Momento estandarizado
En teoría de probabilidad y estadística, un momento estandarizado de una distribución de probabilidad es un momento (a menudo un momento central de mayor grado) que se normaliza, generalmente por una potencia de la desviación estándar, lo que hace que el momento escala invariante. La forma de diferentes distribuciones de probabilidad se puede comparar usando momentos estandarizados.
Normalización estándar
Vamos X ser una variable aleatoria con una distribución de probabilidad P y valor medio μ μ =E[X]{textstyle mu =mathrm {E} [X]} (es decir, el primer momento o momento bruto sobre cero), el operador E denotando el valor esperado X. Entonces el momento estandarizado grado k es μ μ kσ σ k,{displaystyle {frac {fnMicroc} - ¿Qué? es decir, la relación de kel momento de la media
- μ μ k=E [()X− − μ μ )k]=∫ ∫ − − JUEGO JUEGO JUEGO JUEGO ()x− − μ μ )kP()x)dx,{displaystyle mu _{k}=operatorname {E} left[(X-mu)^{k}right]=int _{-infty }{infty }(x-mu)^{k}P(x),dx,}
a la késima potencia de la desviación estándar,
- σ σ k=μ μ 2k/2=()E[()X− − μ μ )2])k.{displaystyle sigma ^{k}=mu ¿Por qué?
El poder de k es porque los momentos escalan xk,{displaystyle x^{k} significa que μ μ k()λ λ X)=λ λ kμ μ k()X):{displaystyle mu _{k}(lambda X)=lambda ^{k}mu _{k}(X):} son funciones homogéneas de grado k, por lo tanto el momento estandarizado es invariante escala. Esto también se puede entender como ser porque los momentos tienen dimensión; en la relación anterior que define los momentos estandarizados, las dimensiones cancelan, por lo que son números sin dimensión.
Los primeros cuatro momentos estandarizados se pueden escribir como:
Grado k | Comentario | |
---|---|---|
1 | μ μ ~ ~ 1=μ μ 1σ σ 1=E [()X− − μ μ )1]()E [()X− − μ μ )2])1/2=μ μ − − μ μ E [()X− − μ μ )2]=0{displaystyle {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {\fnMicrosoft {\fnMicrosoft {\\fnMicrosoft {\fnMicrosoft {\\\\fnMicrosoft {\\\\\\\\\\\\\\\\\\fn\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ }_{1}={frac {mu {fnMicrosoft Sans Serif} {fnMicrosoft Sans Serif} {fnMicrosoft Sans Serif}} {f}} {fnuncio} {fnMicrosoft Sans Serif} {fnMicrosoft}}}} {fnMicros} {m} {fnMicros}} {f}}} {f}}}}}} {m}}}} {m}}}}}} {m}}} {f} {f}}}}} {m}}} {m}}}}} {f}} {f}}}} {f} {f}} {f}} {f}}}}}}}}}}}}}}}}}} {f}}}}}f}} {f}}}}}}}}}}}}f}f}f}f}}f}f}} {f}} | El primer momento estandarizado es cero, porque el primer momento sobre la media es siempre cero. |
2 | μ μ ~ ~ 2=μ μ 2σ σ 2=E [()X− − μ μ )2]()E [()X− − μ μ )2])2/2=1{displaystyle {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {\fnMicrosoft {\fnMicrosoft {\\fnMicrosoft {\fnMicrosoft {\\\\fnMicrosoft {\\\\\\\\\\\\\\\\\\fn\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ }_{2}={frac {mu {fnMicrosoft Sans Serif} {fnMicroc {E}left[(X-mu)^{2}right]}{(operatorname {E} left[(X-mu)}{2/2}}}}}}=1}}}}} {}}}}} {c}}} {c}}}} {c}}}}}}}}}} {c}}}}}}} {c}}}}}}}} {c}} {c}}}}} {c}}}}}} {c}}}}}}}}}}}}}}}} {c}}}} {c}}}}}} {c}}}}} {c}}}}}}}}}}}}} {c}} {c}}}}}}}}}}}}}} {c}}}}}}}}}}}}}}}}}}}}} | El segundo momento estandarizado es uno, porque el segundo momento sobre la media es igual a la diferencia σ2. |
3 | μ μ ~ ~ 3=μ μ 3σ σ 3=E [()X− − μ μ )3]()E [()X− − μ μ )2])3/2{displaystyle {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {\fnMicrosoft {\fnMicrosoft {\\fnMicrosoft {\fnMicrosoft {\\\\fnMicrosoft {\\\\\\\\\\\\\\\\\\fn\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ }_{3}={frac {mu {fnMicro {fnK}} {fnMicroc {fnMi} left[(X-mu)^{3}right]}{operatorname {E} left[(X-mu)}{3/2}}}}}}}}}} {}}}}}}}}} {}}} {}}}}} {}}}}} {}}}}}}}}}}}} {}}}}}}}}}}}}}}}}}}}}}}}}} { | El tercer momento estandarizado es una medida de asiduidad. |
4 | μ μ ~ ~ 4=μ μ 4σ σ 4=E [()X− − μ μ )4]()E [()X− − μ μ )2])4/2{displaystyle {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {fnMicrosoft {\fnMicrosoft {\fnMicrosoft {\\fnMicrosoft {\fnMicrosoft {\\\\fnMicrosoft {\\\\\\\\\\\\\\\\\\fn\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ }_{4}={frac {mu {fnK} {fnMicroc {fnK}left[(X-mu)^{4}derecha]}{operatorname {E} left[(X-mu)}{4/2}}}}}}}}}}}}} {}}}} {}}}}}} {}}}}} {}}}}} {}}}}}}} {}}}}}}}}}}}}}}}}}}}} { | El cuarto momento estandarizado se refiere a la kurtosis. |
Para asimetría y curtosis, existen definiciones alternativas, que se basan en el tercer y cuarto cumulante respectivamente.
Otras normalizaciones
Otra medida invariante e indimensional para las características de una distribución es el coeficiente de variación, σ σ μ μ {displaystyle {frac {sigma } {mu}}. Sin embargo, este no es un momento estandarizado, primero porque es un recíproco, y segundo porque μ μ {displaystyle mu } es el primer momento sobre cero (el medio), no el primer momento sobre el medio (que es cero).
Consulte Normalización (estadísticas) para conocer más índices de normalización.
Contenido relacionado
Mateo Cook
Dominio de una función
Sinh