Canal de calcio dependiente de voltaje
Canales de calcio obtenidos por tensión ()VGCC), también conocido como canales de calcio dependientes de tensión ()VDCC), son un grupo de canales de iones con voltaje encontrados en la membrana de células excitables (Por ejemplo., músculo, células gliales, neuronas, etc.) con una permeabilidad al ión de calcio Ca2+. Estos canales son ligeramente permeables a iones de sodio, por lo que también se llaman Ca2+–Na+ canales, pero su permeabilidad al calcio es aproximadamente 1000 veces mayor que el sodio bajo condiciones fisiológicas normales.
En el potencial de membrana fisiológico o en reposo, los VGCC normalmente están cerrados. Se activan (es decir: se abren) en potenciales de membrana despolarizados y esta es la fuente de la activación "activada por voltaje" epíteto. La concentración de calcio (iones Ca2+) es normalmente varios miles de veces mayor fuera de la célula que dentro. La activación de VGCC particulares permite una entrada de Ca2+ en la célula, lo que, dependiendo del tipo de célula, resulta en la activación de los canales de potasio sensibles al calcio, contracción muscular, excitación de neuronas, regulación positiva de expresión genética o liberación de hormonas o neurotransmisores.
Los VGCC se han inmunolocalizado en la zona glomerulosa de las glándulas suprarrenales humanas normales e hiperplásicas, así como en adenomas productores de aldosterona (APA), y en estos últimos los VGCC de tipo T se correlacionan con los niveles plasmáticos de aldosterona de los pacientes. La activación excesiva de los VGCC es un componente importante de la excitotoxicidad, ya que los niveles muy elevados de calcio intracelular activan enzimas que, en niveles suficientemente altos, pueden degradar las estructuras celulares esenciales.
Estructura
Los canales de calcio obtenidos por tensión se forman como un complejo de varias subunidades diferentes: α1, α2δ, β1-4Y γ. El α1 subunidad forma el poro ion-conducting mientras que las subunidades asociadas tienen varias funciones incluyendo la modulación de la gating.
Subunidades de canal
Existen varios tipos diferentes de canales de calcio dependientes de alto voltaje (HVGCC). Son estructuralmente homólogos entre distintos tipos; todos son similares, pero no estructuralmente idénticos. En el laboratorio, es posible diferenciarlos estudiando sus funciones fisiológicas y/o la inhibición por toxinas específicas. Los canales de calcio dependientes de alto voltaje incluyen el canal neural de tipo N bloqueado por la ω-conotoxina GVIA, el canal de tipo R (R significa Rresistente a otros bloqueadores y toxinas, excepto SNX-482 ) involucrados en procesos mal definidos en el cerebro, el canal de tipo P/Q estrechamente relacionado bloqueado por ω-agatoxinas y los canales de tipo L sensibles a dihidropiridina responsables del acoplamiento de excitación-contracción del músculo esquelético, liso y cardíaco y de Secreción hormonal en las células endocrinas.
Tipo actual | Sensibilidad de 1,4-dihidropiridina (DHP) | Sensibilidad de la NIC-conotoxina (ω-CTX) | Sensibilidad de ω-agatoxin (ω-AGA) |
---|---|---|---|
Tipo L | bloques | resistente | resistente |
Tipo N | resistente | bloques | resistente |
P/Q | resistente | resistente | bloques |
Tipo R | resistente | resistente | resistente |
La referencia de la tabla se puede encontrar en Dunlap, Luebke y Turner (1995).
Subunidad Α1
El poro de la subunidad α1 (~190 kDa de masa molecular) es la subunidad principal necesaria para el funcionamiento del canal en el HVGCC y consta de los cuatro dominios I-IV homólogos característicos que contienen seis dominios α transmembrana. -hélices cada una. La subunidad α1 forma el poro selectivo de Ca2+, que contiene maquinaria sensora de voltaje y los sitios de unión de fármacos/toxinas. Se han identificado un total de diez subunidades α1 en humanos: la subunidad α1 contiene 4 dominios homólogos (etiquetados I-IV), cada uno de los cuales contiene 6 hélices transmembrana (S1- S6). Esta disposición es análoga a un homotetrámero formado por subunidades de dominio único de canales de potasio dependientes de voltaje (que también contienen cada uno 6 hélices TM). La arquitectura de 4 dominios (y varios sitios reguladores clave, como la mano EF y el dominio IQ en el extremo C) también es compartida por los canales de sodio dependientes de voltaje, que se cree que están relacionados evolutivamente con los VGCC. Las hélices transmembrana de los 4 dominios se alinean para formar el canal propiamente dicho; Se cree que las hélices S5 y S6 recubren la superficie interna del poro, mientras que las hélices S1-4 desempeñan funciones en la activación y la detección de voltaje (S4 en particular). Los VGCC están sujetos a una rápida inactivación, que se cree que consta de 2 componentes: dependiente de voltaje (VGI) y dependiente de calcio (CGI). Estos se distinguen por utilizar Ba2+ o Ca2+ como portador de carga en la solución de registro externa (in vitro). El componente CGI se atribuye a la unión de la proteína de señalización de unión de Ca2+, calmodulina (CaM), a al menos un sitio del canal, como Ca2+-null. Los mutantes CaM suprimen la CGI en los canales tipo L. No todos los canales exhiben las mismas propiedades reguladoras y los detalles específicos de estos mecanismos aún se desconocen en gran medida.
Tipo | Voltaje | α1 subunidad (nombre del género) | Subunidades asociadas | Más a menudo se encuentra en |
---|---|---|---|---|
Canal de calcio tipo L ("Long-Lasting" AKA "Receptor DHP") | HVA (alta tensión activada) | Cav1.1CACNA1S) Cav1.2CACNA1C) Cav1.3 ()CACNA1D) Cav1.4CACNA1F) | α2δ, β, γ | músculo esquelético, músculo liso, hueso (osteoblastos), miocitos ventriculares** (responsables para el potencial de acción prolongada en células cardíacas; también denominados receptores DHP), dendritas y giros dendriáticos de neurones corticales |
Canal de calcio tipo P ("Purkinje") Canal de calcio tipo Q | HVA (alta tensión activada) | Cav2.1CACNA1A) | α2δ, β, posiblemente γ | neuronas Purkinje en el cerebelo / células granula Cerebellares |
Canal de calcio de tipo N ("Neural"/"No-L") | HVA (alta tensión activada) | Cav2.2CACNA1B) | α2δ/β1, β3, β4, posiblemente γ | A lo largo del cerebro y del sistema nervioso periférico. |
Canal de calcio tipo R ("Residual") | tensión intermedia activada | Cav2.3 (Cav2.3)CACNA1E) | α2δ, β, posiblemente γ | Células de gránulo Cerebellar, otras neuronas |
Canal de calcio tipo T ("Transient") | tensión baja activada | Cav3.1CACNA1G) Cav3.2CACNA1 H) Cav3.3 (Cav3.3)CACNA1I) | neuronas, células que tienen actividad de marcapasos, hueso (osteocitos) |
Subunidad Α2δ
El gen α2δ forma dos subunidades: α2 y δ (ambas son producto del mismo gen). Están unidos entre sí mediante un enlace disulfuro y tienen un peso molecular combinado de 170 kDa. La α2 es la subunidad glicosilada extracelular que más interactúa con la subunidad α1. La subunidad δ tiene una única región transmembrana con una porción intracelular corta, que sirve para anclar la proteína en la membrana plasmática. Hay 4 genes α2δ:
- CACNA2D1CACNA2D1),
- CACNA2D2CACNA2D2),
- ()CACNA2D3),
- ()CACNA2D4).
Co-expresión de la α2δ mejora el nivel de expresión de la α1 subunidad y causa un aumento de la amplitud actual, la activación más rápida y los kinetics de inactivación y un cambio hiperpolarizante en la dependencia de tensión de la inactivación. Algunos de estos efectos se observan en ausencia de la subunidad beta, mientras que, en otros casos, se requiere la coexpresión de beta.
Las subunidades α2δ-1 y α2δ-2 son el sitio de unión de los gabapentinoides. Esta clase de medicamentos incluye dos fármacos anticonvulsivos, gabapentina (Neurontin) y pregabalina (Lyrica), que también se utilizan en el tratamiento del dolor neuropático crónico. La subunidad α2δ también es un sitio de unión del fenibut depresor central y ansiolítico, además de acciones en otros objetivos.
Β Subunidad
La subunidad β intracelular (55 kDa) es una proteína intracelular similar a MAGUK (guanilato quinasa asociada a membrana) que contiene un dominio de guanilato quinasa (GK) y un dominio SH3 (homología src 3). El dominio guanilato quinasa de la subunidad β se une al bucle citoplasmático de la subunidad I-II α1 y regula la actividad de HVGCC. Hay cuatro genes conocidos para la subunidad β:
- CACNB1CACNB1),
- CACNB2 (CACNB2)CACNB2),
- CACNB3CACNB3),
- CACNB4 (CACNB4)CACNB4).
Se plantea la hipótesis de que la subunidad β citosólica tiene un papel importante en la estabilización de la conformación final de la subunidad α1 y su transporte a la membrana celular mediante su capacidad para enmascarar una señal de retención del retículo endoplásmico en la subunidad α. 1 subunidad. El freno de retención endoplásmico está contenido en el bucle I-II de la subunidad α1 que queda enmascarado cuando se une la subunidad β. Por lo tanto, la subunidad β funciona inicialmente para regular la densidad de corriente controlando la cantidad de subunidad α1 expresada en la membrana celular.
Además de esta función de tráfico, la subunidad β tiene la importante función adicional de regular la cinética de activación e inactivación e hiperpolarizar la dependencia del voltaje para la activación del poro de la subunidad α1, de modo que pases más actuales para despolarizaciones más pequeñas. La subunidad β tiene efectos sobre la cinética de la α1C cardíaca en los ovocitos de Xenopus laevis coexpresados con las subunidades β. La subunidad β actúa como un importante modulador de las propiedades electrofisiológicas del canal.
Hasta hace muy poco, la interacción entre una región altamente conservada de 18 aminoácidos en el conector intracelular de la subunidad α1 entre los dominios I y II (el dominio de interacción alfa, AID) y una región en el dominio GK de la subunidad β (alfa Se pensaba que Interaction Domain Binding Pocket) era el único responsable de los efectos reguladores de la subunidad β. Recientemente, se ha descubierto que el dominio SH3 de la subunidad β también proporciona efectos reguladores adicionales sobre la función del canal, abriendo la posibilidad de que la subunidad β tenga múltiples interacciones reguladoras con el poro de la subunidad α1. Además, la secuencia AID no parece contener una señal de retención del retículo endoplásmico, y ésta puede estar localizada en otras regiones del conector de la subunidad α1 I-II.
Subunidad Γ
Se sabe que la subunidad γ1 está asociada con los complejos VGCC del músculo esquelético, pero la evidencia no es concluyente con respecto a otros subtipos de canales de calcio. La glicoproteína de la subunidad γ1 (33 kDa) está compuesta por cuatro hélices que atraviesan transmembrana. La subunidad γ1 no afecta el tráfico y, en su mayor parte, no es necesaria para regular el complejo de canales. Sin embargo, γ2, γ3, γ4 y γ8 también están asociados con los receptores de glutamato AMPA.
Hay 8 genes para las subunidades gamma:
- γ1CACNG1),
- γ2 (CACNG2),
- γ3 (CACNG3),
- γ4 (CACNG4),
- ()CACNG5),
- ()CACNG6),
- ()CACNG7), y
- ()CACNG8).
Fisiología muscular
Cuando una célula del músculo liso se despolariza, se produce la apertura de los canales de calcio dependientes de voltaje (tipo L). La despolarización puede producirse mediante estiramiento de la célula, unión del agonista a su receptor acoplado a proteína G (GPCR) o estimulación del sistema nervioso autónomo. La apertura del canal de calcio tipo L provoca la entrada de Ca2+ extracelular, que luego se une a la calmodulina. La molécula de calmodulina activada activa la quinasa de cadena ligera de miosina (MLCK), que fosforila la miosina en filamentos gruesos. La miosina fosforilada es capaz de formar puentes cruzados con filamentos finos de actina y la fibra muscular lisa (es decir, la célula) se contrae mediante el mecanismo del filamento deslizante. (Consulte la referencia para ver una ilustración de la cascada de señalización que involucra los canales de calcio tipo L en el músculo liso).
Los canales de calcio tipo L también están enriquecidos en los túbulos T de las células del músculo estriado, es decir, las miofibras esqueléticas y cardíacas. Cuando estas células se despolarizan, los canales de calcio tipo L se abren como en el músculo liso. En el músculo esquelético, la apertura real del canal, que está conectado mecánicamente a un canal de liberación de calcio (también conocido como receptor de rianodina o RYR) en el retículo sarcoplásmico (SR), provoca la apertura del RYR. En el músculo cardíaco, la apertura del canal de calcio tipo L permite la entrada de calcio al interior de la célula. El calcio se une a los canales de liberación de calcio (RYR) en el SR y los abre; este fenómeno se denomina "liberación de calcio inducida por calcio" o CICR. Independientemente de cómo se abran los RYR, ya sea mediante activación mecánica o CICR, el Ca2+ se libera del SR y puede unirse a la troponina C en los filamentos de actina. Luego, los músculos se contraen a través del mecanismo del filamento deslizante, lo que provoca un acortamiento de los sarcómeros y la contracción muscular.
Cambios de expresión durante el desarrollo
Al principio del desarrollo, hay una gran cantidad de expresión de canales de calcio de tipo T. Durante la maduración del sistema nervioso, la expresión de corrientes de tipo N o L se vuelve más prominente. Como resultado, las neuronas maduras expresan más canales de calcio que sólo se activarán cuando la célula esté significativamente despolarizada. Los diferentes niveles de expresión de los canales activados por bajo voltaje (LVA) y activados por alto voltaje (HVA) también pueden desempeñar un papel importante en la diferenciación neuronal. En las neuronas espinales de Xenopus en desarrollo, los canales de calcio LVA transportan un transitorio de calcio espontáneo que puede ser necesario para que la neurona adopte un fenotipo GABAérgico y procese su crecimiento.
Importancia clínica
Los anticuerpos contra los canales de calcio dependientes de voltaje están asociados con el síndrome miasténico de Lambert-Eaton y también han sido implicados en la degeneración cerebelosa paraneoplásica.
Los canales de calcio obtenidos por tensión también están asociados con la hipertermia maligna y el síndrome de Timothy.
Mutaciones de las CACNA1C gene, with a single-nucleotide polymorphism in the third intron of the Cav1.2 gene, are associated with a variation of long QT síndrome called Timothy's síndrome and also with Brugada síndrome. Los análisis genéticos a gran escala han demostrado la posibilidad de que CACNA1C se asocia con trastorno bipolar y posteriormente también con esquizofrenia. Además, un CACNA1C El alelo de riesgo se ha asociado a una perturbación de la conectividad cerebral en pacientes con trastorno bipolar, mientras que no o sólo a un grado menor, en sus parientes no afectados o controles saludables.