Sesgo de uso de codones
El sesgo de uso de codones se refiere a las diferencias en la frecuencia de aparición de codones sinónimos en el ADN codificante. Un codón es una serie de tres nucleótidos (un triplete) que codifica un residuo de aminoácido específico en una cadena polipeptídica o para la terminación de la traducción (codones de parada).
Hay 64 codones diferentes (61 codones que codifican aminoácidos y 3 codones de terminación) pero solo 20 aminoácidos traducidos diferentes. La sobreabundancia en el número de codones permite que muchos aminoácidos sean codificados por más de un codón. Por tal redundancia se dice que el código genético está degenerado. Los códigos genéticos de diferentes organismos a menudo están sesgados hacia el uso de uno de los varios codones que codifican el mismo aminoácido sobre los demás, es decir, se encontrará una frecuencia mayor de uno de lo esperado por casualidad. Cómo surgen tales sesgos es un área muy debatida de la evolución molecular. Las tablas de uso de codones que detallan el sesgo de uso de codones genómicos para organismos en GenBank y RefSeq se pueden encontrar en el proyecto HIVE-Codon Usage Tables (HIVE-CUTs), que contiene dos bases de datos distintas, CoCoPUTs y TissueCoCoPUTs. Juntas, estas dos bases de datos proporcionan estadísticas completas y actualizadas sobre el uso de codones, pares de codones y dinucleótidos para todos los organismos con información de secuencia disponible y 52 tejidos humanos, respectivamente.
En general, se reconoce que los sesgos de codones reflejan un equilibrio entre los sesgos mutacionales y la selección natural (equilibrio mutación-selección) para la optimización de la traducción. Los codones óptimos en microorganismos de rápido crecimiento, como Escherichia coli o Saccharomyces cerevisiae (levadura de panadería), reflejan la composición de su respectivo grupo de ARN de transferencia genómica (ARNt).. Se cree que los codones óptimos ayudan a lograr velocidades de traducción más rápidas y alta precisión. Como resultado de estos factores, se espera que la selección traslacional sea más fuerte en genes altamente expresados, como es el caso de los organismos mencionados anteriormente. En otros organismos que no muestran altas tasas de crecimiento o que presentan genomas pequeños, la optimización del uso de codones normalmente está ausente y las preferencias de codones están determinadas por los sesgos mutacionales característicos que se observan en ese genoma en particular. Ejemplos de esto son Homo sapiens (humano) y Helicobacter pylori. Los organismos que muestran un nivel intermedio de optimización del uso de codones incluyen Drosophila melanogaster (mosca de la fruta), Caenorhabditis elegans (gusano nematodo), Strongylocentrotus purpuratus (erizo de mar) y Arabidopsis thaliana (berro thale). Se sabe que varias familias virales (herpesvirus, lentivirus, papilomavirus, poliomavirus, adenovirus y parvovirus) codifican proteínas estructurales que muestran un uso de codones muy sesgado en comparación con la célula huésped. Se ha sugerido que estos sesgos de codones juegan un papel en la regulación temporal de sus proteínas tardías.
La naturaleza del uso de codones y la optimización del ARNt ha sido objeto de intensos debates. No está claro si el uso de codones impulsa la evolución del ARNt o viceversa. Se ha desarrollado al menos un modelo matemático en el que tanto el uso de codones como la expresión de ARNt coevolucionan en forma de retroalimentación (es decir,, los codones ya presentes en altas frecuencias aumentan la expresión de sus ARNt correspondientes, y los ARNt normalmente expresados a niveles altos aumentan la frecuencia de sus codones correspondientes). Sin embargo, este modelo no parece tener aún confirmación experimental. Otro problema es que la evolución de los genes de ARNt ha sido un área de investigación muy inactiva.
Factores contribuyentes
Se ha propuesto que diferentes factores están relacionados con el sesgo de uso de codones, incluido el nivel de expresión génica (que refleja la selección para optimizar el proceso de traducción por la abundancia de ARNt), el contenido de guanina-citosina (contenido de GC, que refleja la transferencia horizontal de genes o el sesgo mutacional), sesgo de guanina-citosina (sesgo de GC, que refleja el sesgo mutacional específico de la cadena), conservación de aminoácidos, hidropatía de proteínas, selección transcripcional, estabilidad del ARN, temperatura de crecimiento óptima, adaptación hipersalina y nitrógeno dietético.
Teorías evolutivas
Sesgo mutacional versus selección
Aunque el mecanismo de selección del sesgo de codones sigue siendo controvertido, las posibles explicaciones de este sesgo se dividen en dos categorías generales. Una explicación gira en torno a la teoría del seleccionista, en la que el sesgo del codón contribuye a la eficiencia y/o precisión de la expresión de proteínas y, por lo tanto, experimenta una selección positiva. El modelo seleccionista también explica por qué los codones más frecuentes son reconocidos por moléculas de tRNA más abundantes, así como la correlación entre los codones preferidos, los niveles de tRNA y el número de copias de genes. Aunque se ha demostrado que la tasa de incorporación de aminoácidos en los codones más frecuentes ocurre a una tasa mucho más alta que la de los codones raros, no se ha demostrado que la velocidad de traducción se vea directamente afectada y, por lo tanto, es posible que el sesgo hacia los codones más frecuentes no se vea afectado. ser directamente ventajoso. Sin embargo, el aumento en la velocidad de elongación de la traducción aún puede ser indirectamente ventajoso al aumentar la concentración celular de ribosomas libres y, potencialmente, la tasa de iniciación de los ARN mensajeros (ARNm).
La segunda explicación para el uso de codones puede explicarse por el sesgo mutacional, una teoría que postula que el sesgo de codones existe debido a la falta de aleatoriedad en los patrones mutacionales. En otras palabras, algunos codones pueden sufrir más cambios y, por lo tanto, dar como resultado frecuencias de equilibrio más bajas, también conocidas como codones "raros". Diferentes organismos también exhiben diferentes sesgos mutacionales, y cada vez hay más pruebas de que el nivel de contenido de GC en todo el genoma es el parámetro más importante para explicar las diferencias de sesgo de codones entre organismos. Estudios adicionales han demostrado que los sesgos de codones se pueden predecir estadísticamente en procariotas utilizando solo secuencias intergénicas, lo que se opone a la idea de fuerzas selectivas en las regiones codificantes y respalda aún más el modelo de sesgo de mutación. Sin embargo, este modelo por sí solo no puede explicar completamente por qué los tRNA más abundantes reconocen los codones preferidos.
Modelo de equilibrio mutación-selección-deriva
Para conciliar la evidencia tanto de las presiones mutacionales como de la selección, la hipótesis prevaleciente para el sesgo de codones puede explicarse mediante el modelo de equilibrio mutación-selección-deriva. Esta hipótesis establece que la selección favorece los codones principales sobre los codones menores, pero los codones menores pueden persistir debido a la presión de mutación y la deriva genética. También sugiere que la selección es generalmente débil, pero que la intensidad de la selección escala hacia una mayor expresión y restricciones más funcionales de las secuencias de codificación.
Consecuencias de la composición de codones
Efecto sobre la estructura secundaria del ARN
Debido a que la estructura secundaria del extremo 5' del ARNm influye en la eficiencia de la traducción, los cambios sinónimos en esta región del ARNm pueden tener efectos profundos en la expresión génica. Por lo tanto, el uso de codones en regiones de ADN no codificantes puede desempeñar un papel importante en la estructura secundaria del ARN y la expresión de proteínas aguas abajo, que pueden sufrir presiones selectivas adicionales. En particular, una fuerte estructura secundaria en el sitio de unión al ribosoma o el codón de iniciación puede inhibir la traducción, y el plegamiento del ARNm en el extremo 5' genera una gran variación en los niveles de proteína.
Efecto sobre la transcripción o expresión génica
La expresión de genes heterólogos se utiliza en muchas aplicaciones biotecnológicas, incluida la producción de proteínas y la ingeniería metabólica. Debido a que los grupos de ARNt varían entre diferentes organismos, la tasa de transcripción y traducción de una secuencia codificante particular puede ser menos eficiente cuando se ubica en un contexto no nativo. Para un transgén sobreexpresado, el ARNm correspondiente produce un gran porcentaje del ARN celular total, y la presencia de codones raros a lo largo de la transcripción puede conducir a un uso ineficiente y al agotamiento de los ribosomas y, en última instancia, a reducir los niveles de producción de proteínas heterólogas. Además, la composición del gen (por ejemplo, el número total de codones raros y la presencia de codones raros consecutivos) también puede afectar la precisión de la traducción. Sin embargo, el uso de codones que están optimizados para grupos de ARNt en un huésped particular para sobreexpresar un gen heterólogo también puede provocar la inanición de aminoácidos y alterar el equilibrio de los grupos de ARNt. Este método de ajuste de codones para que coincida con la abundancia de ARNt del huésped, denominado optimización de codones, se ha utilizado tradicionalmente para la expresión de un gen heterólogo. Sin embargo, las nuevas estrategias para la optimización de la expresión heteróloga consideran el contenido global de nucleótidos, como el plegamiento local del ARNm, el sesgo de pares de codones, una rampa de codones, la armonización de codones o las correlaciones de codones. Con la cantidad de cambios de nucleótidos introducidos, la síntesis de genes artificiales a menudo es necesaria para la creación de un gen tan optimizado.
El sesgo de codones especializados se observa además en algunos genes endógenos, como los implicados en la inanición de aminoácidos. Por ejemplo, las enzimas biosintéticas de aminoácidos utilizan preferentemente codones que se adaptan mal a las abundancias normales de ARNt, pero tienen codones que se adaptan a las reservas de ARNt en condiciones de inanición. Por lo tanto, el uso de codones puede introducir un nivel adicional de regulación transcripcional para la expresión génica adecuada en condiciones celulares específicas.
Efecto sobre la velocidad de elongación de traducción
En términos generales, para los genes altamente expresados, las tasas de elongación de la traducción son más rápidas en las transcripciones con una mayor adaptación de codones a los conjuntos de ARNt y más lentas en las transcripciones con codones raros. Esta correlación entre las tasas de traducción de codones y las concentraciones de ARNt afines proporciona una modulación adicional de las tasas de elongación de la traducción, lo que puede proporcionar varias ventajas al organismo. Específicamente, el uso de codones puede permitir la regulación global de estas tasas, y los codones raros pueden contribuir a la precisión de la traducción a expensas de la velocidad.
Efecto sobre el plegamiento de proteínas
El plegamiento de proteínas in vivo es vectorial, de modo que el extremo N-terminal de una proteína sale del ribosoma de traducción y queda expuesto al solvente antes que sus regiones más C-terminales. Como resultado, el plegamiento cotraduccional de proteínas introduce varias limitaciones espaciales y temporales en la cadena polipeptídica naciente en su trayectoria de plegamiento. Debido a que las tasas de traducción del ARNm están acopladas al plegamiento de proteínas y la adaptación de codones está relacionada con el alargamiento de la traducción, se ha planteado la hipótesis de que la manipulación a nivel de secuencia puede ser una estrategia eficaz para regular o mejorar el plegamiento de proteínas. Varios estudios han demostrado que se produce una pausa en la traducción como resultado de la estructura local del ARNm para ciertas proteínas, lo que puede ser necesario para el plegamiento adecuado. Además, se ha demostrado que las mutaciones sinónimas tienen consecuencias significativas en el proceso de plegamiento de la proteína naciente e incluso pueden cambiar la especificidad de sustrato de las enzimas. Estos estudios sugieren que el uso de codones influye en la velocidad a la que los polipéptidos emergen vectorialmente del ribosoma, lo que puede afectar aún más las vías de plegamiento de proteínas en todo el espacio estructural disponible.
Métodos de análisis
En el campo de la bioinformática y la biología computacional, se han propuesto y utilizado muchos métodos estadísticos para analizar el sesgo en el uso de codones. Métodos como la 'frecuencia de codones óptimos' (Fop), la adaptación relativa de codones (RCA) o el índice de adaptación de codones (CAI) se utilizan para predecir los niveles de expresión génica, mientras que métodos como el 'número efectivo de codones' (Nc) y la entropía de Shannon de la teoría de la información se utilizan para medir la uniformidad del uso de codones. Los métodos estadísticos multivariantes, como el análisis de correspondencia y el análisis de componentes principales, se utilizan ampliamente para analizar las variaciones en el uso de codones entre genes. Existen muchos programas informáticos para implementar los análisis estadísticos enumerados anteriormente, incluidos CodonW, GCUA, INCA, etc. La optimización de codones tiene aplicaciones en el diseño de genes sintéticos y vacunas de ADN. Varios paquetes de software están disponibles en línea para este propósito (consulte los enlaces externos).
Contenido relacionado
Milton Obote
Geoffrey de Havilland
Mayor bilby