Función lineal por partes
En matemáticas y estadística, una función lineal por partes, PL o segmentada es una función con valor real de una variable real, cuya gráfica está compuesto por segmentos de recta.
Definición
Una función lineal por partes es una función definida en un intervalo (posiblemente ilimitado) de números reales, de modo que hay una colección de intervalos en cada uno de los cuales la función es una función afín. (Por lo tanto, "lineal por partes" en realidad se define como "afín por partes".) Si el dominio de la función es compacto, es necesario que haya una colección finita de dichos intervalos; si el dominio no es compacto, es posible que sea necesario que sea finito o que sea localmente finito en los reales.
Ejemplos

La función definida por
- <math alttext="{displaystyle f(x)={begin{cases}-x-3&{text{if }}xleq -3\x+3&{text{if }}-3<x<0\-2x+3&{text{if }}0leq xf()x)={}− − x− − 3six≤ ≤ − − 3x+3si− − 3.x.0− − 2x+3si0≤ ≤ x.30.5x− − 4.5six≥ ≥ 3{displaystyle f(x)={begin{cases}-x-3 recur{if }xleq -3x+3 # 3 0 0 0,5x-4,5 {if }xgeq 3end{cases}}<img alt="{displaystyle f(x)={begin{cases}-x-3&{text{if }}xleq -3\x+3&{text{if }}-3<x<0\-2x+3&{text{if }}0leq x
es lineal por partes con cuatro piezas. La gráfica de esta función se muestra a la derecha. Dado que la gráfica de una función afín (*) es una recta, la gráfica de una función lineal por partes consta de segmentos de recta y rayos. Los valores x (en el ejemplo anterior −3, 0 y 3) donde la pendiente cambia normalmente se denominan puntos de interrupción, puntos de cambio, valores de umbral o nudos. Como ocurre en muchas aplicaciones, esta función también es continua. La gráfica de una función lineal continua por partes en un intervalo compacto es una cadena poligonal.
Otros ejemplos de funciones lineales por partes incluyen la función de valor absoluto, la función de diente de sierra y la función de suelo.
(*) Una función lineal satisface por definición f()λ λ x)=λ λ f()x){displaystyle f(lambda x)=lambda f(x)} y, por consiguiente, en particular f()0)=0{displaystyle f(0)=0}; funciones cuyo gráfico es una línea recta affine en lugar de lineal.
Ajustar a una curva

Se puede encontrar una aproximación a una curva conocida muestreando la curva e interpolando linealmente entre los puntos. Se ha publicado un algoritmo para calcular los puntos más significativos sujetos a una tolerancia de error determinada.
Ajuste a los datos
Si ya se conocen las particiones y luego los puntos de interrupción, la regresión lineal se puede realizar de forma independiente en estas particiones. Sin embargo, en ese caso no se preserva la continuidad y tampoco existe un modelo de referencia único subyacente a los datos observados. Se ha derivado un algoritmo estable con este caso.
Si no se conocen las particiones, se puede utilizar la suma residual de cuadrados para elegir los puntos de separación óptimos. Sin embargo, se puede obtener un cálculo eficiente y una estimación conjunta de todos los parámetros del modelo (incluidos los puntos de interrupción) mediante un procedimiento iterativo actualmente implementado en el paquete segmented
para el lenguaje R.
Una variante del aprendizaje de árboles de decisión llamada árboles modelo aprende funciones lineales por partes.
Notación

La noción de función lineal por partes tiene sentido en varios contextos diferentes. Las funciones lineales por partes se pueden definir en un espacio euclidiano de n dimensiones, o más generalmente en cualquier espacio vectorial o espacio afín, así como en variedades lineales por partes y complejos simpliciales (ver mapa simplicial). En cada caso, la función puede tener un valor real o puede tomar valores de un espacio vectorial, un espacio afín, una variedad lineal por partes o un complejo simplicial. (En estos contextos, el término "lineal" no se refiere únicamente a transformaciones lineales, sino a funciones lineales afines más generales).
En dimensiones superiores a uno, es común exigir que el dominio de cada pieza sea un polígono o politopo. Esto garantiza que la gráfica de la función estará compuesta por piezas poligonales o politópicas.
Las subclases importantes de las funciones lineales en sentido parcial incluyen las funciones lineales continuas y las funciones lineales convexas. En general, por cada n- Función lineal continuada tridimensional f:Rn→ → R{displaystyle f:mathbb {R} ^{n}to mathbb {R}, hay un
- ▪ ▪ ▪ ▪ P()P()Rn+1)){displaystyle Pi in {mathcal {P} {mathcal {} {mathbb {R} ^{n+1})}
tal que
- f()x→ → )=min.. ▪ ▪ ▪ ▪ max()a→ → ,b)▪ ▪ .. a→ → ⋅ ⋅ x→ → +b.{displaystyle f({vec {x}})=min _{Sigma inPi }max _{vec {},b)in Sigma }{vec}cdot {vec {x}+b.}
Si f{displaystyle f} es convexo y continuo, entonces hay un
- .. ▪ ▪ P()Rn+1){displaystyle Sigma in {mathcal {} {mathbb {R} ^{n+1}}
tal que
- f()x→ → )=max()a→ → ,b)▪ ▪ .. a→ → ⋅ ⋅ x→ → +b.{displaystyle f({vec {x})=max _{vec {},b)in Sigma }{vec {a}}cdot {vec {x}+b.}
Los splines generalizan funciones lineales por partes a polinomios de orden superior, que a su vez están contenidos en la categoría de funciones diferenciables por partes, PDIFF.
Aplicaciones

En agricultura, el análisis de regresión por partes de los datos medidos se utiliza para detectar el rango en el que los factores de crecimiento afectan el rendimiento y el rango en el que el cultivo no es sensible a los cambios en estos factores.
La imagen de la izquierda muestra que en los niveles freáticos poco profundos el rendimiento disminuye, mientras que en los niveles freáticos más profundos (> 7 dm) el rendimiento no se ve afectado. La gráfica se realiza mediante el método de mínimos cuadrados para encontrar los dos segmentos con mejor ajuste.
El gráfico de la derecha revela que el rendimiento de los cultivos tolera una salinidad del suelo de hasta ECe = 8 dS/m (ECe es la conductividad eléctrica de un extracto de una muestra de suelo saturado), mientras que más allá de ese valor la producción del cultivo se reduce. El gráfico se realiza con el método de regresión parcial para encontrar el rango más largo de "sin efecto", es decir, donde la línea es horizontal. No es necesario que los dos segmentos se unan en el mismo punto. Sólo para el segundo segmento se utiliza el método de mínimos cuadrados.