Ecuaciones termodinámicas

format_list_bulleted Contenido keyboard_arrow_down
ImprimirCitar

La termodinámica se expresa por un marco matemático ecuaciones termodinámicas que relacionan varias cantidades termodinámicas y propiedades físicas medida en un laboratorio o proceso de producción. La termodinámica se basa en un conjunto fundamental de postulados, que se convirtieron en las leyes de la termodinámica.

Introducción

Una de las ecuaciones termodinámicas fundamentales es la descripción del trabajo termodinámico en analogía con el trabajo mecánico, o el peso levantado a través de una elevación contra la gravedad, según se define en 1824 por el físico francés Sadi Carnot. Carnot usó la frase motivación de poder para el trabajo. En las notas a sus famosos Sobre el poder motivo del fuego“Usamos aquí la expresión poder expresar el efecto útil que un motor es capaz de producir. Este efecto siempre puede ser asimilado a la elevación de un peso a cierta altura. Tiene, como sabemos, como medida, el producto del peso multiplicado por la altura a la que se eleva.” Con la inclusión de una unidad de tiempo en la definición de Carnot, uno llega a la definición moderna para el poder:

Durante la segunda mitad del siglo XIX, físicos como Rudolf Clausius, Peter Guthrie Tait y Willard Gibbs trabajaron para desarrollar el concepto de sistema termodinámico y las leyes energéticas correlativas que gobiernan sus procesos asociados. El estado de equilibrio de un sistema termodinámico se describe especificando su "estado". El estado de un sistema termodinámico está especificado por una serie de cantidades extensas, las más familiares de las cuales son el volumen, la energía interna y la cantidad de cada partícula constituyente (número de partículas). Los parámetros extensivos son propiedades de todo el sistema, a diferencia de los parámetros intensivos que pueden definirse en un solo punto, como la temperatura y la presión. Los parámetros extensivos (excepto la entropía) generalmente se conservan de alguna manera siempre que el sistema esté "aislado" a cambios en ese parámetro desde el exterior. La verdad de esta afirmación para el volumen es trivial; para las partículas se podría decir que se conserva el número total de partículas de cada elemento atómico. En el caso de la energía, el enunciado de la conservación de la energía se conoce como primera ley de la termodinámica.

Un sistema termodinámico está en equilibrio cuando ya no cambia en el tiempo. Esto puede suceder en muy poco tiempo o puede suceder con una lentitud glacial. Un sistema termodinámico puede estar compuesto de muchos subsistemas que pueden o no estar "aislados" de otros. unos de otros con respecto a las diversas cantidades extensivas. Si tenemos un sistema termodinámico en equilibrio en el que relajamos algunas de sus restricciones, pasará a un nuevo estado de equilibrio. Ahora se pueden considerar los parámetros termodinámicos como variables y el estado como un punto particular en un espacio de parámetros termodinámicos. El cambio de estado del sistema puede verse como un camino en este espacio de estados. Este cambio se llama proceso termodinámico. Ahora se utilizan ecuaciones termodinámicas para expresar las relaciones entre los parámetros de estado en estos diferentes estados de equilibrio.

El concepto que gobierna el camino que un sistema termodinámico traza en el espacio de estados a medida que pasa de un estado de equilibrio a otro es el de entropía. En primer lugar, la entropía se considera una función extensiva de todos los parámetros termodinámicos extensivos. Si tenemos un sistema termodinámico en equilibrio y liberamos algunas de las restricciones extensas sobre el sistema, hay muchos estados de equilibrio a los que podría pasar de manera consistente con la conservación de la energía, el volumen, etc. La segunda ley de la termodinámica especifica que el El estado de equilibrio al que se mueve es, de hecho, el que tiene mayor entropía. Una vez que conozcamos la entropía en función de las variables extensivas del sistema, podremos predecir el estado de equilibrio final. (Callén 1985)

Notación

Algunas de las cantidades termodinámicas más comunes son:

Los pares de variables conjugadas son las variables de estado fundamentales utilizadas para formular las funciones termodinámicas.

p
Presión
V
Volumen
T
Temperatura
S
Entropy
μ
Potencia química
N
Número de partículas

Los potenciales termodinámicos más importantes son las siguientes funciones:

U
Energía interna
F
Helmholtz energía libre
H
Enthalpy
G
Gibbs energía libre

Los sistemas termodinámicos generalmente se ven afectados por los siguientes tipos de interacciones del sistema. Los tipos considerados se utilizan para clasificar los sistemas en sistemas abiertos, sistemas cerrados y sistemas aislados.

δw
Cantidad infinita de trabajo (W)
δq
cantidad infinita de calor (Q)
m
masa

Las propiedades comunes de los materiales determinadas a partir de las funciones termodinámicas son las siguientes:

***
La densidad se define como masa de material por volumen de unidad
CV
Capacidad de calor en volumen constante
Cp
Capacidad de calor a presión constante
βT
Compresibilidad intrastémica
βS
Compresibilidad adiabática
α
Coeficiente de expansión térmica

Las siguientes constantes son constantes que ocurren en muchas relaciones debido a la aplicación de un sistema estándar de unidades.

kB
Pertzmann constante
R
Constante de gas ideal
NA
Avogadro constant

Leyes de la termodinámica

El comportamiento de un sistema termodinámico se resume en las leyes de la Termodinámica, que de manera concisa son:

  • Cero ley de la termodinámica
Si A, B, C son sistemas termodinámicos tales que A está en equilibrio térmico con B y B está en equilibrio térmico con CEntonces A está en equilibrio térmico con C.
La ley cero es de importancia en la termometría, porque implica la existencia de escalas de temperatura. En la práctica, C es un termómetro, y la ley cero dice que los sistemas que están en equilibrio termodinámico entre sí tienen la misma temperatura. La ley era en realidad la última de las leyes que debían formularse.
  • Primera ley de la termodinámica
Donde es el aumento infinitesimal de la energía interna del sistema, es el flujo de calor infinitesimal en el sistema, y es el trabajo infinitesimal hecho por el sistema.
La primera ley es la ley de conservación de la energía. El símbolo en lugar de la llanura d, originada en el trabajo del matemático alemán Carl Gottfried Neumann y se utiliza para denotar un diferencial inexacto e indicar que Q y W son dependientes del camino (es decir, no son funciones estatales). En algunos campos como la química física, el trabajo positivo se considera convencionalmente trabajo realizado en el sistema en lugar del sistema, y la ley se expresa como .
  • Segunda ley de la termodinámica
La entropía de un sistema aislado nunca disminuye: para un sistema aislado.
Un concepto relacionado con la segunda ley que es importante en la termodinámica es el de la reversibilidad. Se dice que un proceso dentro de un sistema aislado dado es reversible si a lo largo del proceso la entropía nunca aumenta (es decir, la entropía permanece sin cambios).
  • Tercera ley de la termodinámica
cuando
La tercera ley de la termodinámica establece que al cero absoluto de la temperatura, la entropía es cero para una estructura cristalina perfecta.
  • Relaciones recíprocas más seguras – a veces llamadas Cuarta ley de la termodinámica
La cuarta ley de la termodinámica todavía no es una ley acordada (muchas supuestas variaciones existen); históricamente, sin embargo, las relaciones recíprocas de Onsager se han referido frecuentemente como la cuarta ley.

La ecuación fundamental

La primera y la segunda ley de la termodinámica son las ecuaciones más fundamentales de la termodinámica. Se pueden combinar en lo que se conoce como relación termodinámica fundamental, que describe todos los cambios de las funciones de estado termodinámico de un sistema de temperatura y presión uniformes. Como ejemplo simple, considere un sistema compuesto por un número de k tipos diferentes de partículas y tiene el volumen como única variable externa. La relación termodinámica fundamental puede entonces expresarse en términos de energía interna como:

Cabe señalar algunos aspectos importantes de esta ecuación: (Alberty 2001), (Balian 2003), (Callen 1985)

  • El espacio termodinámico tiene k+2 dimensiones
  • Las cantidades diferenciales (U, S, V, Ni) son todas las cantidades extensas. Los coeficientes de las cantidades diferenciales son cantidades intensivas (temperatura, presión, potencial químico). Cada par en la ecuación se conoce como un par conjugado con respecto a la energía interna. Las variables intensivas pueden verse como una "fuerza" generalizada. Un desequilibrio en la variable intensiva causará un "flujo" de la variable extensa en una dirección para contrarrestar el desequilibrio.
  • La ecuación puede ser vista como un caso particular de la regla de la cadena. En otras palabras:
    de los cuales se pueden realizar las siguientes identificaciones:
    Estas ecuaciones se conocen como "ecuaciones de estado" con respecto a la energía interna. (Nota - la relación entre presión, volumen, temperatura y número de partículas que se llama comúnmente "la ecuación del estado" es sólo una de muchas ecuaciones posibles del estado.) Si conocemos todos los k+2 de las ecuaciones de estado anteriores, podemos reconstituir la ecuación fundamental y recuperar todas las propiedades termodinámicas del sistema.
  • La ecuación fundamental se puede resolver para cualquier otra expresión diferencial y similar se puede encontrar. Por ejemplo, podemos resolver por y encontrar eso

Potenciales termodinámicos

Por el principio de energía mínima, la segunda ley se puede reformular diciendo que para una entropía fija, cuando las restricciones del sistema se relajan, la energía interna asume un valor mínimo. Esto requerirá que el sistema esté conectado con su entorno, ya que de lo contrario la energía permanecería constante.

Por el principio de energía mínima, hay una serie de otras funciones de estado que pueden definirse que tienen las dimensiones de la energía y que se minimizan de acuerdo con la segunda ley bajo ciertas condiciones distintas a la entropía constante. Estos se llaman potenciales termodinámicos. Para cada uno de esos potenciales, la ecuación fundamental relevante resulta del mismo principio de la Segunda Ley que da lugar a la minimización de energía en condiciones restringidas: que la entropía total del sistema y su entorno se maximiza en equilibrio. Los parámetros intensivos dan las derivadas de la entropía del entorno con respecto a las propiedades extensivas del sistema.

Los cuatro potenciales termodinámicos más comunes son:

Nombre Signatura Formula Variables naturales
Energía interna
Helmholtz energía libre
Enthalpy
Gibbs energía libre
potencial de Landau, o gran potencial ,

Después de cada potencial se muestran sus "variables naturales". Estas variables son importantes porque si el potencial termodinámico se expresa en términos de sus variables naturales, contendrá todas las relaciones termodinámicas necesarias para derivar cualquier otra relación. En otras palabras, también será una ecuación fundamental. Para los cuatro potenciales anteriores, las ecuaciones fundamentales se expresan como:

El cuadrado termodinámico se puede utilizar como herramienta para recordar y derivar estos potenciales.

Ecuaciones de primer orden

Al igual que con la versión de energía interna de la ecuación fundamental, la regla de la cadena se puede utilizar en las ecuaciones anteriores para encontrar k+2 ecuaciones de estado con respecto al potencial particular. Si Φ es un potencial termodinámico, entonces la ecuación fundamental se puede expresar como:

Donde son las variables naturales del potencial. Si es conjugado entonces tenemos las ecuaciones de estado para ese potencial, uno para cada conjunto de variables conjugadas.

Una sola ecuación de estado no será suficiente para reconstituir la ecuación fundamental. Se necesitarán todas las ecuaciones de estado para caracterizar completamente el sistema termodinámico. Tenga en cuenta que lo que comúnmente se llama "la ecuación de estado" es sólo la función "mecánica" ecuación de estado que involucra el potencial de Helmholtz y el volumen:

Para un gas ideal, esto se convierte en el conocido PV=NkBT.

Integrales de Euler

Debido a que todas las variables naturales de la energía interna U son cantidades extensivas, del teorema de la función homogénea de Euler se deduce que

Sustituyendo en las expresiones de los otros potenciales principales tenemos las siguientes expresiones para los potenciales termodinámicos:

Tenga en cuenta que las integrales de Euler a veces también se denominan ecuaciones fundamentales.

Relación Gibbs-Duhem

Diferenciando la ecuación de Euler para la energía interna y combinándola con la ecuación fundamental para la energía interna, se obtiene que:

que se conoce como la relación Gibbs-Duhem. El Gibbs-Duhem es una relación entre los parámetros intensivos del sistema. De ello se deduce que para un sistema simple con r componentes, habrá r+1 parámetros independientes o grados de libertad. Por ejemplo, un sistema simple con un solo componente tendrá dos grados de libertad y podrá especificarse mediante solo dos parámetros, como presión y volumen, por ejemplo. La ley lleva el nombre de Willard Gibbs y Pierre Duhem.

Ecuaciones de segundo orden

Hay muchas relaciones que se derivan matemáticamente de las ecuaciones básicas anteriores. Consulte Diferencial exacto para obtener una lista de relaciones matemáticas. Muchas ecuaciones se expresan como segundas derivadas de los potenciales termodinámicos (ver ecuaciones de Bridgman).

Relaciones de Maxwell

Las relaciones de Maxwell son igualdades que involucran las segundas derivadas de potenciales termodinámicos con respecto a sus variables naturales. Se derivan directamente del hecho de que el orden de derivación no importa al tomar la segunda derivada. Las cuatro relaciones de Maxwell más comunes son:

El cuadrado termodinámico se puede utilizar como herramienta para recordar y derivar estas relaciones.

Propiedades de los materiales

Las segundas derivadas de los potenciales termodinámicos generalmente describen la respuesta del sistema a pequeños cambios. El número de segundas derivadas que son independientes entre sí es relativamente pequeño, lo que significa que la mayoría de las propiedades materiales pueden describirse en términos de unas pocas derivadas "estándar" propiedades. Para el caso de un sistema de un solo componente, existen tres propiedades que generalmente se consideran "estándar" de la que se pueden derivar todas las demás:

  • Compresibilidad a temperatura constante o entropía constante
  • Calor específico (por partículas) a presión constante o volumen constante
  • Coeficiente de expansión térmica

Se considera que estas propiedades son las tres posibles segundas derivadas de la energía libre de Gibbs con respecto a la temperatura y la presión.

Relaciones de propiedades termodinámicas

Propiedades como presión, volumen, temperatura, volumen de celda unitaria, módulo volumétrico y masa se miden fácilmente. Otras propiedades se miden mediante relaciones simples, como densidad, volumen específico, peso específico. Propiedades como la energía interna, la entropía, la entalpía y la transferencia de calor no se miden ni determinan tan fácilmente mediante relaciones simples. Por tanto, utilizamos relaciones más complejas como las relaciones de Maxwell, la ecuación de Clapeyron y la relación de Mayer.

Las relaciones de Maxwell en termodinámica son fundamentales porque proporcionan un medio para medir simplemente el cambio en las propiedades de presión, temperatura y volumen específico, para determinar un cambio en la entropía. La entropía no se puede medir directamente. El cambio de entropía con respecto a la presión a temperatura constante es el mismo que el cambio negativo en volumen específico con respecto a la temperatura a presión constante, para un sistema compresible simple. Las relaciones de Maxwell en termodinámica se utilizan a menudo para derivar relaciones termodinámicas.

La ecuación de Clapeyron nos permite utilizar presión, temperatura y volumen específico para determinar un cambio enthalpy conectado a un cambio de fase. Es significativo para cualquier proceso de cambio de fase que ocurra a una presión y temperatura constantes. Una de las relaciones que resolvió es la enthalpy de la vaporización a una temperatura proporcionada midiendo la pendiente de una curva de saturación en un gráfico de presión vs. temperatura. También nos permite determinar el volumen específico de un vapor saturado y líquido a esa temperatura proporcionada. En la ecuación siguiente, representa el calor latente específico, representa la temperatura y representa el cambio en volumen específico.

La relación de Mayer establece que la capacidad calorífica específica de un gas a volumen constante es ligeramente menor que a presión constante. Esta relación se basó en el razonamiento de que se debe suministrar energía para elevar la temperatura del gas y para que el gas realice trabajo en un caso de cambio de volumen. Según esta relación, la diferencia entre las capacidades caloríficas específicas es la misma que la constante universal de los gases. Esta relación está representada por la diferencia entre Cp y Cv:

Cp – Cv = R

Más resultados...
Tamaño del texto:
undoredo
format_boldformat_italicformat_underlinedstrikethrough_ssuperscriptsubscriptlink
save