Teorema de Girsanov

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Visualización del teorema Girsanov. El lado izquierdo muestra un proceso de Wiener con deriva negativa bajo una medida canónica P; en el lado derecho cada camino del proceso se colore según su probabilidad bajo la medida de martingale Q. La transformación de la densidad P a Q es dado por el teorema Girsanov.

En la teoría de la probabilidad, el teorema de Girsanov explica cómo cambian los procesos estocásticos bajo cambios en la medida. El teorema es especialmente importante en la teoría de las matemáticas financieras, ya que indica cómo convertir la medida física que describe la probabilidad de que un instrumento subyacente (como el precio de una acción o la tasa de interés) tome un valor o valores particulares al riesgo. medida neutral que es una herramienta muy útil para evaluar el valor de los derivados sobre el subyacente.

Historia

Los resultados de este tipo fueron probados por primera vez por Cameron-Martin en la década de 1940 y por Igor Girsanov en 1960. Posteriormente se extendieron a clases de procesos más generales que culminaron en la forma general de Lenglart (1977).

Importancia

El teorema de Girsanov es importante en la teoría general de los procesos estocásticos ya que permite el resultado clave de que si Q es una medida que es absolutamente continua con respecto a P entonces toda P-semimartingala es una Q-semimartingala.

Enunciado del teorema

Enunciamos el teorema primero para el caso especial cuando el proceso estocástico subyacente es un proceso de Wiener. Este caso especial es suficiente para la fijación de precios neutral al riesgo en el modelo de Black-Scholes.

Vamos {}Wt}{displaystyle {W_{t}}} ser un proceso de Wiener en el espacio de probabilidad Wiener {}Ω Ω ,F,P}{displaystyle {fnK}. Vamos Xt{displaystyle X_{t} ser un proceso mensurable adaptado a la filtración natural del proceso de Wiener {}FtW}{displaystyle {fnh}; suponemos que las condiciones habituales han sido satisfechas.

Dado un proceso adaptado Xt{displaystyle X_{t} definir

Zt=E()X)t,{displaystyle ¿Qué? }

Donde E()X){displaystyle {Mathcal}(X)} es el exponencial estocástico X con respecto a W, es decir.

E()X)t=exp⁡ ⁡ ()Xt− − 12[X]t),{displaystyle {mathcal {E}(X)_{t}=exp left(X_{t}-{frac {1}{2} [X]_{t}right]

y [X]t{displaystyle [X]_{t} denota la variación cuadrática del proceso X.

Si Zt{displaystyle Z_{t} es un martingale entonces una probabilidad Medida Q puede definirse {}Ω Ω ,F}{displaystyle {fnK} tal que Radon-Nikodym derivados

dQdPSilencioFt=Zt=E()X)t{displaystyle left.{frac {fnMicrosoft Sans Serif} {fn}}=Z_{t}={fnh} {fnh} {fnh} {f}}=Z_{t}= {f} {f}}} {fn}}}} {f}}} {f}}}}=Z_ {f} {f} {f}}} {f}}}}}}}} {f}}}}}}}}}}}}}}}}}}}}}}}}}}}}}=Z_}}}}}}=Z_} {} {} {}}}}}}=Z_}}}}}}}} {\\\\\\\\\\f}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} { {E}(X)_{t}

Entonces para cada uno t la medida Q restringidos a los campos de sigma no aumentados Fto{fnMicrosoft Sans Serif} {fnMicrosoft Sans Serif} {fnK}}} {fnK}} {f}}} {f}}} {fn}}}}}}}}}}}}} {f} {fnK}}}}} {f}}}}}}}} {f}}}}}} {f}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} equivale a P restringidos

Fto.{fnMicrosoft Sans Serif}

Además, si Yt{displaystyle Y... es un martingale local bajo P entonces el proceso

Y~ ~ t=Yt− − [Y,X]t{displaystyle {tilde {cHFF} {cH00} {cH00} {cH00} {cH00}} {cH00}} {cH00}} {cH00}} {cH00}}}} {cH}}} {f}}}} {cH}}}}}}}}}}}}} {f}}}}} {f}}}}} {c}}}}}}}}}}}}}}}}}}}}}} {c}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} { [Y,Xright]

es un Q martingale local en el espacio de probabilidad filtrado {}Ω Ω ,F,Q,{}FtW}}{displaystyle {OmegaF,Q,{mathcal {fn} {f}}} {f}} {f}}}} {f}}}} {f}}}}}} {f}}}}}} {f}}}}}}} {f}}}}}}}}}}}}}} {}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} {}}}}}}}} {}}}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}.

Corolario

Si X es un proceso continuo y W es el movimiento browniano bajo la medida P entonces

W~ ~ t=Wt− − [W,X]t{displaystyle {tilde {fnh}=W_{t}-left[W,Xright]_{t}

es el movimiento browniano bajo Q.

El hecho de que W~ ~ t{displaystyle {tilde {fnK}} {fn}}} {fn}} {fn} {fn}}} {fn}}} {fn}}} {fn}}} {fn}}}}}} {fn}}}}}}} {f}}}}}}}}}}}}}}}}}}}}}} { es continuo es trivial; por el teorema de Girsanov es un Q martingale local, y por computación

[W~ ~ ]t=[W]t=t{displaystyle left[{tilde {W}right]_{t}=left[Wright]_{t}=t}

De la caracterización de Levy del movimiento browniano se deduce que se trata de un browniano Q movimiento.

Comentarios

En muchas aplicaciones comunes, el proceso X está definido por

Xt=∫ ∫ 0tYsdWs.{displaystyle X_{t}=int - Sí.
Did you mean:

For X of this form then a necessary and sufficient condition for X to be a martingale is Novikov 's condition which requires that

<math alttext="{displaystyle E_{P}left[exp left({frac {1}{2}}int _{0}^{T}Y_{s}^{2},dsright)right]EP[exp⁡ ⁡ ()12∫ ∫ 0TYs2ds)].JUEGO JUEGO .{displaystyle E_{P}left[exp left({frac {1}{2}int - ¿Qué?<img alt="E_{P}left[exp left({frac {1}{2}}int _{0}^{T}Y_{s}^{2},dsright)right]

El exponencial estocástico E()X){displaystyle {Mathcal}(X)} es el proceso Z que resuelve la ecuación diferencial estocástica

Zt=1+∫ ∫ 0tZsdXs.{displaystyle Z_{t}=1+int ¿Qué?

La medida Q construido arriba no es equivalente a P on FJUEGO JUEGO {displaystyle {máthcal {cH00} {fnK}} {fnK}}} como este sólo sería el caso si el derivado Radon-Nikodym fuera un martingale integrado uniformemente, que el martingale exponencial descrito anteriormente no es. Por otro lado, siempre y cuando la condición de Novikov esté satisfecha, las medidas son equivalentes FT{displaystyle {fnMithcal} {fnK}} {fnMicrosoft} {fnMicrosoft}} {f}}} {f}}.

Además, al combinar esta observación anterior en este caso, vemos que el proceso

W~ ~ t=Wt− − ∫ ∫ 0tYsds{displaystyle {tilde {fnh}=W_{t}-int - Sí.

para t▪ ▪ [0,T]{displaystyle tin [0,T] es un movimiento Q Brownian. Esta fue la formulación original de Igor Girsanov sobre el teorema.

Solicitud de financiación

Este teorema se puede utilizar para mostrar en el modelo de Black-Scholes la única medida neutral al riesgo, es decir, la medida en la que el valor razonable de un derivado es el valor esperado descontado, Q, se especifica mediante

dQdP=E()∫ ∫ 0trs− − μ μ sσ σ sdWs).{displaystyle {frac {dQ} {fnMithcal {fnh}left(int}= {fn}= {fn}fn}fn}fn}fn}fnh}fnf}fnh}fnfnh}fnKfn}fn}f}fnh}fnh}fn}fnh}fnh}fn}fn}fnh}fn}fnh}fnh}fn}fn}fn}f}fnh}fn}fn}fn}fnh}f}fnh}fnh}fnh}fn}fnh}fnh}fn}fnh}fnh}fn}fn}fn}fnh}fn} ¿Qué? {cHFF}-mu - ¿Qué? - ¿Sí?

Aplicación a las ecuaciones de Langevin

Otra aplicación de este teorema, también dada en el artículo original de Igor Girsanov, es para ecuaciones diferenciales estocásticas. Específicamente, consideremos la ecuación

dXt=μ μ ()t,Xt)dt+σ σ ()t,Xt)dWt,{displaystyle dX_{t}=mu (t,X_{t})dt+sigma (t,X_{t})d ¿Qué?

Donde Wt{displaystyle ¿Qué? denota una moción de Brownian. Aquí. μ μ {displaystyle mu } y σ σ {displaystyle sigma } son funciones deterministas fijas. Suponemos que esta ecuación tiene una solución fuerte única [0,T]{displaystyle [0,T]}. En este caso el teorema de Girsanov puede ser utilizado para calcular las funcionalidades de Xt{displaystyle X_{t} directamente en términos de un funcional relacionado para el movimiento Brownian. Más específicamente, tenemos para cualquier funcional ligado CCPR CCPR {displaystyle Phi } sobre funciones continuas C()[0,T]){displaystyle C([0,T]} que

ECCPR CCPR ()X)=E[CCPR CCPR ()W)exp⁡ ⁡ ()∫ ∫ 0Tμ μ ()s,Ws)dWs− − 12∫ ∫ 0Tμ μ ()s,Ws)2ds)].{displaystyle EPhi (X)=Eleft[Phi (W)exp left(int _{0}^{T}mu (s,W_{s})dW_{s}-{frac {1}{2}int ¿Por qué?

Did you mean:

This follows by applying Girsanov 's theorem, and the above observation, to the martingale process

Yt=∫ ∫ 0tμ μ ()s,Ws)dWs.{displaystyle Y... ¿Qué?

En particular, observamos que con la notación anterior, el proceso

W~ ~ t=Wt− − ∫ ∫ 0tμ μ ()s,Ws)ds{displaystyle {tilde {fnh}=W_{t}-int ¿Qué?

es un movimiento browniano Q. Reescribiendo esto en forma diferencial como

dWt=dW~ ~ t+μ μ ()t,Wt)dt,{displaystyle DW_{t}=d{tilde {W}_{t}+mu (t,W_{t}dt,}

vemos que la ley Wt{displaystyle ¿Qué? bajo Q resuelve la ecuación definiendo Xt{displaystyle X_{t}, como W~ ~ t{displaystyle {tilde {fnK}} {fn}}} {fn}} {fn} {fn}}} {fn}}} {fn}}} {fn}}} {fn}}}}}} {fn}}}}}}} {f}}}}}}}}}}}}}}}}}}}}}} { es un movimiento Q Brownian. En particular, vemos que el lado derecho puede ser escrito como EQ[CCPR CCPR ()X)]{displaystyle E_{Q}[Phi (X)}, donde Q es la medida tomada con respecto al proceso Y, por lo que el resultado ahora es sólo la declaración del teorema de Girsanov.

Una forma más general de esta aplicación es que si ambos

dXt=μ μ ()Xt,t)dt+σ σ ()Xt,t)dWt,{displaystyle dX_{t}=mu (X_{t},t)dt+sigma (X_{t},t)d ¿Qué? dYt=()μ μ ()Yt,t)+.. ()Yt,t))dt+σ σ ()Yt,t)dWt,{displaystyle dY_{t}=(mu (Y_{t},t)+nu (Y_{t},t)dt+sigma (Y_{t},t)dW_{t},}

admitir soluciones únicas fuertes en [0,T]{displaystyle [0,T]}, entonces para cualquier funcional atado en C()[0,T]){displaystyle C([0,T]}, tenemos eso

ECCPR CCPR ()X)=E[CCPR CCPR ()Y)exp⁡ ⁡ ()− − ∫ ∫ 0T.. ()Ys,s)σ σ ()Ys,s)dWs− − 12∫ ∫ 0T.. ()Ys,s)2σ σ ()Ys,s)2ds)].{displaystyle EPhi (X)=Eleft[Phi (Y)exp left(-int _{0}{T}{frac {nu (Y_{s}s)}{sigma (Y_{s}s}dW_{s}-{frac {1}{2}}}\\f} ¿Qué? (Y_{s},s)}{2}{sigma (Y_{s},s)} {2}dsright)right].}

Contenido relacionado

La hipótesis de prout

La hipótesis de Prout fue un intento de principios del siglo XIX de explicar la existencia de varios elementos químicos a través de una hipótesis sobre la...

Milton Obote

Apollo Milton Obote fue un líder político ugandés que condujo a Uganda a la independencia del dominio colonial británico en 1962. Tras la independencia de...

Geoffrey de Havilland

Capitán Sir Geoffrey de Havilland, OM, CBE, AFC, RDI<span style=\"font-size:14px\">, FRAeS fue un ingeniero aeroespacial y pionero de la aviación inglés. La...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save