Interpolación de Pareto
La interpolación de Pareto es un método para estimar la mediana y otras propiedades de una población que sigue una distribución de Pareto. Se utiliza en economía cuando se analiza la distribución de ingresos en una población, cuando se deben basar estimaciones en una muestra aleatoria relativamente pequeña tomada de la población.
La familia de distribuciones de Pareto está parametrizada por
- un número positivo κ que es el valor más pequeño que una variable aleatoria con una distribución Pareto puede tomar. Como se aplica a la distribución de los ingresos, κ es el ingreso más bajo de cualquier persona en la población; y
- un número positivo θ the "Pareto index"; como esto aumenta, la cola de la distribución se vuelve más delgada. Como se aplica a la distribución de los ingresos, esto significa que el mayor valor del índice de Pareto θ el menor la proporción de los ingresos muchas veces más grande que los ingresos más pequeños.
La interpolación de Pareto se puede utilizar cuando la información disponible incluye la proporción de la muestra que cae por debajo de cada uno de los dos números especificados a < b. Por ejemplo, se puede observar que el 45% de los individuos de la muestra tienen ingresos inferiores a a = $35.000 al año, y el 55% tienen ingresos inferiores a b = $40.000 al año.
Dejar
- Pa = proporción de la muestra que se encuentra debajo a;
- Pb = proporción de la muestra que se encuentra debajo b.
Entonces las estimaciones de κ y θ son
- κ κ ^ ^ =()Pb− − Pa()1/aSilencio Silencio ^ ^ )− − ()1/bSilencio Silencio ^ ^ ))1/Silencio Silencio ^ ^ {displaystyle {widehat {kappa }=left({frac {P_{b}-P_{a}}{left(1/a^{widehat {theta }right)-left(1/b^{widehat {theta }}right)}right)}{1/{widehat {thetat}thetat}}}}right)}}right)}right)}{1/{right)}}}}}}}}}}}}}}}}}}}}}}}}}}}{1/{right)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}{right)}}}}}}}}}}}}}}}}}}}}}{right)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}{ }
y
- Silencio Silencio ^ ^ =log ()1− − Pa)− − log ()1− − Pb)log ()b)− − log ()a).{displaystyle {widehat {theta };=;{frac {log(1-P_{a})-log(1-P_{b}{log(b)-log(a)}}
La estimación de la mediana sería entonces
- mediana estimada=κ κ ^ ^ ⋅ ⋅ 21/Silencio Silencio ^ ^ ,{displaystyle {mbox{estimated} medianamente. ♪♪
dado que la mediana de la población real es
- mediana=κ κ 21/Silencio Silencio .{displaystyle {mbox{median}=kappa ,2^{1/theta }.
Contenido relacionado
Hacer un pedido
Toda la función
Extractor (matemáticas)