Óptica electrónica

óptica electrónica es un marco matemático para el cálculo de trayectorias de electrones en presencia de campos electromagnéticos. El término óptica se utiliza porque las lentes magnéticas y electrostáticas actúan sobre un haz de partículas cargadas de manera similar a las lentes ópticas sobre un haz de luz.
Los cálculos de óptica electrónica son cruciales para el diseño de microscopios electrónicos y aceleradores de partículas. En la aproximación paraxial, los cálculos de trayectoria se pueden realizar mediante análisis de matriz de transferencia de rayos.

Propiedades de los electrones
Los electrones son partículas cargadas (cargas puntuales con masa en reposo) con espín 1/2 (de ahí que sean fermiones). Los electrones pueden acelerarse mediante campos eléctricos adecuados, adquiriendo así energía cinética. Dado un voltaje suficiente, el electrón puede acelerarse lo suficientemente rápido como para exhibir efectos relativistas mensurables. Según la dualidad onda-partícula, los electrones también pueden considerarse ondas de materia con propiedades como longitud de onda, fase y amplitud.
Óptica electrónica geométrica
La analogía óptico-mecánica de Hamilton muestra que los haces de electrones se pueden modelar utilizando conceptos y fórmulas matemáticas de haces de luz. La fórmula de la trayectoria de las partículas de electrones coincide con la fórmula de la óptica geométrica con un índice de refracción óptico-electrónico adecuado. Este índice de refracción funciona como las propiedades materiales del vidrio al alterar la dirección de propagación de los rayos. En óptica luminosa, el índice de refracción cambia abruptamente en una superficie entre regiones de índice constante: los rayos se controlan con la forma de la interfaz. En la óptica electrónica, el índice varía en todo el espacio y está controlado por campos electromagnéticos creados fuera de las trayectorias de los electrones.
Campos magnéticos
Los electrones interactúan con los campos magnéticos según el segundo término de la fuerza de Lorentz: un producto cruzado entre el campo magnético y la velocidad del electrón. En un campo uniforme infinito, esto da como resultado un movimiento circular del electrón alrededor de la dirección del campo con un radio dado por:
- r=mv⊥ ⊥ eB{displaystyle r={frac {mv_{perp} } {eB}}
Donde r es el radio de la órbita, m es la masa de un electrón, v⊥ ⊥ {displaystyle v_{perp}es el componente de la velocidad de electrones perpendicular al campo, e es la carga de electrones y B es la magnitud del campo magnético aplicado. Los electrones que tienen un componente de velocidad paralelo al campo magnético procederán a lo largo de las trayectorias helicales.
Campos eléctricos
En el caso de un campo electrostático aplicado, un electrón se desviará hacia el gradiente positivo del campo. En particular, este cruce de líneas de campo electrostático significa que los electrones, a medida que se mueven a través de campos electrostáticos, cambian la magnitud de su velocidad, mientras que en los campos magnéticos, solo se modifica la dirección de la velocidad.
Teoría relativista
A velocidad de electrones relativista las ecuaciones ópticas de electrones geométricas dependen de un índice de refracción que incluye tanto la relación de velocidad de electrones como la luz v/c=β β {textstyle v/c=beta } y A⋅ ⋅ s{displaystyle mathbf {A} cdot mathbf {s}, el componente del potencial vectorial magnético a lo largo de la dirección electrones:
Aunque no es muy común, también es posible derivar efectos de estructuras magnéticas en partículas cargadas a partir de la ecuación de Dirac.
Óptica electrónica difractiva
Dado que los electrones pueden exhibir efectos que no son partículas (en forma de ondas), como interferencia y difracción, un análisis completo de las trayectorias de los electrones debe ir más allá de la óptica geométrica. La propagación de electrones libres (en el vacío) se puede describir con precisión como una onda de materia de De Broglie con una longitud de onda inversamente proporcional a su momento longitudinal (posiblemente relativista). Afortunadamente, mientras el campo electromagnético atravesado por el electrón cambie lentamente en comparación con esta longitud de onda (ver valores típicos en Onda de materia#Aplicaciones de las ondas de materia), se aplica la fórmula de difracción de Kirchhoff. La característica esencial de este enfoque es utilizar el trazado de rayos geométrico pero manteniendo la fase de la onda a lo largo de cada trayectoria para calcular la intensidad en el patrón de difracción.
Como resultado de la carga transportada por el electrón, los campos eléctricos, los campos magnéticos o el potencial interno medio electrostático de materiales delgados que interactúan débilmente pueden impartir un cambio de fase al frente de onda de un electrón. Las membranas de nitruro de silicio de espesor modulado y los dispositivos de cambio de fase programables han aprovechado estas propiedades para aplicar cambios de fase que varían espacialmente para controlar la intensidad espacial del campo lejano y la fase de la onda de electrones. Se han aplicado dispositivos como estos para dar forma arbitraria al frente de onda del electrón, corregir las aberraciones inherentes a los microscopios electrónicos, resolver el momento angular orbital de un electrón libre y medir el dicroísmo en la interacción entre electrones libres y materiales magnéticos o nanoestructuras plasmónicas.
Limitaciones de la aplicación de técnicas de óptica lumínica
Los electrones interactúan fuertemente con la materia, ya que son sensibles no solo al núcleo, sino también a la nube de carga electrónica de la materia. Por lo tanto, los electrones requieren vacío para propagarse a cualquier distancia razonable, como sería deseable en un sistema óptico de electrones.
La penetración en el vacío está dictada por el camino libre medio, una medida de la probabilidad de colisión entre electrones y materia, cuyos valores aproximados pueden derivarse de las estadísticas de Poisson.
Software de simulación de óptica electrónica
Programas comerciales
Contenido relacionado
Julio (unidad)
Pascal (unidad)
Newton (unidad)