Sustitución sinónimo

Una sustitución sinónima (a menudo denominada sustitución silenciosa, aunque no siempre lo es) es la sustitución evolutiva de una base por otra en un exón de un gen que codifica una proteína, de modo que la base producida La secuencia de aminoácidos no se modifica. Esto es posible porque el código genético es "degenerado", lo que significa que algunos aminoácidos están codificados por más de un codón de tres pares de bases; dado que algunos de los codones de un aminoácido determinado difieren sólo en un par de bases de otros que codifican el mismo aminoácido, se produce una mutación que reemplaza la base "normal" La base por una de las alternativas dará como resultado la incorporación del mismo aminoácido en la cadena polipeptídica en crecimiento cuando se traduzca el gen. Las sustituciones y mutaciones sinónimas que afectan al ADN no codificante a menudo se consideran mutaciones silenciosas; sin embargo, no siempre ocurre que la mutación sea silenciosa.
Dado que hay 22 códigos para 64 codones, aproximadamente deberíamos esperar que una sustitución aleatoria sea sinónimo de una probabilidad de aproximadamente 22/64 = 34%. El valor real ronda el 20%.
Una mutación sinónima puede afectar la transcripción, el empalme, el transporte de ARNm y la traducción, cualquiera de los cuales podría alterar el fenotipo resultante, haciendo que la mutación sinónima no sea silenciosa. La especificidad de sustrato del ARNt para el codón raro puede afectar el momento de la traducción y, a su vez, el plegamiento cotraduccional de la proteína. Esto se refleja en el sesgo en el uso de codones que se observa en muchas especies. Una sustitución no sinónima da como resultado un cambio en un aminoácido que puede clasificarse arbitrariamente como conservador (un cambio a un aminoácido con propiedades fisicoquímicas similares), semiconservativo (por ejemplo, un aminoácido con carga negativa a positiva) o radical (aminoácidos muy diferentes). ácido).
Degeneración del código genético
La traducción de proteínas implica un conjunto de veinte aminoácidos. Cada uno de estos aminoácidos está codificado por una secuencia de tres pares de bases de ADN llamada codón. Porque hay 64 codones posibles, pero sólo 20-22 aminoácidos codificados (en la naturaleza) y una señal de parada (es decir, hasta tres codones que no codifican ningún aminoácido y se conocen como codones de parada, lo que indica que la traducción debe detenerse). , algunos aminoácidos están codificados por 2, 3, 4 o 6 codones diferentes. Por ejemplo, los codones TTT y TTC codifican el aminoácido fenilalanina. A esto se le suele denominar redundancia del código genético. Hay dos mecanismos de redundancia: varios ARN de transferencia diferentes pueden entregar el mismo aminoácido, o un ARNt puede tener una base oscilante no estándar en la posición tres del anticodón, que reconoce más de una base en el codón.
En el ejemplo anterior de fenilalanina, supongamos que la base en la posición 3 de un codón TTT se sustituyó por una C, dejando el codón TTC. El aminoácido en esa posición en la proteína seguirá siendo una fenilalanina. Por tanto, la sustitución es sinónima.
Evolución
Cuando ocurre una mutación sinónima o silenciosa, a menudo se supone que el cambio es neutral, lo que significa que no afecta la aptitud del individuo que porta el nuevo gen para sobrevivir y reproducirse.
Los cambios sinónimos pueden no ser neutrales porque ciertos codones se traducen de manera más eficiente (más rápida y/o más precisa) que otros. Por ejemplo, cuando se introdujeron un puñado de cambios sinónimos en el gen de la alcohol deshidrogenasa de la mosca de la fruta, cambiando varios codones a sinónimos subóptimos, la producción de la enzima codificada se redujo y las moscas adultas mostraron una menor tolerancia al etanol. Muchos organismos, desde bacterias hasta animales, muestran un uso sesgado de ciertos codones sinónimos. Este sesgo en el uso de codones puede surgir por diferentes motivos, algunos selectivos y otros neutrales. En Saccharomyces cerevisiae se ha demostrado que el uso de codones sinónimos influye en la estabilidad del plegamiento del ARNm, ya que el ARNm codifica diferentes estructuras secundarias de proteínas y prefiere codones diferentes.
Otra razón por la que los cambios sinónimos no siempre son neutrales es el hecho de que las secuencias de exones cercanas a los bordes exón-intrón funcionan como señales de empalme de ARN. Cuando la señal de empalme es destruida por una mutación sinónima, el exón no aparece en la proteína final. Esto da como resultado una proteína truncada. Un estudio encontró que aproximadamente una cuarta parte de las variaciones sinónimas que afectan al exón 12 del gen regulador de la conductancia transmembrana de la fibrosis quística dan como resultado la omisión de ese exón.