Pirenoide

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Organelle encontrado en los cloroplastos de algas y caderas
Sección transversal de un Chlamydomonas reinhardtii algae cell, a 3D representation
Los

pirenoides son microcompartimentos subcelulares que se encuentran en los cloroplastos de muchas algas y en un solo grupo de plantas terrestres, los hornworts. Los pirenoides están asociados con el funcionamiento de un mecanismo de concentración de carbono (CCM). Su función principal es actuar como centros de fijación de dióxido de carbono (CO2), generando y manteniendo un ambiente rico en CO2 alrededor de la enzima fotosintética ribulosa-1,5-. bisfosfato carboxilasa/oxigenasa (RuBisCO). Por tanto, los pirenoides parecen tener un papel análogo al de los carboxisomas en las cianobacterias.

Las algas están restringidas a ambientes acuosos, incluso en hábitats acuáticos, y esto tiene implicaciones para su capacidad de acceder al CO2 para la fotosíntesis. El CO2 se difunde 10.000 veces más lento en el agua que en el aire y también tarda en equilibrarse. El resultado de esto es que el agua, como medio, a menudo pierde fácilmente el CO2 y tarda en obtener CO2 del aire. Finalmente, el CO2 se equilibra con el bicarbonato (HCO3-) cuando se disuelve en agua, y lo hace dependiendo del pH. En el agua de mar, por ejemplo, el pH es tal que el carbono inorgánico disuelto (CID) se encuentra principalmente en forma de HCO3-. El resultado neto de esto es una baja concentración de CO2 libre que apenas es suficiente para que una alga RuBisCO corra a un cuarto de su velocidad máxima y, por lo tanto, CO2 La disponibilidad a veces puede representar una limitación importante de la fotosíntesis de las algas.

Descubrimiento

Los pirenoides fueron descritos por primera vez en 1803 por Vaucher (citado en Brown et al.). El término fue acuñado por primera vez por Schmitz, quien también observó cómo los cloroplastos de las algas se formaban de novo durante la división celular, lo que llevó a Schimper a proponer que los cloroplastos eran autónomos y a suponer que todas las plantas verdes se habían originado a través de la “unificación de un organismo incoloro con otro uniformemente teñido”. con clorofila". A partir de estas observaciones pioneras, Mereschkowski finalmente propuso, a principios del siglo XX, la teoría simbiogenética y la independencia genética de los cloroplastos.

En el medio siglo siguiente, los ficólogos utilizaron a menudo el pirenoide como marcador taxonómico, pero durante mucho tiempo no lograron apreciar la importancia de los pirenoide en la fotosíntesis acuática. El paradigma clásico, que prevaleció hasta principios de los años 1980, era que el pirenoide era el sitio de síntesis del almidón. Las observaciones microscópicas eran fácilmente engañosas, ya que una vaina de almidón a menudo encierra pirenoides. El descubrimiento de mutantes deficientes en pirenoides con granos de almidón normales en el alga verde Chlamydomonas reinhardtii, así como de mutantes sin almidón con pirenoides perfectamente formados, acabó desacreditando esta hipótesis.

No fue hasta principios de la década de 1970 que se esclareció la naturaleza proteica del pirenoide, cuando se aislaron con éxito los pirenoides de un alga verde y se demostró que hasta el 90% estaba compuesto de RuBisCO bioquímicamente activo. En la década siguiente, surgieron cada vez más pruebas de que las algas eran capaces de acumular reservas intracelulares de DIC y convertirlas en CO2, en concentraciones muy superiores a las del medio circundante. Badger y Price sugirieron por primera vez que la función del pirenoide era análoga a la del carboxisoma en las cianobacterias, al estar asociado con la actividad CCM. La actividad de CCM en fotobiontes de algas y cianobacterias de asociaciones de líquenes también se identificó mediante intercambio de gases e isótopos de isótopos de carbono y se asoció con el pirenoide por Palmqvist y Badger et al. El CCM de Hornwort fue caracterizado más tarde por Smith y Griffiths.

A partir de ahí, el pirenoide se estudió en el contexto más amplio de la adquisición de carbono en las algas, pero aún no se le ha dado una definición molecular precisa.

Imagen DIC de Escenasmus quadricauda con el pirenoide (central cuatro estructuras circulares) claramente visible.

Estructura

Existe una diversidad sustancial en la morfología y ultraestructura de los pirenos entre especies de algas. La característica común de todos los pirenoides es una matriz esferoidal, compuesta principalmente de RuBisCO. En la mayoría de los organismos que contienen pirenoide, la matriz pirenoide está atravesada por membranas tilacoides, que están en continuidad con los tilacoides estromales. En el alga roja unicelular Porphyridium purpureum, las membranas tilacoides individuales parecen atravesar el pirenoide; en el alga verde Chlamydomonas reinhardtii, múltiples tilacoides se fusionan en la periferia del pirenoide para formar túbulos más grandes que atraviesan la matriz. A diferencia de los carboxisomas, los pirenoides no están delimitados por una cubierta (o membrana) de proteína. A menudo se forma o deposita una vaina de almidón en la periferia de los pirenoides, incluso cuando ese almidón se sintetiza en el citosol en lugar de en el cloroplasto.

Cuando se examina con microscopía electrónica de transmisión, la matriz pirenoide aparece como una estructura granular densa en electrones aproximadamente circular dentro del cloroplasto. Los primeros estudios sugirieron que RuBisCO está dispuesto en matrices cristalinas en los pirenoides de la diatomea Achnanthes brevipes y el dinoflagelado Prorocentrum micans. Sin embargo, un trabajo reciente ha demostrado que RuBisCO en la matriz pirenoide del alga verde Chlamydomonas no está en una red cristalina y, en cambio, la matriz se comporta como un orgánulo similar a un líquido, separado en fases.

El trabajo mutagénico en Chlamydomonas ha demostrado que la subunidad pequeña de RuBisCO es importante para el ensamblaje de la matriz pirenoide, y que dos hélices alfa expuestas a disolventes de la subunidad pequeña de RuBisCO son clave para el proceso. Se demostró que el ensamblaje de RuBisCO en un pirenoide requiere la proteína repetida EPYC1 de unión a RuBisCO intrínsecamente desordenada, que se propuso "enlazar" las moléculas de RuBisCO. múltiples holoenzimas RuBisCO juntas para formar la matriz pirenoide. Se demostró que EPYC1 y Rubisco juntos son suficientes para reconstituir gotitas separadas en fases que muestran propiedades similares a C. reinhardtii pirenoides in vivo, lo que respalda aún más un "enlazador" papel para EPYC1.

Se ha caracterizado el proteoma del pirenoide Chlamydomonas y se han determinado sistemáticamente las localizaciones y las interacciones proteína-proteína de docenas de proteínas asociadas a pirenoide. Las proteínas localizadas en el pirenoide incluyen RuBisCO activasa, nitrato reductasa y nitrito reductasa.

En Chlamydomonas, un complejo de alto peso molecular de dos proteínas (LCIB/LCIC) forma una capa concéntrica adicional alrededor del pirenoide, fuera de la vaina de almidón, y actualmente se supone que esto actúa como una barrera a la fuga de CO2 o para recapturar el CO2 que se escapa del pirenoide.

En Porphyridium y en Chlamydomonas, hay un único pirenoide muy llamativo en un único cloroplasto, visible mediante microscopía óptica. Por el contrario, en las diatomeas y los dinoflagelados, puede haber múltiples pirenoides. Se ha observado que el pirenoide Chlamydomonas se divide por fisión durante la división del cloroplasto. En casos raros en los que no se produjo la fisión, pareció formarse un pirenoide de novo. Los pirenoides se disuelven parcialmente en el estroma del cloroplasto durante cada división celular, y este conjunto de componentes disueltos puede condensarse en un nuevo pirenoide en los casos en que uno no se hereda por fisión.

Papel de las pirenoides en el MCP

(feminine)
La actual composición hipotetizada de la CCM encontrada en Chlamydomonas reinhardtii. 1= Entorno extracelular. 2= Membrana de plasma. 3= Citoplasma. 4= Membrana cloroplasta. 5= Stroma. 6= Tulakoid membrana. 7= Tilakoid lumen. 8= Pirenoide.

Se cree que el confinamiento de la enzima fijadora de CO2 en un microcompartimento subcelular, en asociación con un mecanismo para entregar CO2 a ese sitio, mejora la eficacia de la fotosíntesis en un ambiente acuoso. Tener un CCM favorece la carboxilación sobre la oxigenación desperdiciada por RuBisCO. Las bases moleculares del pirenoide y la CCM se han caracterizado con cierto detalle en el alga verde modelo Chlamydomonas reinhardtii.

El modelo actual de CCM biofísico que depende de un pirenoide considera el transporte activo de bicarbonato desde el entorno extracelular a las proximidades de RuBisCO, a través de transportadores en la membrana plasmática, la membrana del cloroplasto y las membranas de los tilacoides. Se cree que las anhidrasas carbónicas en el periplasma y también en el citoplasma y el estroma del cloroplasto contribuyen a mantener una reserva intracelular de carbono inorgánico disuelto, principalmente en forma de bicarbonato. Luego se cree que este bicarbonato se bombea a la luz de los tilacoides transpirenoidales, donde se supone que una anhidrasa carbónica residente convierte el bicarbonato en CO2 y satura RuBisCO con sustrato carboxilante. Es probable que diferentes grupos de algas hayan desarrollado diferentes tipos de CCM, pero generalmente se considera que la CCM de algas se articula alrededor de una combinación de anhidrasas carbónicas, transportadores de carbono inorgánico y algún compartimento para empaquetar RuBisCO.

Los pirenoides son estructuras altamente plásticas y el grado de empaquetamiento de RuBisCO se correlaciona con el estado de inducción del CCM. En Chlamydomonas, cuando la CCM está reprimida, por ejemplo cuando las células se mantienen en un ambiente rico en CO2, el pirenoide es pequeño y la matriz no está estructurada. En el dinoflagelado Gonyaulax, la localización de RuBisCO en el pirenoide está bajo control circadiano: cuando las células son fotosintéticamente activas durante el día, RuBisCO se ensambla en múltiples cloroplastos en el centro de las células; Por la noche, estas estructuras desaparecen.

Fisiología y regulación de la CCM

La CCM de las algas es inducible y la inducción de la CCM es generalmente el resultado de condiciones bajas de CO2. La inducción y regulación de la CCM de Chlamydomonas se estudió recientemente mediante análisis transcriptómico, revelando que uno de cada tres genes está regulado hacia arriba o hacia abajo en respuesta a cambios en los niveles de CO2 en el ambiente. La detección de CO2 en Chlamydomonas implica un “interruptor maestro”, que fue descubierto conjuntamente por dos laboratorios. Este gen, Cia5/Ccm1, afecta a más de 1.000 genes que responden al CO2 y también condiciona el grado de empaquetamiento de RuBisCO en el pirenoide.

Origen

La CCM solo se induce durante períodos de niveles bajos de CO2, y fue la existencia de estos niveles desencadenantes de CO2 por debajo de los cuales se inducen las CCM lo que llevó a los investigadores especular sobre el momento probable del origen de mecanismos como el pirenoide.

Existen varias hipótesis sobre el origen de los pirenoides. Con el aumento de una gran flora terrestre tras la colonización de la tierra por los ancestros de las algas carófitas, los niveles de CO2 cayeron drásticamente, con un aumento concomitante en la concentración atmosférica de O2. Se ha sugerido que esta fuerte caída en los niveles de CO2 actuó como un motor evolutivo del desarrollo de CCM y, por lo tanto, dio lugar a los pirenoides, al hacerlo, aseguraron esa tasa de suministro de CO2 no se convirtió en un factor limitante para la fotosíntesis ante la disminución de los niveles de CO2 en la atmósfera.

Sin embargo, se han propuesto hipótesis alternativas. Las predicciones de los niveles pasados de CO2 sugieren que es posible que anteriormente hayan caído tan precipitadamente como lo observado durante la expansión de las plantas terrestres: aproximadamente 300 millones de años, durante la Era Proterozoica. Siendo este el caso, podría haber habido una presión evolutiva similar que resultó en el desarrollo del pirenoide, aunque en este caso, podría haberse desarrollado un pirenoide o una estructura similar a un pirenoide, y haberse perdido como CO2</ Los subniveles luego aumentaron, sólo para ser ganados o desarrollados nuevamente durante el período de colonización de la tierra por las plantas. En los hornworts se encontró evidencia de múltiples ganancias y pérdidas de pirenoides durante períodos de tiempo geológicos relativamente cortos.

Diversidad

Los pirenoides se encuentran en linajes de algas, independientemente de si el cloroplasto se heredó de un único evento endosimbiótico (p. ej., algas verdes y rojas, pero no en los glaucofitos) o de múltiples eventos endosimbióticos (diatomeas, dinoflagelados, cocolitóforos, criptofitos, cloraracniofitos y euglenozoos). Sin embargo, algunos grupos de algas carecen por completo de pirenoides: las algas "superiores" algas rojas y algas rojas extremófilas, el género de algas verdes Chloromonas y las "algas doradas". Los pirenoides generalmente se consideran marcadores taxonómicos deficientes y pueden haber evolucionado de forma independiente muchas veces.

Contenido relacionado

Bomba biológica

La bomba biológica es el secuestro de carbono de la atmósfera y la escorrentía terrestre hacia el interior del océano y los sedimentos del fondo marino....

Kamptobaatar

Kamptobaatar es un género de mamíferos mongoles del Cretácico Superior. Vivió al mismo tiempo que los dinosaurios posteriores. Este animal era miembro del...

Problema del cartero chino

En teoría de grafos, una rama de las matemáticas y la informática, el problema de la ruta de Guan, el problema del cartero chino, recorrido del cartero o...
Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save