 provocó una renovada dependencia de los sistemas de lanzamiento prescindibles, con lo que el programa Titan IV se amplió significativamente. En el momento de su introducción, el Titan IV era el vehículo de lanzamiento prescindible más grande y capaz utilizado por la USAF.
El programa posterior al Challenger agregó versiones Titan IV con etapa superior inercial (IUS) o sin etapas superiores, aumentó el número de vuelos y convirtió el LC-40 en Cape para lanzamientos de Titan IV. En 1991, se programaron casi cuarenta lanzamientos totales del Titan IV y se introdujo una carcasa SRM (motor de cohete sólido) nueva y mejorada que utiliza materiales compuestos livianos.
Costo del programa
En 1990, el Informe de Adquisiciones Seleccionadas de Titan IV estimó el costo total de la adquisición de 65 vehículos Titan IV durante un período de 16 años en 18,3 mil millones de dólares (42,7 mil millones de dólares ajustados a la inflación en 2024).
Lanzamiento de Cassini-Huygens
En octubre de 1997, un cohete Titan IV-B lanzó la Cassini-Huygens, un par de sondas enviadas a Saturno. Fue el único uso de una Titan IV para un lanzamiento ajeno al Departamento de Defensa. Huygens aterrizó en Titán el 14 de enero de 2005. Cassini permaneció en órbita alrededor de Saturno. La Misión Cassini finalizó el 15 de septiembre de 2017, cuando la nave espacial fue enviada a la atmósfera de Saturno para quemarse.
Jubilación
Aunque era una mejora con respecto al transbordador, el Titan IV era caro y poco fiable. En la década de 1990, también había crecientes preocupaciones sobre la seguridad de sus propulsores tóxicos. El programa Evolved Expendable Launch Vehicle (EELV) dio como resultado el desarrollo de los vehículos de lanzamiento Atlas V, Delta IV y Delta IV Heavy, que reemplazaron al Titan IV y a varios otros sistemas de lanzamiento heredados. Los nuevos EELV eliminaron el uso de propulsores hipergólicos, redujeron costos y fueron mucho más versátiles que los vehículos heredados.
Ejemplos de supervivencia
En 2014, el Museo Nacional de la Fuerza Aérea de los Estados Unidos en Dayton, Ohio, inició un proyecto para restaurar un cohete Titan IV-B. Este esfuerzo fue exitoso y la exhibición se inauguró el 8 de junio de 2016. Los únicos otros componentes sobrevivientes de Titan IV se encuentran en el Museo del Aire y el Espacio Wings Over the Rockies en Denver, Colorado, que tiene dos motores Titan Stage 1, un motor Titan Stage 2, y la 'falda' entre escenarios en exhibición al aire libre; y en el Museo Evergreen de la Aviación y el Espacio en McMinnville, Oregón, incluidas las etapas centrales y las piezas del conjunto del motor sólido del cohete.
- Titan IV-B en el Museo Nacional de la Fuerza Aérea de los Estados Unidos
- Titan IV-B en el Museo Nacional de la Fuerza Aérea de los Estados Unidos
- Titan IV-B en el hangar de restauración del Museo Nacional de la Fuerza Aérea de los Estados Unidos. Este es Stage One aft con dos motores Aerojet LR87-AJ-11.
- Titan IV-B etapa uno y SRMU en el Museo Nacional de la Fuerza Aérea de los Estados Unidos
- Titan IV-B en el Museo de Aviación y Espacio Evergreen
- Titan IV-B en el Museo de Aviación y Espacio Evergreen
- Titan IV-B en el Museo de Aviación y Espacio Evergreen
Historial de lanzamientos
Fecha Hora (UTC) | Sitio de lanzamiento | S/N | Tipo | Carga | Resultado | Observaciones |
---|---|---|---|---|---|---|
14 de junio de 1989 13:18 | CCAFS LC-41 | K-1 | 402A / IUS | USA-39 (DSP-14) | Éxito | Una campana de motor quemada a través de sólo un margen estrecho para el éxito. |
8 de junio de 1990 05:21 | CCAFS LC-41 | K-4 | 405A | USA-60 (NOSS) USA-61 (NOSS) USA-62 (NOSS) USA-59 Satellite Launch Dispenser Communications (SLDCOM) | Éxito | |
13 de noviembre de 1990 00:37 | CCAFS LC-41 | K-6 | 402A / IUS | USA-65 (DSP-15) | Éxito | |
8 de marzo de 1991 12:03 | VAFB LC-4E | K-5 | 403A | USA-69 (Lacrosse) | Éxito | |
8 de noviembre de 1991 07:07 | VAFB LC-4E | K-8 | 403A | USA-74 (NOSS) USA-76 (NOSS) USA-77 (NOSS) USA-72 SLDCOM | Éxito | |
28 de noviembre de 1992 21:34 | VAFB LC-4E | K-3 | 404A | USA-86 (KH-11) | Éxito | |
2 de agosto de 1993 19:59 | VAFB LC-4E | K-11 | 403A | NOSS x3 SLDCOM | Fallo | SRM explotó en T+101 debido a los daños causados durante el mantenimiento en tierra. |
7 de febrero de 1994 21:47 | CCAFS LC-40 | K-10 | 401A / Centaur | USA-99 (Milstar-1) | Éxito | |
3 de mayo de 1994 15:55 | CCAFS LC-41 | K-7 | 401A / Centaur | USA-103 (Trumpet) | Éxito | |
27 de agosto de 1994 08:58 | CCAFS LC-41 | K-9 | 401A / Centaur | USA-105 (Mercury) | Éxito | |
22 de diciembre de 1994 22:19 | CCAFS LC-40 | K-14 | 402A / IUS | USA-107 (DSP-17) | Éxito | |
14 de mayo de 1995 13:45 | CCAFS LC-40 | K-23 | 401A / Centaur | USA-110 (Orión) | Éxito | |
10 de julio de 1995 12:38 | CCAFS LC-41 | K-19 | 401A / Centaur | USA-112 (Trumpet) | Éxito | |
6 de noviembre de 1995 05:15 | CCAFS LC-40 | K-21 | 401A / Centaur | USA-115 (Milstar-2) | Éxito | |
5 de diciembre de 1995 21:18 | VAFB LC-4E | K-15 | 404A | USA-116 (KH-11) | Éxito | |
24 de abril de 1996 23:37 | CCAFS LC-41 | K-16 | 401A / Centaur | USA-118 (Mercury) | Éxito | |
12 de mayo de 1996 21:32 | VAFB LC-4E | K-22 | 403A | USA-120 (NOSS) USA-121 (NOSS) USA-122 (NOSS) USA-119 (SLDCOM) USA-123 Tethers in Space Physics Satellite (TiPS) USA-124 (TiPS) | Éxito | |
3 de julio de 1996 00:30 | CCAFS LC-40 | K-2 | 405A | USA-125 (SDS) | Éxito | |
20 de diciembre de 1996 18:04 | VAFB LC-4E | K-13 | 404A | USA-129 (KH-11) | Éxito | NROL-2 |
23 de febrero de 1997 20:20 | CCAFS LC-40 | B-24 | 402B / IUS | USA-130 (DSP-18) | Éxito | |
15 de octubre de 1997 08:43 | CCAFS LC-40 | B-33 | 401B / Centaur | Cassini Huygens | Éxito | |
24 de octubre de 1997 02:32 | VAFB LC-4E | A-18 | 403A | USA-133 (Lacrosse) | Éxito | NROL-3 |
8 de noviembre de 1997 02:05 | CCAFS LC-41 | A-17 | 401A / Centaur | USA-136 (Trumpet) | Éxito | NROL-4 |
9 de mayo de 1998 01:38 | CCAFS LC-40 | B-25 | 401B / Centaur | USA-139 (Orión) | Éxito | NROL-6 |
12 de agosto de 1998 11:30 | CCAFS LC-41 | A-20 | 401A / Centaur | NROL-7 (Mercury) | Fallo | Sistema de orientación cortocircuitado en T+40s debido al alambre frayed, el vehículo perdió el control y destruido por seguridad de rango. |
9 de abril de 1999 17:01 | CCAFS LC-41 | B-27 | 402B / IUS | USA-142 (DSP-19) | Fallo | La nave espacial no pudo separarse de la etapa IUS. |
30 de abril de 1999 16:30 | CCAFS LC-40 | B-32 | 401B / Centaur | USA-143 (Milstar-3) | Fallo | El error de la base de datos de software Centaur causó la pérdida de control de actitudes, quemaduras de inserción realizadas incorrectamente. Satélite desplegado en órbita inútil. |
22 de mayo de 1999 09:36 | VAFB LC-4E | B-12 | 404B | USA-144 (Misty) | Éxito | NROL-8 |
8 de mayo de 2000 16:01 | CCAFS LC-40 | B-29 | 402B / IUS | USA-149 (DSP-20) | Éxito | |
17 de agosto de 2000 23:45 | VAFB LC-4E | B-28 | 403B | USA-152 (Lacrosse) | Éxito | NROL-11 |
27 de febrero de 2001 21:20 | CCAFS LC-40 | B-41 | 401B / Centaur | USA-157 (Milstar-4) | Éxito | |
6 de agosto de 2001 07:28 | CCAFS LC-40 | B-31 | 402B / IUS | USA-159 (DSP-21) | Éxito | |
5 de octubre de 2001 21:21 | VAFB LC-4E | B-34 | 404B | USA-161 (KH-11) | Éxito | NROL-14 |
16 de enero de 2002 00:30 | CCAFS LC-40 | B-38 | 401B / Centaur | USA-164 (Milstar-5) | Éxito | |
8 de abril de 2003 13:43 | CCAFS LC-40 | B-35 | 401B / Centaur | USA-169 (Milstar-6) | Éxito | |
9 de septiembre de 2003 04:29 | CCAFS LC-40 | B-36 | 401B / Centaur | USA-171 (Orión) | Éxito | NROL-19 |
14 de febrero de 2004 18:50 | CCAFS LC-40 | B-39 | 402B / IUS | USA-176 (DSP-22) | Éxito | |
30 de abril de 2005 00:50 | CCAFS LC-40 | B-30 | 405B | USA-182 (Lacrosse) | Éxito | NROL-16 |
19 de octubre de 2005 18:05 | VAFB LC-4E | B-26 | 404B | USA-186 (KH-11) | Éxito | NROL-20 |
Fallos de lanzamiento
El Titan IV experimentó cuatro fallos de lanzamiento catastróficos.
Explosión de refuerzo de 1993

El 2 de agosto de 1993, el Titan IV K-11 despegó del SLC-4E llevando un satélite NOSS SIGNIT. Inusualmente para los lanzamientos del Departamento de Defensa, la Fuerza Aérea invitó a la prensa civil a cubrir el lanzamiento, que se convirtió en una historia más de lo previsto cuando el propulsor explotó 101 segundos después del despegue. La investigación encontró que uno de los dos SRM se había quemado, lo que provocó la destrucción del vehículo de manera similar a la falla anterior del 34D-9. Una investigación encontró que un trabajo de reparación inadecuado fue la causa del accidente.
Después del Titan 34D-9, se implementaron amplias medidas para garantizar la condición operativa adecuada del SRM, incluida la toma de rayos X de los segmentos del motor durante las comprobaciones previas al lanzamiento. Los SRM que iban al K-11 habían sido enviados originalmente a Cabo Cañaveral, donde los rayos X revelaron anomalías en la mezcla de propulsor sólido en un segmento. La zona defectuosa se eliminó mediante un corte en forma de tarta en el bloque propulsor. Sin embargo, la mayor parte del personal calificado de CSD había abandonado el programa en ese momento, por lo que el equipo de reparación en cuestión no conocía el procedimiento adecuado. Después del reemplazo, se olvidaron de sellar el área donde se había realizado el corte en el bloque propulsor. Las radiografías posteriores a la reparación fueron suficientes para que el personal de CC descalificara a los SRM del vuelo, pero los SRM fueron enviados a Vandenberg y aprobados de todos modos. El resultado fue una casi repetición de 34D-9; Se dejó un espacio entre el propulsor y la carcasa del SRM y se produjo otro quemado durante el lanzamiento.
1998 IV-A falla eléctrica
(feminine)1998 vio la falla del Titan K-17 con un ELINT Mercury (satélite) de la Armada desde Cabo Cañaveral alrededor de 40 segundos de vuelo. El K-17 tenía varios años y era el último Titan IV-A en ser lanzado. La investigación posterior al accidente mostró que el propulsor tenía docenas de cables dañados o desgastados y nunca debería haber sido lanzado en esas condiciones operativas, pero la Fuerza Aérea había ejercido una presión extrema sobre las tripulaciones de lanzamiento para cumplir con los plazos del programa. El fuselaje del Titán estaba lleno de numerosas protuberancias metálicas afiladas que hacían casi imposible instalar, ajustar o quitar el cableado sin que se dañara. El control de calidad en la planta de Lockheed en Denver, donde se ensamblaban los vehículos Titan, fue descrito como "horrible".
La causa inmediata de la falla fue un cortocircuito eléctrico que provocó una interrupción momentánea de la energía en la computadora de guía en T+39 segundos. Después de que se restableció la energía, la computadora envió un falso cabeceo hacia abajo y guiñó el comando correcto. A T+40 segundos, el Titán viajaba a una velocidad casi supersónica y no podía realizar esta acción sin sufrir una falla estructural. El repentino descenso y la tensión aerodinámica resultante provocaron que uno de los SRM se separara. El ISDS (Sistema de Destrucción por Separación Inadvertida) se activó automáticamente, rompiendo el SRM y llevándose consigo el resto del vehículo de lanzamiento. A los T+45 segundos, el oficial de seguridad del campo envió el comando de destrucción para garantizar que se rompieran las piezas grandes restantes del propulsor.
Se inició un amplio esfuerzo de recuperación, tanto para diagnosticar la causa del accidente como para recuperar los restos del satélite clasificado. Todos los restos del Titán habían impactado en alta mar, entre tres y cinco millas hacia abajo, y al menos el 30% del propulsor se recuperó del fondo del mar. Los escombros continuaron llegando a la costa durante los días posteriores y la operación de salvamento continuó hasta el 15 de octubre.
La Fuerza Aérea había presionado para un "lanzamiento a pedido" programa para cargas útiles del DOD, algo que era casi imposible de lograr, especialmente dado el largo tiempo de preparación y procesamiento necesario para el lanzamiento de un Titan IV (al menos 60 días). Poco antes de jubilarse en 1994, el general Chuck Horner se refirió al programa Titán como "una pesadilla". El calendario 1998-99 preveía cuatro lanzamientos en menos de 12 meses. El primero de ellos fue el Titan K-25, que orbitó con éxito un satélite Orion SIGNIT el 9 de mayo de 1998. El segundo fue el fracaso del K-17 y el tercero fue el fracaso del K-32.
Etapa fallida al separarse
Después de un retraso causado por la investigación del fallo anterior, el lanzamiento del K-32 el 9 de abril de 1999 llevaba un satélite de alerta temprana DSP. La segunda etapa del IUS no logró separarse, dejando la carga útil en una órbita inútil. La investigación de esta falla encontró que los arneses de cableado del SIU se habían envuelto demasiado apretado con cinta aislante, de modo que un enchufe no se desconectó correctamente e impidió que las dos etapas del SIU se separaran.
Error de programación
El cuarto lanzamiento fue el K-26 el 30 de abril de 1999, llevando un satélite de comunicaciones Milstar. Durante el vuelo de la fase costera del Centaur, los propulsores de control de balanceo se dispararon en circuito abierto hasta que se agotó el combustible del RCS, lo que provocó que la etapa superior y la carga útil giraran rápidamente. Al reiniciar, el Centauro giró fuera de control y dejó su carga útil en una órbita inútil. Se descubrió que esta falla era el resultado de una ecuación programada incorrectamente en la computadora de guía. El error provocó que la computadora de vuelo ignorara los datos del giroscopio de velocidad de balanceo.
Contenido relacionado
Galaxia del remolino
Constelación de satélites
Apolo 16
Traje espacial
Esfera Dyson