Mutación sin sentido
En genética, una mutación sin sentido es una mutación puntual en una secuencia de ADN que da como resultado un codón sin sentido, o un codón de parada prematuro en el ARNm transcrito, y conduce a un producto proteico truncado, incompleto y posiblemente no funcional. La mutación sin sentido no siempre es dañina; el efecto funcional de una mutación sin sentido depende de muchos aspectos, como la ubicación del codón de terminación dentro del ADN codificante. Por ejemplo, el efecto de una mutación sin sentido depende de la proximidad de la mutación sin sentido al codón de parada original y del grado en que se ven afectados los subdominios funcionales de la proteína. Como las mutaciones sin sentido conducen a la terminación prematura de las cadenas polipeptídicas; también se les llama mutaciones de terminación de cadena.
Las mutaciones sin sentido se diferencian de las mutaciones sin sentido porque son mutaciones puntuales que exhiben un único cambio de nucleótido para provocar la sustitución de un aminoácido diferente. Una mutación sin sentido también se diferencia de una mutación continua, que es una mutación puntual que elimina un codón de parada. Alrededor del 10% de los pacientes que enfrentan enfermedades genéticas tienen mutaciones sin sentido. Algunas de las enfermedades que pueden causar estas mutaciones son la distrofia muscular de Duchenne (DMD), la fibrosis quística (FQ), la atrofia muscular espinal (AME), los cánceres, las enfermedades metabólicas y los trastornos neurológicos. La tasa de mutaciones sin sentido varía de un gen a otro y de un tejido a otro, pero el silenciamiento genético ocurre en todos los pacientes con una mutación sin sentido.
Ejemplo sencillo
ADN: 5' - ATG ACT CAC CGA GCG CGA AGC TGA - 3' 3' - TAC TGA GTG GCT CGC GCT TCG ACT - 5' mRNA: 5' - AUG ACU CAC CGA GCG CGA AGC UGA - 3' Protein: Met Thr His Arg Ala Arg Ser Stop
El ejemplo anterior comienza con un 5' Secuencia de ADN con ocho nucleótidos que se ve y su cadena complementaria se muestra a continuación. La siguiente fila resalta el 5' Cadena de ARNm, que se genera mediante transcripción. Por último, la fila final muestra cuáles son los aminoácidos que se traducen de cada codón respectivo, y el octavo y último codón representa el codón de parada. Los codones correspondientes al cuarto aminoácido, Arginina, están resaltados porque sufrirán una mutación sin sentido en la siguiente figura de este ejemplo.
ADN: 5' - ATG ACT CAC TGA GCG CGA AGC TGA - 3' 3' - TAC TGA GTG ACTO CGC GCT TCG ACT - 5' MRNA: 5' - AUG ACU CAC UGA GCG CGU AGC UGA - 3' Proteína: Met Thr His Stop
Ahora, supongamos que se introdujo una mutación sin sentido en el cuarto codón en el 5 ' La secuencia de ADN (CGA) que hace que la citosina sea reemplazada con timina, produciendo TGA en el 5 ' Secuencia de ADN y actuar en la cadena complementaria. Debido a que ACT se transcribe como UGA, se traduce como un codón de parada. Esto lleva a los codones restantes del ARNm a no traducirse a proteínas porque el codón de parada se alcanza prematuramente durante la traducción. Esto puede producir un producto de proteína truncado (es decir, abreviado), que a menudo carece de la funcionalidad de la proteína normal no mutante.
Posibles resultados
Deletercious
Los resultados nocivos representan la mayoría de las mutaciones sin sentido y son el resultado más común que se observa de forma natural. Las mutaciones perjudiciales y sin sentido disminuyen la aptitud general y el éxito reproductivo del organismo. Por ejemplo, una mutación sin sentido que ocurre en un gen que codifica una proteína puede causar defectos estructurales o funcionales en la proteína que alteran la biología celular. Dependiendo de la importancia de las funciones de esta proteína, esta alteración ahora podría ser perjudicial para la aptitud y la supervivencia de ese organismo.
Neutro
Cuando una mutación sin sentido es neutral, no proporciona beneficios ni daños. Estos ocurren cuando los efectos de la mutación pasan desapercibidos. En otras palabras, esto significa que la mutación no afecta positiva ni negativamente al organismo. Como este efecto pasa desapercibido, faltan artículos que describan tales mutaciones. Un ejemplo de este tipo de mutación sin sentido es aquella que ocurre directamente antes del codón de parada original para esa proteína determinada. Debido a que esta mutación ocurrió tan cerca del final de la cadena proteica, el impacto de este cambio podría no ser tan significativo. Esto sugeriría que este aminoácido que fue mutado no tuvo un gran impacto en la estructura o función general de la proteína o del organismo en su conjunto. Este escenario es raro, pero posible.
Beneficioso
Las mutaciones sin sentido beneficiosas se consideran los resultados más raros posibles de mutaciones sin sentido. Las mutaciones beneficiosas sin sentido aumentan la aptitud general y el éxito reproductivo de un organismo, lo contrario de los efectos de una mutación perjudicial. Debido a que una mutación sin sentido introduce un codón de parada prematuro dentro de una secuencia de ADN, es extremadamente improbable que este escenario pueda realmente beneficiar al organismo. Un ejemplo de esto ocurriría con una mutación sin sentido que afecta a una proteína disfuncional que libera toxinas. El codón de parada que trae esta mutación impediría que esta proteína disfuncional realice correctamente su función. Impedir que esta proteína funcione con toda su fuerza provoca que se liberen menos toxinas y se mejore la condición física del organismo. Este tipo de situaciones con mutaciones sin sentido ocurren con mucha menos frecuencia que los resultados nocivos.
suprimiendo las mutaciones sin sentido

Desintegración del ARNm mediada por tonterías
A pesar de la tendencia esperada de que los codones de terminación prematura produzcan productos polipeptídicos acortados, de hecho, la formación de proteínas truncadas no ocurre con frecuencia in vivo. Muchos organismos (incluidos los humanos y especies inferiores, como la levadura) emplean una vía de desintegración del ARNm mediada sin sentido, que degrada los ARNm que contienen mutaciones sin sentido antes de que puedan traducirse en polipéptidos no funcionales.
Supresión de ARNt
Debido a que las mutaciones sin sentido dan como resultado un ARNm alterado con un codón de parada prematuro, una forma de suprimir el daño causado a la función de la proteína final es alterar el ARNt que lee el ARNm. Estos ARNt se denominan ARNt supresores. Si el codón de terminación es UAG, cualquier otro aminoácido tRNA podría alterarse de su anticodón original a AUC para que reconozca el codón UAG. Esto dará como resultado que la proteína no se trunca, pero aún puede tener un aminoácido alterado. Estas mutaciones supresoras de ARNt solo son posibles si la célula tiene más de un ARNt que lee un codón particular; de lo contrario, la mutación mataría a la célula. Los únicos codones de parada son UAG, UAA y UGA. Los supresores UAG y UAA leen sus respectivos codones de parada en lugar de su codón original, pero los supresores UAA también leen UAG debido al emparejamiento de bases oscilante. Los supresores de UGA son muy raros. Otro obstáculo que superar en esta técnica es el hecho de que los codones de parada también son reconocidos por los factores de liberación, por lo que el ARNt aún necesita competir con los factores de liberación para mantener la traducción. Debido a esto, la supresión suele tener sólo entre un 10 y un 40% de éxito. Estas mutaciones supresoras del ARNt también se dirigen a codones de terminación que no son mutaciones, lo que hace que algunas proteínas sean mucho más largas de lo que deberían ser. Sólo las bacterias y los eucariotas inferiores pueden sobrevivir con estas mutaciones; las células de mamíferos y de insectos mueren como resultado de una mutación supresora.
Mutaciones sin sentido asociadas a enfermedades comunes

Las mutaciones sin sentido comprenden alrededor del 20 % de las sustituciones de un solo nucleótido dentro de secuencias codificantes de proteínas que provocan enfermedades humanas. La patología mediada por mutaciones sin sentido a menudo se atribuye a cantidades reducidas de proteína de longitud completa, porque sólo entre el 5 y el 25% de las transcripciones que poseen mutaciones sin sentido no sufren desintegración mediada por mutaciones sin sentido (NMD). La traducción del resto del ARNm sin sentido puede generar variantes proteicas abreviadas con efectos tóxicos.
Veintitrés diferentes sustituciones de nucleótido de un solo punto son capaces de convertir un codón sin parar en un codón de parada, con las mutaciones CGATGA y CAGTAG es la sustitución más común relacionada con las enfermedades caracterizada en la base de datos de mutación de genes humanos (HGMD). Como resultado de diferentes frecuencias de sustitución para cada nucleótido, las proporciones de los tres codones de parada generados por mutaciones sin sentido que inducen enfermedades difieren de las distribuciones de codón de parada en variantes genéticas no disuasivas. Notablemente, el codon TAG está sobrerepresentado, mientras que los codones TGA y TAA están insuficientemente representados en mutaciones sin sentido de enfermedad.
La eficiencia de la terminación de la traducción está influenciada por la secuencia del codón de parada específico en el ARNm, siendo la secuencia UAA la que produce la terminación más alta. Las secuencias que rodean al codón de parada también afectan la eficiencia de la terminación. En consecuencia, la patología subyacente de las enfermedades causadas por mutaciones sin sentido depende en última instancia de la identidad del gen mutado y de la ubicación específica de la mutación.
Ejemplos de enfermedades inducidas por mutaciones sin sentido incluyen:
- fibrosis quística (causada por la mutación G542X en el regulador de conductividad transmembrana de fibrosis quística (CFTR)
- Beta talasemia (β-globina)
- Síndrome de Hurler
- Síndrome de Dravet
- Síndrome de usher
Mutaciones sin sentido en otros genes también pueden provocar disfunción de varios tejidos u sistemas de órganos:
SMAD8
SMAD8 es el octavo homólogo de la familia de genes ENDOGLIN y participa en la señalización entre TGF-b/BMP. Se ha identificado que nuevas mutaciones sin sentido en SMAD8 están asociadas con la hipertensión arterial pulmonar. El sistema pulmonar depende de SMAD1, SMAD5 y SMAD 8 para regular la función vascular pulmonar. La regulación negativa y la pérdida de señales que normalmente opera SMAD8 contribuyeron a la patogénesis de la hipertensión arterial pulmonar. Se descubrió que el gen ALK1, que forma parte de la familia de señalización TGF-B, había sido mutado y al mismo tiempo regulaba negativamente el gen SMAD8 en pacientes con hipertensión arterial pulmonar. Los mutantes SMAD8 no fueron fosforilados por ALK1, lo que interrumpió las interacciones con SMAD4 que normalmente permitirían la señalización en organismos de tipo salvaje.
LGR4
LGR4 se une a las R-espondinas para activar la vía de señalización Wnt. La señalización Wnt regula la masa ósea y la diferenciación de osteoblastos y es importante para el desarrollo de los huesos, el corazón y los músculos. Una mutación sin sentido de LGR4 en una población sana se ha relacionado con una baja densidad de masa ósea y síntomas de osteoporosis. Los ratones mutantes LGR4 mostraron que la baja masa ósea observada no se debe a la pérdida ósea relacionada con la edad. Las mutaciones en LGR4 se han asociado con linajes familiares con antecedentes médicos de trastornos óseos raros. Los ratones de tipo salvaje que carecen de LGR4 también mostraron un retraso en la diferenciación de osteoblastos durante el desarrollo, lo que demuestra el importante papel de LGR4 en la regulación y el desarrollo de la masa ósea.
Terapéuticas dirigidas a enfermedades por mutaciones sin sentido
Las terapias para enfermedades causadas por mutaciones sin sentido intentan recapitular la función de tipo salvaje disminuyendo la eficacia de NMD, facilitando la lectura del codón de parada prematuro durante la traducción o editando la mutación genómica sin sentido.
Se están explorando oligonucleótidos antisentido para suprimir la expresión de NMD y proteínas de terminación de la traducción en modelos animales de enfermedades inducidas por mutaciones sin sentido. Otras terapias de ARN que se están investigando incluyen ARNt supresores sintéticos que permiten a los ribosomas insertar un aminoácido, en lugar de iniciar la terminación de la cadena, al encontrar codones de parada prematuros.
Se han utilizado sustituciones de un solo nucleótido basadas en CRISPR-Cas9 para generar codones de aminoácidos a partir de codones de terminación, logrando una tasa de éxito en la edición del 10 % en cultivos celulares.
La lectura completa se ha logrado utilizando fármacos de molécula pequeña como aminoglucósidos y negamicina. Un oxadiazol, Ataluren (anteriormente PTC124), facilita la lectura selectiva de codones de parada aberrantes, lo que lo convierte en un tratamiento potencial contra enfermedades inducidas por mutaciones sin sentido. Ataluren, vendido bajo el nombre comercial Translarna, es actualmente un tratamiento aprobado para la distrofia muscular de Duchenne en el Espacio Económico Europeo y Brasil. Sin embargo, los ensayos de fase III de Ataluren como terapéutico para la fibrosis quística no han logrado cumplir sus criterios de valoración principales.
Enlaces externos y referencias
- ^ a b c Sharma, Jyoti; Keeling, Kim M.; Rowe, Steven M. (2020-08-15). "Pharmacological approaches for targeting cystic fibrosis absurd mutations". European Journal of Medicinal Chemistry. 200: 112436. doi:10.1016/j.ejmech.2020.112436. ISSN 0223-5234.7384597. PMID 32512483.
- ^ a b c Potapova, Nadezhda A. (2022-05-01). "Mutaciones de sentido en Eukaryotes". Bioquímica (Moscú). 87 (5): 400–412. doi:10.1134/S0006297922050029. ISSN 1608-3040. PMID 35790376. S2CID 248793651.
- ^ Balasubramanian, Suganthi; Fu, Yao; Pawashe, Mayur; McGillivray, Patrick; Jin, Mike; Liu, Jeremy; Karczewski, Konrad J.; MacArthur, Daniel G.; Gerstein, Mark (2017-08-29). "Usando ALoFT para determinar el impacto de las variantes de pérdida de funciones putative en genes de codificación de proteínas". Nature Communications. 8 (1): 382. Bibcode:2017NatCo...8..382B. doi:10.1038/s41467-017-00443-5. ISSN 2041-1723. PMC5575292. PMID 28851873.
- ^ a b Clark, David P.; Pazdernik, Nanette J.; McGehee, Michelle R. (2019), "Mutaciones y Reparación", Biología molecular, Elsevier, pp. 832–879, doi:10.1016/b978-0-12-813288-3.00026-4, ISBN 9780128132883, S2CID 239340633, recuperado 2022-12-02
- ^ a b c "La corrección de mutación sin sentido en las enfermedades humanas es un enfoque para la medicina dirigida Ø WorldCat.org". www.worldcat.org. Retrieved 2022-12-02.
- ^ Guimbellot, Jennifer; Sharma, Jyoti; Rowe, Steven M. (noviembre de 2017). "Hacia una terapia inclusiva con moduladores CFTR: progreso y desafíos". Pulmonología pediátrica. 52 (Supl 48): S4–S14. doi:10.1002/ppul.23773. ISSN 8755-6863. PMC6208153. PMID 28881097.
- ^ Benhabiles, Hana; Jia, Jieshuang; Lejeune, Fabrice (2016-01-01), Benhabiles, Hana; Jia, Jieshuang; Lejeune, Fabrice (eds.), "Chapter 2 - Pathologies Susceptible to be Targeted for Nonsense Mutation Therapies", Corrección de mutación en las enfermedades humanas, Boston: Academic Press, pp. 77-105, ISBN 978-0-12-804468-1, recuperado 2022-12-02
- ^ a b c d e f Editores, B. D. (2018-08-26). "Mutación de sentido - Definición, Ejemplo, Resultados". Biology Dictionary. Retrieved 2022-12-02.
{{cite web}}
:|last=
tiene nombre genérico (ayuda) - ^ Murgola, Emanuel J. (diciembre de 1985). "TRNA, SUPPRESSION, Y EL CODE". Annual Review of Genetics. 19 (1): 57–80. doi:10.1146/annurev.ge.19.120185.000421. ISSN 0066-4197. PMID 2417544.
- ^ Las referencias para la imagen se encuentran en la página Wikimedia Commons en: Commons:File:Mutaciones notables.svg#Referencias.
- ^ a b c d e Mort, Matthew; Ivanov, Dobril; Cooper, David N.; Chuzhanova, Nadia A. (agosto de 2008). "Un metaanálisis de mutaciones sin sentido que causan enfermedad genética humana". Mutación humana. 29 (8): 1037–1047. doi:10.1002/humu.20763. PMID 18454449. S2CID 205918343.
- ^ Isken, Olaf; Maquat, Lynne E. (2007-08-01). "Control de calidad de mRNA eucariota: salvaguardar células de función mRNA anormal". Genes " Development. 21 (15): 1833-1856. doi:10.1101/gad.1566807. ISSN 0890-9369. PMID 17671086.
- ^ Khajavi, Mehrdad; Inoue, Ken; Lupski, James R. (octubre de 2006). "La desintegración de la MRNA mediada por el sentido de la enfermedad genética modula el resultado clínico". European Journal of Human Genetics. 14 (10): 1074–1081. doi:10.1038/sj.ejhg.5201649. ISSN 1476-5438. PMID 16757948. S2CID 3450423.
- ^ a b Keeling, Kim M.; Du, Ming; Bedwell, David M. (2013). Terapias de Enfermedades No Asociadas. Landes Bioscience.
- ^ a b c d Shintani, M; Yagi, H; Nakayama, T; Saji, T; Matsuoka, R (2009-05-01). "Una nueva mutación sin sentido del SMAD8 asociada a hipertensión arterial pulmonar". Journal of Medical Genetics. 46 (5): 331–337. doi:10.1136/jmg.2008.062703. ISSN 0022-2593. S2CID 44932041.
- ^ a b c d e Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Sulem, Patrick; Gudbjartsson, Daniel F.; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Oddsson, Asmundur; Helgeson, Agnar; Magnusson, Tlafurn. "La mutación sin sentido en el gen LGR4 se asocia con varias enfermedades humanas y otros rasgos". Naturaleza. 497 (7450): 517-520. código:2013Natur.497..517S. doi:10.1038/nature12124. ISSN 0028-0836. S2CID 205233843.
- ^ a b c d Morais, Pedro; Adachi, Hironori; Yu, Yi-Tao (2020-06-20). "Represión de mutaciones sin sentido por nuevas tecnologías emergentes". International Journal of Molecular Sciences. 21 (12): 4394. doi:10.3390/ijms21124394. ISSN 1422-0067. PMC7352488. PMID 32575694.
- ^ Huang, Lulu; Aghajan, Mariam; Quesenberry, Tianna; Low, Audrey; Murray, Susan F.; Monia, Brett P.; Guo, Shuling (agosto 2019). "Targeting Translation Termination Machinery with Antisense Oligonucleotides for Diseases Caused by Nonsense Mutations". Terapéutica de Ácido Núcleo. 29 (4): 175–186. doi:10.1089/nat.2019.0779. ISSN 2159-3345. PMC6686700. PMID 31070517.
- ^ Lee, Choongil; Hyun Jo, Dong; Hwang, Gue-Ho; Yu, Jihyeon; Kim, Jin Hyoung; Park, Se-eun; Kim, Jin-Soo; Kim, Jeong Hun; Bae, Sangsu (2019-08-07). "CRISPR-Pass: Rescate genético de mutaciones sin sentido usando editores de base de adenina". Terapia molecular. 27 (8): 1364–1371. doi:10.1016/j.ymthe.2019.05.013. ISSN 1525-0016. PMC6698196. PMID 31164261.
- ^ Welch, Ellen M.; Barton, Elisabeth R.; Zhuo, Jin; Tomizawa, Yuki; Friesen, Westley J.; Trifillis, Panayiota; Paushkin, Sergey; Patel, Meenal; Trotta, Christopher R.; Hwang, Seongwoo; Wilde, Richard G; Karp, Gary; Takasugi, James; Chen Jones. "PTC124 se dirige a los trastornos genéticos causados por mutaciones sin sentido". Naturaleza. 447 (7140): 87–91. Código:2007Natur.447...87W. doi:10.1038/nature05756. ISSN 1476-4687. PMID 17450125. S2CID 4423529.
- ^ "Terapia TPTC". PTC Terapéutica Silencio Medido por Momentos. Retrieved 2022-12-01.
- ^ "ANVISA aprueba la expansión de la indicación PTC Translarna a los niños ambulatorios". Tecnología farmacéutica. 2021-10-26. Retrieved 2022-12-01.
- ^ Kerem, Eitan; Konstan, Michael W; De Boeck, Kris; Accurso, Frank J; Sermet-Gaudelus, Isabelle; Wilschanski, Michael; Elborn, J Stuart; Melotti, Paola; Bronsveld, Inez (2014-07-01). "Ataluren para el tratamiento de la fibrosis quística de mutación sin sentido: un ensayo aleatorizado de fase 3 doble ciego controlado por placebo". La medicina respiratoria de Lancet. 2 (7): 539–547. doi:10.1016/S2213-2600(14)70100-6. PMC4154311. PMID 24836205.
- ^ Konstan, M. W.; VanDevanter, D. R.; Rowe, S. M.; Wilschanski, M.; Kerem, E.; Sermet-Gaudelus, I.; DiMango, E.; Melotti, P.; McIntosh, J.; De Boeck, K.; ACT CF Study Group (Julio 2020). "Eficacia y seguridad del atalureno en pacientes con fibrosis quística de mutación sin sentido que no reciben aminoglicósidos inhalados crónicos: The international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF)". Journal of Cystic Fibrosis. 19 (4): 595–601. doi:10.1016/j.jcf.2020.01.007. ISSN 1873-5010. PMC9167581. PMID 31983658.
Contenido relacionado
Precisión y exactitud
Evidencia empírica
Teoría del flogisto