Media intercuartil
La media intercuartil (IQM) (o midmean) es una medida estadística de tendencia central basada en la media truncada del rango intercuartílico. El IQM es muy similar al método de puntuación utilizado en los deportes que son evaluados por un panel de jueces: descartar las puntuaciones más bajas y más altas; calcular el valor medio de las puntuaciones restantes.
Cálculo
En el cálculo del IQM, solo se utilizan los datos entre el primer y el tercer cuartil, y se descartan el 25 % más bajo y el 25 % más alto de los datos.
- xIQM=2n.. i=n4+13n4xi{displaystyle x_{mathrm {IQM}={2 over n}sum _{i={frac {n}{4}+1} {frac} {3n}{x_{i}}
asumiendo que los valores han sido ordenados.
Ejemplos
Tamaño del conjunto de datos divisible por cuatro
El método se explica mejor con un ejemplo. Considere el siguiente conjunto de datos:
- 5, 8, 4, 38, 8, 6, 9, 7, 3, 1, 6
Primero ordena la lista de menor a mayor:
- 1, 3, 4, 5, 6, 7, 8, 8, 9, 38
Hay 12 observaciones (puntos de datos) en el conjunto de datos, por lo que tenemos 4 cuartiles de 3 números. Descartar los 3 valores más bajos y los más altos:
1, 3, 4, 5, 6, 7, 7, 8,8, 9, 38
Ahora tenemos 6 de las 12 observaciones restantes; a continuación, calculamos la media aritmética de estos números:
- xIQM = (5 + 6 + 6 + 7 + 7 + 8) / 6 = 6.5
Esta es la media intercuartil.
A modo de comparación, la media aritmética del conjunto de datos original es
- (5 + 8 + 4 + 38 + 8 + 6 + 9 + 7 + 7 + 3 + 1 + 6) / 12 = 8,5
debido a la fuerte influencia del valor atípico, 38.
Tamaño del conjunto de datos no divisible por cuatro
El ejemplo anterior constaba de 12 observaciones en el conjunto de datos, lo que facilitó mucho la determinación de los cuartiles. Por supuesto, no todos los conjuntos de datos tienen un número de observaciones que sea divisible por 4. Podemos ajustar el método de cálculo del IQM para acomodar esto. Idealmente, queremos tener el IQM igual a la media para distribuciones simétricas, por ejemplo:
- 1, 2, 3, 4, 5
tiene un valor medio xmedia = 3, y dado que es una distribución simétrica, xIQM = 3 sería deseable.
Podemos resolver esto usando un promedio ponderado de los cuartiles y el conjunto de datos intercuartiles:
Considere el siguiente conjunto de datos de 9 observaciones:
- 1, 3, 5, 7, 9, 11, 13, 15, 17
Hay 9/4 = 2,25 observaciones en cada cuartil y 4,5 observaciones en el rango intercuartílico. Trunque el tamaño del cuartil fraccionario y elimine este número del 1er y 4to cuartil (2,25 observaciones en cada cuartil, por lo que se eliminan las 2 más bajas y las 2 más altas).
1, 3, (5), 7, 9, 11, (13),15, 17
Por lo tanto, hay 3 observaciones completas en el rango intercuartílico y 2 observaciones fraccionarias. Dado que tenemos un total de 4,5 observaciones en el rango intercuartílico, las dos observaciones fraccionarias cuentan cada una por 0,75 (y, por lo tanto, 3 × 1 + 2 × 0,75 = 4,5 observaciones).
El IQM ahora se calcula de la siguiente manera:
- xIQM = {7 + 9 + 11) + 0.75 × (5 + 13)} / 4.5 = 9
En el ejemplo anterior, la media tiene un valor xmedia = 9. Lo mismo que el IQM, como se esperaba. El método para calcular el IQM para cualquier número de observaciones es análogo; las contribuciones fraccionarias al IQM pueden ser 0, 0,25, 0,50 o 0,75.
Comparación con media y mediana
La media intercuartil comparte algunas propiedades tanto de la media como de la mediana:
- Al igual que la mediana, el IQM es insensible a los atípicos; en el ejemplo dado, el valor más alto (38) era un outlier obvio del conjunto de datos, pero su valor no se utiliza en el cálculo del IQM. Por otro lado, el promedio común (la media aritmética) es sensible a estos outliers: x# = 8.5.
- Como el medio, el IQM es un parámetro distinto, basado en un gran número de observaciones del conjunto de datos. La mediana siempre es igual a uno of the observations in the dataset (assuming an odd number of observations). El medio puede ser igual a cualquiera valor entre la observación más baja y la más alta, dependiendo del valor Todos las otras observaciones. El IQM puede ser igual a cualquiera valor entre los cuartiles primero y tercero, dependiendo de Todos las observaciones en el rango intercuartil.
Contenido relacionado
Condado de Nassau, Florida
Metanálisis
Significados de probabilidad