Espacio perivascular

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar
Imagen CT que muestra una atenuación baja extensa en la materia blanca hemisférica derecha debido a espacios dilatados tipo 2 perivasculares
Axial fat-suppressed T2-weighted MRI image in the same patient as above demonstrating extensive dilated Tipo 2 perivascular areas in the right hemisferio
El espacio perivascular se representa en la caja de entrada.

Un espacio perivascular, también conocido como espacio de Virchow-Robin, es un espacio lleno de líquido que rodea ciertos vasos sanguíneos en varios órganos, incluido el cerebro, y que potencialmente tiene una función inmunológica, pero más ampliamente un papel dispersivo de los mensajeros neuronales y sanguíneos. La piamadre del cerebro se refleja desde la superficie del cerebro hacia la superficie de los vasos sanguíneos en el espacio subaracnoideo. En el cerebro, los manguitos perivasculares son regiones de agregación de leucocitos en los espacios perivasculares, que generalmente se encuentran en pacientes con encefalitis viral.

Los espacios perivasculares varían en dimensión según el tipo de vaso sanguíneo. En el cerebro, donde la mayoría de los capilares tienen un espacio perivascular imperceptible, determinadas estructuras del cerebro, como los órganos circunventriculares, se destacan por tener grandes espacios perivasculares que rodean los capilares altamente permeables, como se observa mediante microscopía. La eminencia media, una estructura cerebral en la base del hipotálamo, contiene capilares con amplios espacios perivasculares.

En los seres humanos, los espacios perivasculares que rodean las arterias y las venas generalmente pueden verse como áreas de dilatación en las imágenes de resonancia magnética. Si bien muchos cerebros normales mostrarán algunos espacios dilatados, un aumento en estos espacios puede correlacionarse con la incidencia de varias enfermedades neurodegenerativas, lo que convierte a los espacios en un tema de investigación.

Estructura

Los espacios perivasculares son espacios que contienen líquido intersticial que se extienden entre los vasos sanguíneos y su órgano huésped, como el cerebro, en el que penetran y sirven como canales extravasculares a través de los cuales pueden pasar los solutos. Al igual que los vasos sanguíneos alrededor de los cuales se forman, los espacios perivasculares se encuentran tanto en el espacio subaracnoideo como en el espacio subpial del cerebro.

Los espacios perivasculares que rodean las arterias en la corteza cerebral y los ganglios basales están separados del espacio subpial por una o dos capas de leptomeninges, respectivamente, así como por la piamadre. En virtud de la capa de células leptomeníngeas, los espacios perivasculares que pertenecen al espacio subaracnoideo son continuos con los del espacio subpial. La comunicación directa entre los espacios perivasculares del espacio subaracnoideo y el espacio subpial es exclusiva de las arterias del cerebro, ya que no hay capas leptomeníngeas que rodeen las venas del cerebro. El uso del microscopio electrónico de barrido ha determinado que los espacios que rodean los vasos sanguíneos en el espacio subaracnoideo no son continuos con el espacio subaracnoideo debido a la presencia de células de la piamadre unidas por desmosomas.

Los espacios perivasculares, especialmente alrededor de los capilares fenestrados, se encuentran en muchos órganos, como el timo, el hígado, los riñones, el bazo, los huesos y la glándula pineal. Particularmente dentro de los órganos circunventriculares del cerebro (órgano subfornical, área postrema y eminencia media), hay grandes espacios perivasculares alrededor de los capilares fenestrados, lo que indica que los espacios desempeñan un papel dispersivo para los mensajeros transmitidos por el cerebro o la sangre.

Los espacios perivasculares pueden ampliarse hasta un diámetro de cinco milímetros en humanos sanos y no implican enfermedad. Cuando aumentan de tamaño, pueden alterar la función de las regiones del cerebro en las que se proyectan. La dilatación puede ocurrir en uno o ambos lados del cerebro.

Los espacios perivasculares dilatados se clasifican en tres tipos:

  • Tipo 1 se encuentran en las arterias enticulostriadas proyectadas en el ganglio basal
  • Tipo 2 se encuentran en la corteza siguiendo el camino de las arterias medulares
  • Tipo 3 se encuentran en el centro del cerebro

Los espacios perivasculares se localizan más comúnmente en los ganglios basales y la sustancia blanca del cerebro, y a lo largo del tracto óptico. El método ideal utilizado para visualizar los espacios perivasculares es la resonancia magnética ponderada en T2. Las imágenes de resonancia magnética de otros trastornos neurológicos pueden ser similares a las de los espacios dilatados. Estos trastornos son:

  • neoplasias quísticas
  • infartos lacurosos
  • leucomalacia periventricular quística
  • criptocosis
  • esclerosis múltiple
  • mucopolysaccharidoses
  • neurocysticercosis
  • quistes arachnoides
  • quistes neuroepiteliales

Los espacios perivasculares se distinguen en una resonancia magnética por varias características clave. Los espacios aparecen como entidades distintas, redondas u ovaladas, con una intensidad de señal visualmente equivalente a la del líquido cefalorraquídeo en el espacio subaracnoideo. Además, un espacio perivascular no tiene efecto de masa y está situado a lo largo del vaso sanguíneo alrededor del cual se forma.

Función

Una de las funciones más básicas del espacio perivascular es la regulación del movimiento de líquidos en el sistema nervioso central y su drenaje. En última instancia, los espacios drenan líquido de los cuerpos celulares neuronales a los ganglios linfáticos cervicales. En particular, la "hipótesis de la marea" sugiere que la contracción cardíaca crea y mantiene ondas de presión para modular el flujo hacia y desde el espacio subaracnoideo y el espacio perivascular. Al actuar como una especie de esponja, son fundamentales para la transmisión de señales y el mantenimiento del líquido extracelular.

Otra función es ser parte integral de la barrera hematoencefálica (BHE). Si bien la BBB a menudo se describe como las uniones estrechas entre las células endoteliales, esto es una simplificación excesiva que descuida el intrincado papel que desempeñan los espacios perivasculares en la separación de la sangre venosa del parénquima del cerebro. A menudo, los restos celulares y las partículas extrañas, que son impermeables a la BHE, atravesarán las células endoteliales y serán fagocitadas en los espacios perivasculares. Esto es válido para muchas células T y B, así como para los monocitos, lo que le da a este pequeño espacio lleno de líquido una importante función inmunológica.

Los espacios perivasculares también desempeñan un papel importante en la inmunorregulación; no solo contienen líquido intersticial y cefalorraquídeo, sino que también tienen un flujo constante de macrófagos, que está regulado por células mononucleares transmitidas por la sangre, pero no atraviesa la membrana basal de la glía limitante. De manera similar, como parte de su papel en la transmisión de señales, los espacios perivasculares contienen neuropéptidos vasoactivos (VN) que, además de regular la presión arterial y la frecuencia cardíaca, tienen un papel integral en el control de la microglía. Las VN sirven para prevenir la inflamación activando la enzima adenilato ciclasa que luego produce AMPc. La producción de AMPc ayuda en la modulación de las células T autorreactivas por parte de las células T reguladoras. El espacio perivascular es un espacio susceptible de comprometer la NV y cuando su función se reduce en el espacio, la respuesta inmune se ve afectada negativamente y aumenta el potencial de degradación. . Cuando comienza la inflamación de las células T, los astrocitos comienzan a sufrir apoptosis, debido a su receptor CD95, para abrir la glía limitante y permitir que las células T entren en el parénquima del cerebro. Debido a que este proceso cuenta con la ayuda de los macrófagos perivasculares, estos tienden a acumularse durante la neuroinflamación y provocan dilatación de los espacios.

Importancia clínica

La importancia clínica de los espacios perivasculares proviene principalmente de su tendencia a dilatarse. Se plantea la hipótesis de que la importancia de la dilatación se basa en cambios de forma más que de tamaño. Se han observado espacios agrandados con mayor frecuencia en los ganglios basales, específicamente en las arterias lenticuloestriadas. También se han observado a lo largo de la arteria mesencefalotalámica paramedial y la sustancia negra en el mesencéfalo, la región del cerebro debajo de la ínsula, el núcleo dentado en el cerebelo y el cuerpo calloso, así como en la región del cerebro directamente encima de él, la circunvolución cingulada. . Tras la aplicación clínica de la resonancia magnética, se demostró en varios estudios que la dilatación del espacio perivascular y los accidentes cerebrovasculares lacunares son los correlatos histológicos más comúnmente observados de las anomalías de señalización.

Senescencia

La dilatación está más común y estrechamente asociada con el envejecimiento. Se ha demostrado que la dilatación de los espacios perivasculares se correlaciona mejor con la edad, incluso cuando se consideran factores acompañantes como hipertensión, demencia y lesiones de la sustancia blanca. En los ancianos, dicha dilatación se ha correlacionado con muchos síntomas y afecciones que a menudo afectan las paredes arteriales, incluida la hipertensión vascular, la arteriosclerosis, la capacidad cognitiva reducida, la demencia y el bajo peso cerebral post-mortem. Además de la dilatación entre los ancianos, también se puede observar dilatación en personas jóvenes y sanas. Esta ocurrencia es rara y no se ha observado asociación en tales casos con una función cognitiva reducida o anomalías de la sustancia blanca. Cuando se observan VRS dilatados en el cuerpo calloso, generalmente no hay déficit neurológico asociado. A menudo se observan en esta región como lesiones quísticas con líquido similar al cerebroespinal.

Síntomas de la dilatación

La dilatación extrema se ha asociado con varios síntomas clínicos específicos. En casos de dilatación severa en un solo hemisferio, los síntomas reportados incluyen un ataque de desmayo inespecífico, hipertensión, vértigo posicional, dolor de cabeza, alteraciones de la memoria temprana y tics hemifaciales. Los síntomas asociados con la dilatación bilateral grave incluyen dolor de oído (que, según se informó, se resolvió por sí solo), demencia y convulsiones. Estos datos se recopilaron a partir de estudios de casos de personas con dilatación grave del VRS. Teniendo en cuenta la anomalía anatómica presentada en tales casos, estos hallazgos se consideraron sorprendentes porque los síntomas eran relativamente leves. En la mayoría de los casos, de hecho, no existe ningún efecto de masa asociado con cierta dilatación del VRS. Una excepción a la levedad de los síntomas clínicos asociados con la dilatación del VRS es cuando hay una dilatación extrema en el mesencéfalo inferior en la unión entre la sustancia negra y el pedúnculo cerebral. En tales casos, en la mayoría de los pacientes se informó hidrocefalia obstructiva de leve a moderada. Los síntomas asociados iban desde dolores de cabeza hasta síntomas más graves que los que acabamos de comentar en los casos de dilatación de los hemisferios cerebrales. Otros síntomas generales asociados con la dilatación VRS incluyen dolores de cabeza, mareos, deterioro de la memoria, falta de concentración, demencia, cambios visuales, anomalías oculomotoras, temblores, convulsiones, debilidad de las extremidades y ataxia.

Trastornos asociados

La dilatación es una característica típica de varias enfermedades y trastornos. Estos incluyen enfermedades derivadas de trastornos metabólicos y genéticos como manosidosis, distrofia miotónica, síndrome de Lowe y síndrome de Coffin-Lowry. La dilatación también es una característica común de enfermedades o trastornos de patologías vasculares, incluida CADASIL (arteriopatía cerebral autosómica dominante con infartos subcorticales y leucoencefalopatía), hemiparesia infantil hereditaria, tortuosidad arteriolar retiniana y leucoencefalopatía, migrañas y demencia vascular. Un tercer grupo de trastornos típicamente asociados con la dilatación del VRS son los síndromes neuroectodérmicos. Esto incluye cerebros poliquísticos asociados con displasia ectodérmica, displasia frontonasal y síndrome de Joubert. Existe un cuarto grupo diverso de trastornos típicamente asociados con la dilatación que incluye el autismo en niños, la megalencefalopatía, la enfermedad de Parkinson secundaria, la esclerosis múltiple de aparición reciente y el alcoholismo crónico. Debido a que la dilatación puede estar asociada con varias enfermedades pero también observarse en pacientes sanos, siempre es importante en la evaluación de VRS estudiar el tejido alrededor de la dilatación mediante resonancia magnética y considerar todo el contexto clínico.

Investigación actual

Causas del VRS dilatado

Gran parte de la investigación actual sobre los espacios de Virchow-Robin se relaciona con su conocida tendencia a dilatarse. Actualmente se están realizando investigaciones para determinar la causa exacta de la dilatación en estos espacios perivasculares. Las teorías actuales incluyen trauma mecánico resultante de la pulsación del líquido cefalorraquídeo, elongación de los vasos sanguíneos penetrantes ectácticos y permeabilidad vascular anormal que conduce a un aumento de la exudación de líquido. Investigaciones adicionales han implicado la contracción o atrofia del tejido cerebral circundante, la desmielinización perivascular, el enrollamiento de las arterias a medida que envejecen, la alteración de la permeabilidad de la pared arterial y la obstrucción de las vías de drenaje linfático. Además, se han sugerido como posibles causas del VRS dilatado el drenaje insuficiente de líquido y la lesión del tejido perivascular isquémico que produce un efecto ex vacuo. El VRS dilatado también podría estar relacionado con daño vascular, fuga de sangre y formación de microaneurismas.

Asociación de VRS dilatado y otras enfermedades

Investigaciones recientes y en curso han encontrado asociaciones entre el VRS agrandado y varios trastornos.

Demencia

En un momento dado, los espacios de Virchow-Robin dilatados se observaron con tanta frecuencia en las autopsias de personas con demencia que se creía que causaban la enfermedad. Sin embargo, actualmente se están realizando investigaciones adicionales para confirmar o refutar una conexión directa entre la dilatación del VRS y la demencia.

El análisis de VRS puede distinguir la demencia causada por enfermedad microvascular arteriosclerótica de la demencia causada por enfermedad neurodegenerativa. Un estudio de 2005 ha demostrado que una cantidad sustancial de VRS en la sustancia innominada, el núcleo lenticular y el núcleo caudado de los ganglios basales puede implicar demencia debida a enfermedad microvascular arteriosclerótica, en particular demencia vascular isquémica, a diferencia de la demencia debida a enfermedades neurodegenerativas. específicamente la enfermedad de Alzheimer y la demencia frontotemporal. Por lo tanto, quizás la dilatación VRS pueda usarse para distinguir entre diagnósticos de demencias vasculares y demencias degenerativas.

Enfermedad de Alzheimer

Algunos estudios han evaluado la distribución espacial y la prevalencia de VRS en personas con enfermedad de Alzheimer versus aquellas sin la enfermedad. Los investigadores han descubierto que, si bien el VRS parece estar correlacionado con el envejecimiento natural, las imágenes por resonancia magnética revelan una mayor prevalencia de VRS en personas con Alzheimer.

La angiopatía amiloide cerebral (CAA), una falla de los vasos sanguíneos a menudo asociada con la enfermedad de Alzheimer, utiliza VRS dilatado para propagar la inflamación al parénquima. Debido a que los VRS suelen tener una membrana adicional en la sustancia gris, la respuesta isquémica CAA a menudo se observa en la sustancia blanca.

Se ha planteado la hipótesis de que la estructura de VRS en la corteza cerebral puede contribuir al desarrollo de la enfermedad de Alzheimer. A diferencia de los VRS de los ganglios basales, los VRS de la corteza cerebral están rodeados por una sola capa de leptomeninges. Como tal, el VRS en la corteza cerebral puede drenar el β-amiloide en el líquido intersticial con menos eficacia que el VRS en los ganglios basales. El drenaje menos eficaz puede provocar el desarrollo de placas de β-amiloides que caracterizan la enfermedad de Alzheimer. En apoyo de esta hipótesis, los estudios han observado una mayor frecuencia de placas de β-amiloides en la corteza cerebral que en los ganglios basales de los pacientes con enfermedad de Alzheimer.

Apoplejía

Debido a que los espacios perivasculares dilatados están tan estrechamente relacionados con la enfermedad cerebrovascular, actualmente hay muchas investigaciones sobre su uso como herramienta de diagnóstico. En un estudio reciente de 31 sujetos, la dilatación anormal, junto con la pulsación irregular del LCR, se correlacionaron con que los sujetos tuvieran tres o más factores de riesgo de sufrir accidentes cerebrovasculares. Por tanto, los espacios perivasculares son un posible nuevo biomarcador de accidentes cerebrovasculares hemorrágicos.

El síndrome CADASIL (arteriopatía cerebral autosómica dominante con infartos subcorticales y síndrome de leucoencefalopatía) es una afección hereditaria de accidente cerebrovascular debido a una mutación del gen Notch 3 en el cromosoma 19. Los estudios han observado que, en comparación con los miembros de la familia que carecen del haplotipo afectado que conduce a la condición, se observa un mayor número de espacios dilatados en personas con CADASIL. Estos espacios perivasculares se localizan principalmente en el putamen y la sustancia blanca subcortical temporal y parecen correlacionarse con la edad del individuo con la afección más que con la gravedad de la enfermedad en sí.

Ha habido un alto riesgo de accidente cerebrovascular asociado con espacios perivasculares dilatados en los ancianos según la puntuación de riesgo de accidente cerebrovascular de Framingham. Por el contrario, otros estudios han concluido que la dilatación de estos espacios es un fenómeno normal en el envejecimiento sin asociación con la arterosclerosis. Este sigue siendo, por tanto, un punto importante de investigación en este campo.

Esclerosis múltiple

De manera similar a la investigación sobre una posible conexión entre los espacios perivasculares y el Alzheimer, se han estudiado resonancias magnéticas de personas recientemente diagnosticadas con esclerosis múltiple (EM). Se han observado espacios más grandes y más prevalentes en personas con EM. Estudios adicionales con hallazgos similares han sugerido que las células inflamatorias que contribuyen a la desmielinización que caracteriza a la EM también atacan los espacios perivasculares. Serán necesarios estudios que utilicen técnicas avanzadas de resonancia magnética para determinar si los espacios perivasculares pueden estar implicados como un marcador potencial de la enfermedad.

Autismo

Los espacios perivasculares dilatados son comunes entre los ancianos y poco comunes en los niños. Los estudios han observado la asociación entre el retraso en el desarrollo y el autismo no sindrómico y los espacios perivasculares agrandados o dilatados. El autismo no sindrómico clasifica a los pacientes autistas para los cuales no existe una causa conocida.

Historia

La aparición de espacios perivasculares fue observada por primera vez en 1843 por Durant-Fardel. En 1851, Rudolph Virchow fue el primero en proporcionar una descripción detallada de estos espacios microscópicos entre las láminas exterior e interior/media de los vasos cerebrales. Charles-Philippe Robin confirmó estos hallazgos en 1859 y fue el primero en describir los espacios perivasculares como canales que existían en la anatomía normal. Los espacios se denominaron espacios de Virchow-Robin y todavía se conocen como tales. El significado inmunológico fue descubierto por Wilhelm His, padre en 1865 basándose en sus observaciones del flujo de líquido intersticial a través de los espacios hacia el sistema linfático.

Durante muchos años después de que se describieran por primera vez los espacios de Virchow-Robin, se pensó que estaban en libre comunicación con el líquido cefalorraquídeo en el espacio subaracnoideo. Más tarde se demostró con el uso de microscopía electrónica que la piamadre sirve como separación entre los dos. Tras la aplicación de la resonancia magnética, las mediciones de las diferencias de intensidad de la señal entre los espacios perivasculares y el líquido cefalorraquídeo respaldaron estos hallazgos. A medida que las tecnologías de investigación continuaron expandiéndose, también lo hizo la información sobre su función, anatomía e importancia clínica.

Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save